Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these i...Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these internal magnetic fields accurately,data selection based on specific criteria is often employed to minimize the influence of rapidly changing current systems in the ionosphere and magnetosphere.However,the quantitative impact of various data selection criteria on internal geomagnetic field modeling is not well understood.This study aims to address this issue and provide a reference for constructing and applying geomagnetic field models.First,we collect the latest MSS-1 and Swarm satellite magnetic data and summarize widely used data selection criteria in geomagnetic field modeling.Second,we briefly describe the method to co-estimate the core,crustal,and large-scale magnetospheric fields using satellite magnetic data.Finally,we conduct a series of field modeling experiments with different data selection criteria to quantitatively estimate their influence.Our numerical experiments confirm that without selecting data from dark regions and geomagnetically quiet times,the resulting internal field differences at the Earth’s surface can range from tens to hundreds of nanotesla(nT).Additionally,we find that the uncertainties introduced into field models by different data selection criteria are significantly larger than the measurement accuracy of modern geomagnetic satellites.These uncertainties should be considered when utilizing constructed magnetic field models for scientific research and applications.展开更多
A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equ...A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equation is integrated along the wall-normal direction to link the tangential component of the effective body force for the IB method to the wall shear stress predicted by the wall model;(ii) a set of Lagrangian points near the wall are introduced to compute the normal component of the effective body force for the IB method by reconstructing the normal component of the velocity. This novel method will be a classical direct-forcing IB method if the grid is fine enough to resolve the flow near the wall. The method is used to simulate the flows around the DARPA SUBOFF model. The results obtained are well comparable to the measured experimental data and wall-resolved LES results.展开更多
The movement of global ocean circulation in the Earth’s main magnetic field generates a measurable induced magnetic field(about 2 nT at geomagnetic satellite altitudes).However,this ocean circulation-induced magnetic...The movement of global ocean circulation in the Earth’s main magnetic field generates a measurable induced magnetic field(about 2 nT at geomagnetic satellite altitudes).However,this ocean circulation-induced magnetic field has not been previously estimated or incorporated into geomagnetic field models,potentially causing leakage into the core field model.Here,we present a method to account for the circulation-induced magnetic field during geomagnetic field modeling.First,a forward model of the circulation-induced magnetic field is constructed by numerically solving electromagnetic induction equations based on a realistic ocean circulation model.Then,this forward model is subtracted from the observed data.Finally,the core and lithospheric fields,magnetospheric and Earth’s mantle-induced fields,and the ocean tide-induced magnetic field are co-estimated.Applying our method to over 20 years of MSS-1,Swarm,CryoSat-2,and CHAMP satellite magnetic data,we derive a new multisource geomagnetic field model(MGFM).We find that incorporating a forward model of the circulation-induced magnetic field marginally improves the fit to the data.Furthermore,we demonstrate that neglecting the circulation-induced magnetic field in geomagnetic field modeling results in leakage into the core field model.The highlights of the MGFM model include:(i)a good agreement with the widely used CHAOS model series;(ii)the incorporation of magnetic fields induced by both ocean tides and circulation;and(iii)the suppression of leakage of the circulation-induced magnetic field into the core field model.展开更多
The generalized rheological tests on sandstone were conducted under both dynamic stress and seepage fields.The results demonstrate that the rheological strain of the specimen under increased stress conditions is great...The generalized rheological tests on sandstone were conducted under both dynamic stress and seepage fields.The results demonstrate that the rheological strain of the specimen under increased stress conditions is greater than that under creep conditions,indicating that the dynamic stress field significantly influences the rheological behaviours of sandstone.Following the rheological tests,the number of small pores in the sandstone decreased,while the number of medium-sized pores increased,forming new seepage channels.The high initial rheological stress accelerated fracture compression and the closure of seepage channels,resulting in reduction in the permeability of sandstone.Based on the principles of generalized rheology and the experimental findings,a novel rock rheological constitutive model incorporating both the dynamic stress field and seepage properties has been developed.Numerical simulations of surrounding rock deformation in geotechnical engineering were carried out using a secondary development version of this model,which confirmed the applicability of the generalized rheological numerical simulation method.These results provide theoretical support for the long-term stability evaluation of engineering rock masses and for predicting the deformation of surrounding rock.展开更多
It is well known that coarse-grained super-elastic NiTi shape memory alloys(SMAs)exhibit localized rather than homogeneous martensite transformation(MT),which,however,can be strongly influenced by either internal size...It is well known that coarse-grained super-elastic NiTi shape memory alloys(SMAs)exhibit localized rather than homogeneous martensite transformation(MT),which,however,can be strongly influenced by either internal size(grain size,GS)or the external size(geometric size).The coupled effect of GS and geometric size on the functional properties has not been clearly understood yet.In this work,the super-elasticity,one-way,and stress-assisted two-way shape memory effects of the polycrystalline NiTi SMAs with different aspect ratios(length/width for the gauge section)and different GSs are investigated based on the phase field method.The coupled effect of the aspect ratio and GS on the functional properties is adequately revealed.The simulated results indicate that when the aspect ratio is lower than about 4:1,the stress biaxiality and stress heterogeneity in the gauge section of the sample become more and more obvious with decreasing the aspect ratio,which can significantly influence the microstructure evolution in the process involving external stress.Therefore,the corresponding functional property is strongly dependent on the aspect ratio.With decreasing the GS and the aspect ratio(to be lower than 4:1),both the aspect ratio and GS can affect the MT or martensite reorientation in each grain and the interaction among grains.Thus,due to the strong internal constraint(i.e.,the constraint of grain boundary)and the external constraint(i.e.,the constraint of geometric boundary),the capabilities of the functional properties of NiTi SMAs are gradually weakened and highly dependent on these two factors.展开更多
By combining data from the Challenging Minisatellite Payload(CHAMP),Swarm-A,and newest Macao Science Satellite-1(MSS-1) missions,we constructed a lithospheric magnetic field model up to spherical harmonic degree N = 1...By combining data from the Challenging Minisatellite Payload(CHAMP),Swarm-A,and newest Macao Science Satellite-1(MSS-1) missions,we constructed a lithospheric magnetic field model up to spherical harmonic degree N = 100.To isolate the lithospheric magnetic field signals,we utilized the latest CHAOS-8(CHAMP,Φrsted,and SAC-C 8) model and MGFM(Multisource Geomagnetic Field Model) to remove nonlithospheric sources,including the core field,magnetospheric field,ocean tidal field,and ocean circulation field.Subsequently,orbit-by-orbit processing was applied to both scalar and vector data,such as spherical harmonic high-pass filtering,singular spectrum analysis,and line leveling,to suppress noise and residual signals along the satellite tracks.With an orbital inclination of only 41°,MSS-1 effectively captures fine-scale lithospheric magnetic field signals in mid-to low-latitude regions.Its data exhibit a root mean square error of only 0.77 nT relative to the final model,confirming the high quality and utility of lithospheric field modeling.The resulting model exhibits excellent consistency with the MF7(Magnetic Field Model 7),maintaining a high correlation up to N = 90 and still exceeding 0.65 at N = 100.These results demonstrate the reliability and value of MSS-1 data in global lithospheric magnetic field modeling.展开更多
The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.Howeve...The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.However,the inversion for the ES model suffers from nonuniqueness and instability,which remain unresolved.To mitigate these issues,we introduce both the minimum and flattest models into the model objective function as an alternative regularization approach in the spherical ES method.We first present the methods,then analyze the accuracy of forward calculation and test the proposed ES method in this study by using synthetic data.The experimental results from simulation data indicate that our proposed regularization effectively suppresses the Backus effect and mitigates inversion instability in the low-latitude region.Finally,we apply the proposed method to magnetic anomaly data from China Seismo-Electromagnetic Satellite-1(CSES-1)and Macao Science Satellite-1(MSS-1)magnetic measurements over Africa by constructing an ES model of the large-scale lithospheric magnetic field.Compared with existing global lithospheric magnetic field models,our ES model demonstrates good consistency at high altitudes and predicts more stable fields at low altitudes.Furthermore,we derive the reduction to the pole(RTP)magnetic anomaly fields and the apparent susceptibility contrast distribution based on the ES model.The latter correlates well with the regional tectonic framework in Africa and surroundings.展开更多
Einstein aimed to find a unified theoretical model to explain various interactions in nature,and the relationship between gravitational and electric fields was particularly important.For the first time,this paper prov...Einstein aimed to find a unified theoretical model to explain various interactions in nature,and the relationship between gravitational and electric fields was particularly important.For the first time,this paper provides the internal relationship equations of the electric and magnetic fields.Further,the relationship between the magnetic and gravity fields is analyzed,and the relationship equations of the electric,magnetic,and gravity fields are established.On this basis,a general formula for calculating the radius of charged particles is derived.Simultaneously,we also discussed and made predictions on black holes,providing convenience for future research and experimental detection.展开更多
As the demand for advanced material design and performance prediction continues to grow,traditional phase-field models are increasingly challenged by limitations in computational efficiency and predictive accuracy,par...As the demand for advanced material design and performance prediction continues to grow,traditional phase-field models are increasingly challenged by limitations in computational efficiency and predictive accuracy,particularly when addressing high-dimensional and complex data in multicomponent systems.To overcome these challenges,this study proposes an innovative model,LSGWO-BP,which integrates an improved Grey Wolf Optimizer(GWO)with a backpropagation neural network(BP)to enhance the accuracy and efficiency of quasi-phase equilibrium predictions within the KKS phase-field framework.Three mapping enhancement strategies were investigated–Circle-Root,Tent-Cosine,and Logistic-Sine mappings-with the Logistic mapping further improved via Sine perturbation to boost global search capability and convergence speed in large-scale,complex data scenarios.Evaluation results demonstrate that the LSGWO-BP model significantly outperforms conventional machine learning approaches in predicting quasi-phase equilibrium,achieving a 14%–28%reduction in mean absolute error(MAE).Substantial improvements were also observed in mean squared error,root mean squared error,and mean absolute percentage error,alongside a 7%–33%increase in the coefficient of determination(R2).Furthermore,the model exhibits strong potential for microstructural simulation applications.Overall,the study confirms the effectiveness of the LSGWO-BP model in materials science,especially in enhancing phase-field modeling efficiency and enabling accurate,intelligent prediction for multicomponent alloy systems,thereby offering robust support for microstructure prediction and control.展开更多
Machine learning(ML)techniques have emerged as powerful tools for improving the predictive capabilities of Reynolds-averaged Navier-Stokes(RANS)turbulence models in separated flows.This improvement is achieved by leve...Machine learning(ML)techniques have emerged as powerful tools for improving the predictive capabilities of Reynolds-averaged Navier-Stokes(RANS)turbulence models in separated flows.This improvement is achieved by leveraging complex ML models,such as those developed using field inversion and machine learning(FIML),to dynamically adjust the constants within the baseline RANS model.However,the ML models often overlook the fundamental calibrations of the RANS turbulence model.Consequently,the basic calibration of the baseline RANS model is disrupted,leading to a degradation in the accuracy,particularly in basic wall-attached flows outside of the training set.To address this issue,a modified version of the Spalart-Allmaras(SA)turbulence model,known as Rubber-band SA(RBSA),has been proposed recently.This modification involves identifying and embedding constraints related to basic wall-attached flows directly into the model.It is shown that no matter how the parameters of the RBSA model are adjusted as constants throughout the flow field,its accuracy in wall-attached flows remains unaffected.In this paper,we propose a new constraint for the RBSA model,which better safeguards the law of wall in extreme conditions where the model parameter is adjusted dramatically.The resultant model is called the RBSA-poly model.We then show that when combined with FIML augmentation,the RBSA-poly model effectively preserves the accuracy of simple wall-attached flows,even when the adjusted parameters become functions of local flow variables rather than constants.A comparative analysis with the FIML-augmented original SA model reveals that the augmented RBSA-poly model reduces error in basic wall-attached flows by 50%while maintaining comparable accuracy in trained separated flows.These findings confirm the effectiveness of utilizing FIML in conjunction with the RBSA model,offering superior accuracy retention in cardinal flows.展开更多
The Earth's magnetic field,which has been extensively observed from ground to satellite altitudes over several decades,originates from multiple sources,such as the core dynamo,the conductive mantle,the magnetized ...The Earth's magnetic field,which has been extensively observed from ground to satellite altitudes over several decades,originates from multiple sources,such as the core dynamo,the conductive mantle,the magnetized lithosphere,and the space current systems.Modeling of the lithospheric contribution plays an important role in the geophysical studies and industrial applications.In this paper,we propose a new method for global and regional modeling of the lithospheric magnetic field based on the cubed-sphere.An equivalent dipole source method on a quasi-uniform cubed-sphere grid is employed in the forward modeling.The dipole directions are fixed according to a priori magnetization and the relative intensities are estimated by an inversion procedure of least-squares fitting with minimum model regularization.Several numerical tests are performed to validate the accuracy and efficiency of both forward modeling and inversion procedure.The proposed method is applied to the global and regional modeling based on the latest magnetic data from Swarm Alpha satellite and MSS-1 mission.The model results indicate that the proposed method works quite well for realistic satellite data and MSS-1 data is consistent with the Swarm data in terms of lithospheric field modeling.展开更多
With the intelligent transformation of process manufacturing,accurate and comprehensive perception information is fundamental for application of artificial intelligence methods.In zinc smelting,the fluidized bed roast...With the intelligent transformation of process manufacturing,accurate and comprehensive perception information is fundamental for application of artificial intelligence methods.In zinc smelting,the fluidized bed roaster is a key piece of large-scale equipment and plays a critical role in the manufacturing industry;its internal temperature field directly determines the quality of zinc calcine and other related products.However,due to its vast spatial dimensions,the limited observation methods,and the complex multiphase,multifield coupled reaction atmosphere inside it,accurately and timely perceiving its temperature field remains a significant challenge.To address these challenges,a spatial-temporal reduced-order model(STROM)is proposed,which can realize fast and accurate temperature field perception based on sparse observation data.Specifically,to address the difficulty in matching the initial physical field with the sparse observation data,an initial field construction based on data assimilation(IFCDA)method is proposed to ensure that the initial conditions of the model can be matched with the actual operation state,which provides a basis for constructing a high-precision computational fluid dynamics(CFD)model.Then,to address the high simulation cost of high-precision CFD models under full working conditions,a high uniformity(HU)-orthogonal test design(OTD)method with the centered L2 deviation is innovatively proposed to ensure high information coverage of the temperature field dataset under typical working conditions in terms of multiple factors and levels of the component,feed,and blast parameters.Finally,to address the difficulty in real-time and accurate temperature field prediction,considering the spatial correlation between the observed temperature and the temperature field,as well as the dynamic correlation of the observed temperature in the time dimension,a spatial-temporal predictive model(STPM)is established,which realizes rapid prediction of the temperature field through sparse observa-tion data.To verify the accuracy and validity of the proposed method,CFD model validation and reduced-order model prediction experiments are designed,and the results show that the proposed method can realize high-precision and fast prediction of the roaster temperature field under different working conditions through sparse observation data.Compared with the CFD model,the prediction root-mean-square error(RMSE)of STROM is less than 0.038,and the computational efficiency is improved by 3.4184×10^(4)times.In particular,STROM also has a good prediction ability for unmodeled conditions,with a prediction RMSE of less than 0.1089.展开更多
The China Seismo-Electromagnetic Satellite(CSES) was successfully launched in February 2018. The high precision magnetometer(HPM) on board the CSES has captured high-quality magnetic data that have been used to derive...The China Seismo-Electromagnetic Satellite(CSES) was successfully launched in February 2018. The high precision magnetometer(HPM) on board the CSES has captured high-quality magnetic data that have been used to derive a global lithospheric magnetic field model. While preparing the datasets for this lithospheric magnetic field model, researchers found that they still contained prominent residual trends within the magnetic anomaly even once signals from other sources had been eliminated. However, no processing was undertaken to deal with the residual trends during modeling to avoid subjective processing and represent the realistic nature of the data. In this work, we analyze the influence of these residual trends on the lithospheric magnetic field modeling.Polynomials of orders 0–3 were used to fit the trend of each track and remove it for detrending. We then derived four models through detrending-based processing, and compared their power spectra and grid maps with those of the CSES original model and CHAOS-7model. The misfit between the model and the dataset decreased after detrending the data, and the convergence of the inverted spherical harmonic coefficients improved. However, detrending reduced the signal strength and the power spectrum, while detrending based on high-order polynomials introduced prominent distortions in details of the magnetic anomaly. Based on this analysis, we recommend along-track detrending by using a zero-order polynomial(removing a constant value) on the CSES magnetic anomaly data to drag its mean value to zero. This would lead to only a slight reduction in the signal strength while significantly improving the stability of the inverted coefficients and details of the anomaly.展开更多
Typhoon Chaba was the most intense typhoon to strike western Guangdong since Typhoon Mujigae in 2015.According to the National Disaster Reduction Center of China,in the morning of July 7,2022,over 1.5 million people i...Typhoon Chaba was the most intense typhoon to strike western Guangdong since Typhoon Mujigae in 2015.According to the National Disaster Reduction Center of China,in the morning of July 7,2022,over 1.5 million people in Guangdong,Guangxi,and Hainan were affected by Typhoon Chaba.The typhoon also caused the“Fukui 001”ship to be in distress in the waters near Yangjiang,Guangdong,on July 2,resulting in big casualties.Studies have indicated that wind field forecast for Typhoon Chaba was not accurate.To better simulate typhoon events and assess their impacts,we proposed the use of a model wind field(Fujita-Takahashi)integrated with the Copernicus Marine and Environmental Monitoring Service(CMEMS)data to reconstruct effectively the overall wind field of Typhoon Chaba.The simulation result aligns well with the observations,particularly at the Dashu Island Station,showing consistent trends in wind speed changes.However,certain limitations were noted.The model shows that the attenuation of wind speed is slower when typhoon neared land than that observed,indicating that the model has a high simulation accuracy for the ocean wind field,but may have deviations near coastal areas.The result is accurate for open sea but deviated for near land due to the land friction effect.Therefore,we recommend to adjust the model to improve the accuracy for near coasts.展开更多
With the growing demand for high-precision flow field simulations in computational science and engineering,the super-resolution reconstruction of physical fields has attracted considerable research interest.However,tr...With the growing demand for high-precision flow field simulations in computational science and engineering,the super-resolution reconstruction of physical fields has attracted considerable research interest.However,tradi-tional numerical methods often entail high computational costs,involve complex data processing,and struggle to capture fine-scale high-frequency details.To address these challenges,we propose an innovative super-resolution reconstruction framework that integrates a Fourier neural operator(FNO)with an enhanced diffusion model.The framework employs an adaptively weighted FNO to process low-resolution flow field inputs,effectively capturing global dependencies and high-frequency features.Furthermore,a residual-guided diffusion model is introduced to further improve reconstruction performance.This model uses a Markov chain for noise injection in phys-ical fields and integrates a reverse denoising procedure,efficiently solved by an adaptive time-step ordinary differential equation solver,thereby ensuring both stability and computational efficiency.Experimental results demonstrate that the proposed framework significantly outperforms existing methods in terms of accuracy and efficiency,offering a promising solution for fine-grained data reconstruction in scientific simulations.展开更多
This study integrates seismic and petrophysical data to evaluate the subsurface geology of the Keva Field,located onshore in the Niger Delta,with the objective of constructing a 3D geological model and estimating the ...This study integrates seismic and petrophysical data to evaluate the subsurface geology of the Keva Field,located onshore in the Niger Delta,with the objective of constructing a 3D geological model and estimating the recoverable hydrocarbon volumes.Seismic lines and well log data from six wells—KV-2,KV-3,KV-4,KV-5,KV-6,and KV-7—were utilized for the interpretation.The seismic profiles revealed that the KV-4 well is the only well drilled on the up-thrown side of a significant horst fault block,bounded by four major normal faults,while all the other wells penetrated the downthrown side.Petrophysical analysis identified three key reservoirs,C500,D200,and E900,which exhibit excellent reservoir quality with high net-to-gross ratios,good porosity,and high hydrocarbon saturation.The identified depositional environments are tidal-and fluvial-dominated shoreface settings,with sheet sands deposited in distributary splay systems.The C500,D200,and E900 reservoirs have Gas Initially in Place(GIIP)values of 156.37,28.44,and 27.89 BSCF,respectively,with corresponding Estimated Ultimate Recovery(EUR)values of 104.77,19.06,and 18.69 BSCF,respectively.The Stock Tank Original Oil in Place(STOOIP)values are 24.43,91.29,and 86.41 MMSTB,with EURs of 7.32,27.4,and 25.92 MMSTB,respectively.The combined GIIP is 212.72 BSCF with EUR of 142.52 BSCF,while the total STOOIP is 202.13 MMSTB with a recoverable volume of 60.64 MMSTB.The reservoirs present an average porosity of 22.62%,with gas saturation of 84.66%and oil saturation of 73%.The evaluated reservoir qualities suggest high potential for optimized hydrocarbon production.展开更多
Stratospheric airships are lighter-than-air vehicles capable of continuous flying for months.The energy balance of the airship is the key to long-duration flights.The stratospheric airship is entirely powered by the s...Stratospheric airships are lighter-than-air vehicles capable of continuous flying for months.The energy balance of the airship is the key to long-duration flights.The stratospheric airship is entirely powered by the solar array.It is necessary to accurately predict the output power of the array for any flight state.Because of the uneven solar radiation received by the solar array,the traditional model based on components has a slow simulation speed.In this study,a data-driven surrogate modeling approach for prediction the output power of the solar array is proposed.The surrogate model is trained using the samples obtained from the high-accuracy simulation model.By using the input parameter preprocessor,the accuracy of the surrogate model in predicting the output power of the solar array is improved to 98.65%.In addition,the predictive speed of the surrogate model is ten million times faster than the traditional simulation model.Finally,the surrogate model is used to predict the energy balance of stratospheric airships flying throughout the year under actual global wind fields.展开更多
High-Resolution(HR)data on flow fields are critical for accurately evaluating the aerodynamic performance of aircraft.However,acquiring such data through large-scale numerical simulations or wind tunnel experiments is...High-Resolution(HR)data on flow fields are critical for accurately evaluating the aerodynamic performance of aircraft.However,acquiring such data through large-scale numerical simulations or wind tunnel experiments is highly resource intensive.This paper proposes a FlowViT-Diff framework that integrates a Vision Transformer(ViT)with an enhanced denoising diffusion probabilistic model for the Super-Resolution(SR)reconstruction of HR flow fields based on low-resolution inputs.It provides a quick initial prediction of the HR flow field by optimizing the ViT architecture,and incorporates this preliminary output as guidance within an enhanced diffusion model.The latter captures the Gaussian noise distribution during forward diffusion and progressively removes it during backward diffusion to generate the flow field.Experiments on various supercritical airfoils under different flow conditions show that FlowViT-Diff can robustly reconstruct the flow field across multiple levels of downsampling.It obtains more consistent global and local features than traditional SR methods,and yields a 3.6-fold increase in its training speed via transfer learning.Its accuracy of reconstruction of the flow field is 99.7%under ultra-low downsampling.The results demonstrate that Flow Vi T-Diff not only exhibits effective flow field reconstruction capabilities,but also provides two reconstruction strategies,both of which show effective transferability.展开更多
As the commercialization of the fifth gen-eration communication(5G)is sped up,its system testing scheme is vital for the successful deployment of 5G.Especially,5G relies on the scale-increased multiple-input-multiple ...As the commercialization of the fifth gen-eration communication(5G)is sped up,its system testing scheme is vital for the successful deployment of 5G.Especially,5G relies on the scale-increased multiple-input-multiple output(MIMO)technique to improve its capacity and coverage.Thus,testing new functions of the 5G MIMO system accurately and ef-ficiently,including beamforming(beam-tracking with movement)and multiple-user(MU)multiplexing,is a challenging task.This paper tries to construct a lab-oratorial hardware and conduct equipment-controlled field testing.Firstly,the testing scheme is presented,which is composed of the framework,the channel models and the validation methods.Then,the channel model principles are explained in detail due to its di-rect influence on the testing accuracy.Specifically,we utilize the spatial consistency and the multi-link cor-relation properties to emulate the high-speed dynamic time-varying(HDT)and the multiple-cell(MC)-MU-MIMO channels.Finally,the above testing scheme is verified in a Shanghai 5G field experiment with the practical commercial equipment and the channel em-ulator.The results show that the 5G new functions are tested accurately and efficiently by switching the channel emulation configurations.展开更多
To effectively minimize the electromagnetic field response in the total field solution, we propose a numerical modeling method for the two-dimensional (2D) time- domain transient electromagnetic secondary field of t...To effectively minimize the electromagnetic field response in the total field solution, we propose a numerical modeling method for the two-dimensional (2D) time- domain transient electromagnetic secondary field of the line source based on the DuFort- Frankel finite-difference method. In the proposed method, we included the treatment of the earth-air boundary conductivity, calculated the normalized partial derivative of the induced electromotive force (Emf), and determined the forward time step. By extending upward the earth-air interface to the air grid nodes and the zero-value boundary conditions, not only we have a method that is more efficient but also simpler than the total field solution. We computed and analyzed the homogeneous half-space model and the fiat layered model with high precision--the maximum relative error is less than 0.01% between our method and the analytical method--and the solution speed is roughly three times faster than the total-field solution. Lastly, we used the model of a thin body embedded in a homogeneous half-space at different delay times to depict the downward and upward spreading characteristics of the induced eddy current, and the physical interaction processes between the electromagnetic field and the underground low-resistivity body.展开更多
基金supported by the National Natural Science Foundation of China(42250101)the Macao Foundation。
文摘Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these internal magnetic fields accurately,data selection based on specific criteria is often employed to minimize the influence of rapidly changing current systems in the ionosphere and magnetosphere.However,the quantitative impact of various data selection criteria on internal geomagnetic field modeling is not well understood.This study aims to address this issue and provide a reference for constructing and applying geomagnetic field models.First,we collect the latest MSS-1 and Swarm satellite magnetic data and summarize widely used data selection criteria in geomagnetic field modeling.Second,we briefly describe the method to co-estimate the core,crustal,and large-scale magnetospheric fields using satellite magnetic data.Finally,we conduct a series of field modeling experiments with different data selection criteria to quantitatively estimate their influence.Our numerical experiments confirm that without selecting data from dark regions and geomagnetically quiet times,the resulting internal field differences at the Earth’s surface can range from tens to hundreds of nanotesla(nT).Additionally,we find that the uncertainties introduced into field models by different data selection criteria are significantly larger than the measurement accuracy of modern geomagnetic satellites.These uncertainties should be considered when utilizing constructed magnetic field models for scientific research and applications.
基金Project supported by the National Natural Science Foundation of China(Nos.91752118,11672305,11232011,and 11572331)the Strategic Priority Research Program(No.XDB22040104)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(No.QYZDJ-SSWSYS002)
文摘A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equation is integrated along the wall-normal direction to link the tangential component of the effective body force for the IB method to the wall shear stress predicted by the wall model;(ii) a set of Lagrangian points near the wall are introduced to compute the normal component of the effective body force for the IB method by reconstructing the normal component of the velocity. This novel method will be a classical direct-forcing IB method if the grid is fine enough to resolve the flow near the wall. The method is used to simulate the flows around the DARPA SUBOFF model. The results obtained are well comparable to the measured experimental data and wall-resolved LES results.
基金supported by the National Natural Science Foundation of China(42250101,42250102)the Macao Foundation.
文摘The movement of global ocean circulation in the Earth’s main magnetic field generates a measurable induced magnetic field(about 2 nT at geomagnetic satellite altitudes).However,this ocean circulation-induced magnetic field has not been previously estimated or incorporated into geomagnetic field models,potentially causing leakage into the core field model.Here,we present a method to account for the circulation-induced magnetic field during geomagnetic field modeling.First,a forward model of the circulation-induced magnetic field is constructed by numerically solving electromagnetic induction equations based on a realistic ocean circulation model.Then,this forward model is subtracted from the observed data.Finally,the core and lithospheric fields,magnetospheric and Earth’s mantle-induced fields,and the ocean tide-induced magnetic field are co-estimated.Applying our method to over 20 years of MSS-1,Swarm,CryoSat-2,and CHAMP satellite magnetic data,we derive a new multisource geomagnetic field model(MGFM).We find that incorporating a forward model of the circulation-induced magnetic field marginally improves the fit to the data.Furthermore,we demonstrate that neglecting the circulation-induced magnetic field in geomagnetic field modeling results in leakage into the core field model.The highlights of the MGFM model include:(i)a good agreement with the widely used CHAOS model series;(ii)the incorporation of magnetic fields induced by both ocean tides and circulation;and(iii)the suppression of leakage of the circulation-induced magnetic field into the core field model.
基金supported and financed by Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology (No.2024yjrc96)Anhui Provincial University Excellent Research and Innovation Team Support Project (No.2022AH010053)+2 种基金National Key Research and Development Program of China (Nos.2023YFC2907602 and 2022YFF1303302)Anhui Provincial Major Science and Technology Project (No.202203a07020011)Open Foundation of Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining (No.EC2023020)。
文摘The generalized rheological tests on sandstone were conducted under both dynamic stress and seepage fields.The results demonstrate that the rheological strain of the specimen under increased stress conditions is greater than that under creep conditions,indicating that the dynamic stress field significantly influences the rheological behaviours of sandstone.Following the rheological tests,the number of small pores in the sandstone decreased,while the number of medium-sized pores increased,forming new seepage channels.The high initial rheological stress accelerated fracture compression and the closure of seepage channels,resulting in reduction in the permeability of sandstone.Based on the principles of generalized rheology and the experimental findings,a novel rock rheological constitutive model incorporating both the dynamic stress field and seepage properties has been developed.Numerical simulations of surrounding rock deformation in geotechnical engineering were carried out using a secondary development version of this model,which confirmed the applicability of the generalized rheological numerical simulation method.These results provide theoretical support for the long-term stability evaluation of engineering rock masses and for predicting the deformation of surrounding rock.
基金supported by the National Natural Science Foundation of China (Grant Nos.12202294 and 12022208)the Project funded by China Postdoctoral Science Foundation (Grant No.2022M712243)the Fundamental Research Funds for the Central Universities (Grant No.2023SCU12098).
文摘It is well known that coarse-grained super-elastic NiTi shape memory alloys(SMAs)exhibit localized rather than homogeneous martensite transformation(MT),which,however,can be strongly influenced by either internal size(grain size,GS)or the external size(geometric size).The coupled effect of GS and geometric size on the functional properties has not been clearly understood yet.In this work,the super-elasticity,one-way,and stress-assisted two-way shape memory effects of the polycrystalline NiTi SMAs with different aspect ratios(length/width for the gauge section)and different GSs are investigated based on the phase field method.The coupled effect of the aspect ratio and GS on the functional properties is adequately revealed.The simulated results indicate that when the aspect ratio is lower than about 4:1,the stress biaxiality and stress heterogeneity in the gauge section of the sample become more and more obvious with decreasing the aspect ratio,which can significantly influence the microstructure evolution in the process involving external stress.Therefore,the corresponding functional property is strongly dependent on the aspect ratio.With decreasing the GS and the aspect ratio(to be lower than 4:1),both the aspect ratio and GS can affect the MT or martensite reorientation in each grain and the interaction among grains.Thus,due to the strong internal constraint(i.e.,the constraint of grain boundary)and the external constraint(i.e.,the constraint of geometric boundary),the capabilities of the functional properties of NiTi SMAs are gradually weakened and highly dependent on these two factors.
基金the support of the National Natural Science Foundation of China (Nos. 42250103, 41974073, and 41404053)the Macao Foundation and the preresearch project of Civil Aerospace Technologies (Nos. D020308 and D020303)funded by China’s National Space Administration, and the Specialized Research Fund for State Key Laboratories。
文摘By combining data from the Challenging Minisatellite Payload(CHAMP),Swarm-A,and newest Macao Science Satellite-1(MSS-1) missions,we constructed a lithospheric magnetic field model up to spherical harmonic degree N = 100.To isolate the lithospheric magnetic field signals,we utilized the latest CHAOS-8(CHAMP,Φrsted,and SAC-C 8) model and MGFM(Multisource Geomagnetic Field Model) to remove nonlithospheric sources,including the core field,magnetospheric field,ocean tidal field,and ocean circulation field.Subsequently,orbit-by-orbit processing was applied to both scalar and vector data,such as spherical harmonic high-pass filtering,singular spectrum analysis,and line leveling,to suppress noise and residual signals along the satellite tracks.With an orbital inclination of only 41°,MSS-1 effectively captures fine-scale lithospheric magnetic field signals in mid-to low-latitude regions.Its data exhibit a root mean square error of only 0.77 nT relative to the final model,confirming the high quality and utility of lithospheric field modeling.The resulting model exhibits excellent consistency with the MF7(Magnetic Field Model 7),maintaining a high correlation up to N = 90 and still exceeding 0.65 at N = 100.These results demonstrate the reliability and value of MSS-1 data in global lithospheric magnetic field modeling.
基金supported by the National Natural Science Foundation of China(Grant Nos.42250103 and 42174090)the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education(Grant No.GLAB2023ZR02)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources(Grant No.MSFGPMR2022-4).
文摘The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.However,the inversion for the ES model suffers from nonuniqueness and instability,which remain unresolved.To mitigate these issues,we introduce both the minimum and flattest models into the model objective function as an alternative regularization approach in the spherical ES method.We first present the methods,then analyze the accuracy of forward calculation and test the proposed ES method in this study by using synthetic data.The experimental results from simulation data indicate that our proposed regularization effectively suppresses the Backus effect and mitigates inversion instability in the low-latitude region.Finally,we apply the proposed method to magnetic anomaly data from China Seismo-Electromagnetic Satellite-1(CSES-1)and Macao Science Satellite-1(MSS-1)magnetic measurements over Africa by constructing an ES model of the large-scale lithospheric magnetic field.Compared with existing global lithospheric magnetic field models,our ES model demonstrates good consistency at high altitudes and predicts more stable fields at low altitudes.Furthermore,we derive the reduction to the pole(RTP)magnetic anomaly fields and the apparent susceptibility contrast distribution based on the ES model.The latter correlates well with the regional tectonic framework in Africa and surroundings.
基金supported by the Hunan Provincial Natural Science Foundation(No.2016JJ3034).
文摘Einstein aimed to find a unified theoretical model to explain various interactions in nature,and the relationship between gravitational and electric fields was particularly important.For the first time,this paper provides the internal relationship equations of the electric and magnetic fields.Further,the relationship between the magnetic and gravity fields is analyzed,and the relationship equations of the electric,magnetic,and gravity fields are established.On this basis,a general formula for calculating the radius of charged particles is derived.Simultaneously,we also discussed and made predictions on black holes,providing convenience for future research and experimental detection.
基金supported by the National Natural Science Foundation of China(Grant Nos.52161002,51661020 and 11364024)。
文摘As the demand for advanced material design and performance prediction continues to grow,traditional phase-field models are increasingly challenged by limitations in computational efficiency and predictive accuracy,particularly when addressing high-dimensional and complex data in multicomponent systems.To overcome these challenges,this study proposes an innovative model,LSGWO-BP,which integrates an improved Grey Wolf Optimizer(GWO)with a backpropagation neural network(BP)to enhance the accuracy and efficiency of quasi-phase equilibrium predictions within the KKS phase-field framework.Three mapping enhancement strategies were investigated–Circle-Root,Tent-Cosine,and Logistic-Sine mappings-with the Logistic mapping further improved via Sine perturbation to boost global search capability and convergence speed in large-scale,complex data scenarios.Evaluation results demonstrate that the LSGWO-BP model significantly outperforms conventional machine learning approaches in predicting quasi-phase equilibrium,achieving a 14%–28%reduction in mean absolute error(MAE).Substantial improvements were also observed in mean squared error,root mean squared error,and mean absolute percentage error,alongside a 7%–33%increase in the coefficient of determination(R2).Furthermore,the model exhibits strong potential for microstructural simulation applications.Overall,the study confirms the effectiveness of the LSGWO-BP model in materials science,especially in enhancing phase-field modeling efficiency and enabling accurate,intelligent prediction for multicomponent alloy systems,thereby offering robust support for microstructure prediction and control.
基金supported by the National Natural Science Foundation of China(Grant Nos.12388101,12372288,U23A2069,and 92152301).
文摘Machine learning(ML)techniques have emerged as powerful tools for improving the predictive capabilities of Reynolds-averaged Navier-Stokes(RANS)turbulence models in separated flows.This improvement is achieved by leveraging complex ML models,such as those developed using field inversion and machine learning(FIML),to dynamically adjust the constants within the baseline RANS model.However,the ML models often overlook the fundamental calibrations of the RANS turbulence model.Consequently,the basic calibration of the baseline RANS model is disrupted,leading to a degradation in the accuracy,particularly in basic wall-attached flows outside of the training set.To address this issue,a modified version of the Spalart-Allmaras(SA)turbulence model,known as Rubber-band SA(RBSA),has been proposed recently.This modification involves identifying and embedding constraints related to basic wall-attached flows directly into the model.It is shown that no matter how the parameters of the RBSA model are adjusted as constants throughout the flow field,its accuracy in wall-attached flows remains unaffected.In this paper,we propose a new constraint for the RBSA model,which better safeguards the law of wall in extreme conditions where the model parameter is adjusted dramatically.The resultant model is called the RBSA-poly model.We then show that when combined with FIML augmentation,the RBSA-poly model effectively preserves the accuracy of simple wall-attached flows,even when the adjusted parameters become functions of local flow variables rather than constants.A comparative analysis with the FIML-augmented original SA model reveals that the augmented RBSA-poly model reduces error in basic wall-attached flows by 50%while maintaining comparable accuracy in trained separated flows.These findings confirm the effectiveness of utilizing FIML in conjunction with the RBSA model,offering superior accuracy retention in cardinal flows.
基金supported by the National Natural Science Foundation of China(42250101,42250102,42250103,12250013)the Macao Foundation。
文摘The Earth's magnetic field,which has been extensively observed from ground to satellite altitudes over several decades,originates from multiple sources,such as the core dynamo,the conductive mantle,the magnetized lithosphere,and the space current systems.Modeling of the lithospheric contribution plays an important role in the geophysical studies and industrial applications.In this paper,we propose a new method for global and regional modeling of the lithospheric magnetic field based on the cubed-sphere.An equivalent dipole source method on a quasi-uniform cubed-sphere grid is employed in the forward modeling.The dipole directions are fixed according to a priori magnetization and the relative intensities are estimated by an inversion procedure of least-squares fitting with minimum model regularization.Several numerical tests are performed to validate the accuracy and efficiency of both forward modeling and inversion procedure.The proposed method is applied to the global and regional modeling based on the latest magnetic data from Swarm Alpha satellite and MSS-1 mission.The model results indicate that the proposed method works quite well for realistic satellite data and MSS-1 data is consistent with the Swarm data in terms of lithospheric field modeling.
基金supported in part by the National Key Research and Development Program of China(2022YFB3304900)in part by the National Natural Science Foundation of China(62394340 and 62073340)in part by the Science and Technology Innovation Program of Hunan Province(2022JJ10083).
文摘With the intelligent transformation of process manufacturing,accurate and comprehensive perception information is fundamental for application of artificial intelligence methods.In zinc smelting,the fluidized bed roaster is a key piece of large-scale equipment and plays a critical role in the manufacturing industry;its internal temperature field directly determines the quality of zinc calcine and other related products.However,due to its vast spatial dimensions,the limited observation methods,and the complex multiphase,multifield coupled reaction atmosphere inside it,accurately and timely perceiving its temperature field remains a significant challenge.To address these challenges,a spatial-temporal reduced-order model(STROM)is proposed,which can realize fast and accurate temperature field perception based on sparse observation data.Specifically,to address the difficulty in matching the initial physical field with the sparse observation data,an initial field construction based on data assimilation(IFCDA)method is proposed to ensure that the initial conditions of the model can be matched with the actual operation state,which provides a basis for constructing a high-precision computational fluid dynamics(CFD)model.Then,to address the high simulation cost of high-precision CFD models under full working conditions,a high uniformity(HU)-orthogonal test design(OTD)method with the centered L2 deviation is innovatively proposed to ensure high information coverage of the temperature field dataset under typical working conditions in terms of multiple factors and levels of the component,feed,and blast parameters.Finally,to address the difficulty in real-time and accurate temperature field prediction,considering the spatial correlation between the observed temperature and the temperature field,as well as the dynamic correlation of the observed temperature in the time dimension,a spatial-temporal predictive model(STPM)is established,which realizes rapid prediction of the temperature field through sparse observa-tion data.To verify the accuracy and validity of the proposed method,CFD model validation and reduced-order model prediction experiments are designed,and the results show that the proposed method can realize high-precision and fast prediction of the roaster temperature field under different working conditions through sparse observation data.Compared with the CFD model,the prediction root-mean-square error(RMSE)of STROM is less than 0.038,and the computational efficiency is improved by 3.4184×10^(4)times.In particular,STROM also has a good prediction ability for unmodeled conditions,with a prediction RMSE of less than 0.1089.
基金a project funded by the China National Space Administration (CNSA) and the Ministry of Emergency Management of Chinasupported by the Civil Aerospace Technology Pilot Research Project (D040203)+1 种基金the National Natural Science Foundation of China (42004051, 42274214)the APSCO Earthquake Research Project Phase Ⅱ and Dragon 6 cooperation 2025-2029 (95437)。
文摘The China Seismo-Electromagnetic Satellite(CSES) was successfully launched in February 2018. The high precision magnetometer(HPM) on board the CSES has captured high-quality magnetic data that have been used to derive a global lithospheric magnetic field model. While preparing the datasets for this lithospheric magnetic field model, researchers found that they still contained prominent residual trends within the magnetic anomaly even once signals from other sources had been eliminated. However, no processing was undertaken to deal with the residual trends during modeling to avoid subjective processing and represent the realistic nature of the data. In this work, we analyze the influence of these residual trends on the lithospheric magnetic field modeling.Polynomials of orders 0–3 were used to fit the trend of each track and remove it for detrending. We then derived four models through detrending-based processing, and compared their power spectra and grid maps with those of the CSES original model and CHAOS-7model. The misfit between the model and the dataset decreased after detrending the data, and the convergence of the inverted spherical harmonic coefficients improved. However, detrending reduced the signal strength and the power spectrum, while detrending based on high-order polynomials introduced prominent distortions in details of the magnetic anomaly. Based on this analysis, we recommend along-track detrending by using a zero-order polynomial(removing a constant value) on the CSES magnetic anomaly data to drag its mean value to zero. This would lead to only a slight reduction in the signal strength while significantly improving the stability of the inverted coefficients and details of the anomaly.
基金Supported by the National Key Research and Development Program of China(Nos.2021YFC3101801,2023YFC3008200)the National Natural Science Foundation of China(Nos.42476219,41976200)+6 种基金the National Foreign Experts Program(No.S20240134)the Innovative Team Plan of the Department of Education of Guangdong Province(No.2023KCXTD015)the Tropical Ocean Environment in Western Coastal Waters Observation and Research Station of Guangdong Province(No.2024B1212040008)the Independent Research Project of the Southern Ocean Laboratory(No.SML2022SP301)the Shandong Innovation and Development Research Institute Think Tank Projectthe Guangdong Ocean University Scientific Research Program(No.060302032106)the Start-up Fund for Ph D Researchers(No.060302032104)。
文摘Typhoon Chaba was the most intense typhoon to strike western Guangdong since Typhoon Mujigae in 2015.According to the National Disaster Reduction Center of China,in the morning of July 7,2022,over 1.5 million people in Guangdong,Guangxi,and Hainan were affected by Typhoon Chaba.The typhoon also caused the“Fukui 001”ship to be in distress in the waters near Yangjiang,Guangdong,on July 2,resulting in big casualties.Studies have indicated that wind field forecast for Typhoon Chaba was not accurate.To better simulate typhoon events and assess their impacts,we proposed the use of a model wind field(Fujita-Takahashi)integrated with the Copernicus Marine and Environmental Monitoring Service(CMEMS)data to reconstruct effectively the overall wind field of Typhoon Chaba.The simulation result aligns well with the observations,particularly at the Dashu Island Station,showing consistent trends in wind speed changes.However,certain limitations were noted.The model shows that the attenuation of wind speed is slower when typhoon neared land than that observed,indicating that the model has a high simulation accuracy for the ocean wind field,but may have deviations near coastal areas.The result is accurate for open sea but deviated for near land due to the land friction effect.Therefore,we recommend to adjust the model to improve the accuracy for near coasts.
基金supported by the National Natural Science Foundation of China(Grant Nos.42005003 and 41475094)National Key R&D Program of China(Grant No.2018YFC1506704).
文摘With the growing demand for high-precision flow field simulations in computational science and engineering,the super-resolution reconstruction of physical fields has attracted considerable research interest.However,tradi-tional numerical methods often entail high computational costs,involve complex data processing,and struggle to capture fine-scale high-frequency details.To address these challenges,we propose an innovative super-resolution reconstruction framework that integrates a Fourier neural operator(FNO)with an enhanced diffusion model.The framework employs an adaptively weighted FNO to process low-resolution flow field inputs,effectively capturing global dependencies and high-frequency features.Furthermore,a residual-guided diffusion model is introduced to further improve reconstruction performance.This model uses a Markov chain for noise injection in phys-ical fields and integrates a reverse denoising procedure,efficiently solved by an adaptive time-step ordinary differential equation solver,thereby ensuring both stability and computational efficiency.Experimental results demonstrate that the proposed framework significantly outperforms existing methods in terms of accuracy and efficiency,offering a promising solution for fine-grained data reconstruction in scientific simulations.
基金the support of African Union Commission through the Pan African University Life and Earth Sciences Institute(including Health and Agriculture),Ibadan,Nigeria,for funding this study。
文摘This study integrates seismic and petrophysical data to evaluate the subsurface geology of the Keva Field,located onshore in the Niger Delta,with the objective of constructing a 3D geological model and estimating the recoverable hydrocarbon volumes.Seismic lines and well log data from six wells—KV-2,KV-3,KV-4,KV-5,KV-6,and KV-7—were utilized for the interpretation.The seismic profiles revealed that the KV-4 well is the only well drilled on the up-thrown side of a significant horst fault block,bounded by four major normal faults,while all the other wells penetrated the downthrown side.Petrophysical analysis identified three key reservoirs,C500,D200,and E900,which exhibit excellent reservoir quality with high net-to-gross ratios,good porosity,and high hydrocarbon saturation.The identified depositional environments are tidal-and fluvial-dominated shoreface settings,with sheet sands deposited in distributary splay systems.The C500,D200,and E900 reservoirs have Gas Initially in Place(GIIP)values of 156.37,28.44,and 27.89 BSCF,respectively,with corresponding Estimated Ultimate Recovery(EUR)values of 104.77,19.06,and 18.69 BSCF,respectively.The Stock Tank Original Oil in Place(STOOIP)values are 24.43,91.29,and 86.41 MMSTB,with EURs of 7.32,27.4,and 25.92 MMSTB,respectively.The combined GIIP is 212.72 BSCF with EUR of 142.52 BSCF,while the total STOOIP is 202.13 MMSTB with a recoverable volume of 60.64 MMSTB.The reservoirs present an average porosity of 22.62%,with gas saturation of 84.66%and oil saturation of 73%.The evaluated reservoir qualities suggest high potential for optimized hydrocarbon production.
基金supported by the National Natural Science Foundation of China(Nos.51775021,52302511)the Fundamental Research Funds for the Central Universities,China(Nos.YWF-23-JC-01,YWF-23-JC-04,YWF-23-JC-09)。
文摘Stratospheric airships are lighter-than-air vehicles capable of continuous flying for months.The energy balance of the airship is the key to long-duration flights.The stratospheric airship is entirely powered by the solar array.It is necessary to accurately predict the output power of the array for any flight state.Because of the uneven solar radiation received by the solar array,the traditional model based on components has a slow simulation speed.In this study,a data-driven surrogate modeling approach for prediction the output power of the solar array is proposed.The surrogate model is trained using the samples obtained from the high-accuracy simulation model.By using the input parameter preprocessor,the accuracy of the surrogate model in predicting the output power of the solar array is improved to 98.65%.In addition,the predictive speed of the surrogate model is ten million times faster than the traditional simulation model.Finally,the surrogate model is used to predict the energy balance of stratospheric airships flying throughout the year under actual global wind fields.
基金supported by the National Natural Science Foundation of China(No.12472265)。
文摘High-Resolution(HR)data on flow fields are critical for accurately evaluating the aerodynamic performance of aircraft.However,acquiring such data through large-scale numerical simulations or wind tunnel experiments is highly resource intensive.This paper proposes a FlowViT-Diff framework that integrates a Vision Transformer(ViT)with an enhanced denoising diffusion probabilistic model for the Super-Resolution(SR)reconstruction of HR flow fields based on low-resolution inputs.It provides a quick initial prediction of the HR flow field by optimizing the ViT architecture,and incorporates this preliminary output as guidance within an enhanced diffusion model.The latter captures the Gaussian noise distribution during forward diffusion and progressively removes it during backward diffusion to generate the flow field.Experiments on various supercritical airfoils under different flow conditions show that FlowViT-Diff can robustly reconstruct the flow field across multiple levels of downsampling.It obtains more consistent global and local features than traditional SR methods,and yields a 3.6-fold increase in its training speed via transfer learning.Its accuracy of reconstruction of the flow field is 99.7%under ultra-low downsampling.The results demonstrate that Flow Vi T-Diff not only exhibits effective flow field reconstruction capabilities,but also provides two reconstruction strategies,both of which show effective transferability.
基金supported in part by National Natural Science Foundation of China under Grant 62201087,Grant 62525101,in part by the National Key R&D Program of China under Grant 2023YFB2904803in part by the Guangdong Major Project of Basic and Applied Basic Research under Grant 2023B0303000001+1 种基金in part by the Natural Science Foundation of Beijing-Xiaomi Innovation Joint Foundation under Grant L243002in part by the Beijing University of Posts and Telecommunications-China Mobile Research Institute Joint Institute.
文摘As the commercialization of the fifth gen-eration communication(5G)is sped up,its system testing scheme is vital for the successful deployment of 5G.Especially,5G relies on the scale-increased multiple-input-multiple output(MIMO)technique to improve its capacity and coverage.Thus,testing new functions of the 5G MIMO system accurately and ef-ficiently,including beamforming(beam-tracking with movement)and multiple-user(MU)multiplexing,is a challenging task.This paper tries to construct a lab-oratorial hardware and conduct equipment-controlled field testing.Firstly,the testing scheme is presented,which is composed of the framework,the channel models and the validation methods.Then,the channel model principles are explained in detail due to its di-rect influence on the testing accuracy.Specifically,we utilize the spatial consistency and the multi-link cor-relation properties to emulate the high-speed dynamic time-varying(HDT)and the multiple-cell(MC)-MU-MIMO channels.Finally,the above testing scheme is verified in a Shanghai 5G field experiment with the practical commercial equipment and the channel em-ulator.The results show that the 5G new functions are tested accurately and efficiently by switching the channel emulation configurations.
基金supported by the National High Technology Research and Development Program (863 Program)(2009AA06Z108)
文摘To effectively minimize the electromagnetic field response in the total field solution, we propose a numerical modeling method for the two-dimensional (2D) time- domain transient electromagnetic secondary field of the line source based on the DuFort- Frankel finite-difference method. In the proposed method, we included the treatment of the earth-air boundary conductivity, calculated the normalized partial derivative of the induced electromotive force (Emf), and determined the forward time step. By extending upward the earth-air interface to the air grid nodes and the zero-value boundary conditions, not only we have a method that is more efficient but also simpler than the total field solution. We computed and analyzed the homogeneous half-space model and the fiat layered model with high precision--the maximum relative error is less than 0.01% between our method and the analytical method--and the solution speed is roughly three times faster than the total-field solution. Lastly, we used the model of a thin body embedded in a homogeneous half-space at different delay times to depict the downward and upward spreading characteristics of the induced eddy current, and the physical interaction processes between the electromagnetic field and the underground low-resistivity body.