We present a theoretical scheme to realize two-dimensional(2D)asymmetric diffraction grating in a five-level inverted Y-type asymmetric double semiconductor quantum wells(SQWs)structure with resonant tunneling.The SQW...We present a theoretical scheme to realize two-dimensional(2D)asymmetric diffraction grating in a five-level inverted Y-type asymmetric double semiconductor quantum wells(SQWs)structure with resonant tunneling.The SQW structure interacts with a weak probe laser field,a spatially independent 2D standing-wave(SW)field,and a Laguerre–Gaussian(LG)vortex field,respectively.The results indicate that the diffraction patterns are highly sensitive to amplitude modulation and phase modulation.Because of the existence of vortex light,it is possible to realize asymmetric high-order diffraction in the SQW structure,and then a 2D asymmetric grating is established.By adjusting the detunings of the probe field,vortex field,and SW field,as well as the interaction length,diffraction intensity,and direction of the 2D asymmetric electromagnetically induced grating(EIG)can be controlled effectively.In addition,the number of orbital angular momenta(OAM)and beam waist parameter can be used to modulate the diffraction intensity and energy transfer of the probe light in different regions.High-order diffraction intensity is enhanced and high-efficiency 2D asymmetric diffraction grating with different diffraction patterns is obtained in the scheme.Such 2D asymmetric diffraction grating may be beneficial to the research of optical communication and innovative semiconductor quantum devices.展开更多
In oil and gas exploration,small-scale karst cavities and faults are important targets.The former often serve as reservoir space for carbonate reservoirs,while the latter often provide migration pathways for oil and g...In oil and gas exploration,small-scale karst cavities and faults are important targets.The former often serve as reservoir space for carbonate reservoirs,while the latter often provide migration pathways for oil and gas.Due to these differences,the classification and identification of karst cavities and faults are of great significance for reservoir development.Traditional seismic attributes and diffraction imaging techniques can effectively identify discontinuities in seismic images,but these techniques do not distinguish whether these discontinuities are karst cavities,faults,or other structures.It poses a challenge for seismic interpretation to accurately locate and classify karst cavities or faults within the seismic attribute maps and diffraction imaging profiles.In seismic data,the scattering waves are associated with small-scale scatters like karst cavities,while diffracted waves are seismic responses from discontinuous structures such as faults,reflector edges and fractures.In order to achieve classification and identification of small-scale karst cavities and faults in seismic images,we propose a diffraction classification imaging method which classifies diffracted and scattered waves in the azimuth-dip angle image matrix using a modified DenseNet.We introduce a coordinate attention module into DenseNet,enabling more precise extraction of dynamic and azimuthal features of diffracted and scattered waves in the azimuth-dip angle image matrix.Leveraging these extracted features,the modified DenseNet can produce reliable probabilities for diffracted/scattered waves,achieving high-accuracy automatic classification of cavities and faults based on diffraction imaging.The proposed method achieves 96%classification accuracy on the synthetic dataset.The field data experiment demonstrates that the proposed method can accurately classify small-scale faults and scatterers,further enhancing the resolution of diffraction imaging in complex geologic structures,and contributing to the localization of karstic fracture-cavern reservoirs.展开更多
The effects of solid solution on the deformation behavior of binary Mg-xZn(x=0,1,2 wt%)alloys featuring a designated texture that enables extension twinning under tension parallel to the basal pole in most grains,were...The effects of solid solution on the deformation behavior of binary Mg-xZn(x=0,1,2 wt%)alloys featuring a designated texture that enables extension twinning under tension parallel to the basal pole in most grains,were investigated using in-situ neutron diffraction and the EVPSC-TDT model.Neutron diffraction was used to quantitatively track grain-level lattice strains and diffraction intensity changes(related to mechanical twinning)in differently oriented grains of each alloy during cyclic tensile/compressive loadings.These measurements were accurately captured by the model.The stress-strain curves of Mg-1 wt%Zn and Mg-2 wt%Zn alloys show as-expected solid solution strengthening from the addition of Zn compared to pure Mg.The macroscopic yielding and hardening behaviors are explained by alternating slip and twinning modes as calculated by the model.The solid solution's influence on individual deformation modes,including basal〈a〉slip,prismatic〈a〉slip,and extension twinning,was then quantitatively assessed in terms of activity,yielding behavior,and hardening response by combining neutron diffraction results with crystal plasticity predictions.The Mg-1 wt%Zn alloy displays distinct yielding and hardening behavior due to solid solution softening of prismatic〈a〉slip.Additionally,the dependence of extension twinning,in terms of the twinning volume fraction,on Zn content exhibits opposite trends under tensile and compressive loadings.展开更多
The detrimental phase transformations of sodium layered transition metal oxides(Na_(x)TMO_(2))during desodiation/sodiation seriously suppress their practical applications for sodium ion batteries(SIBs).Undoubtedly,com...The detrimental phase transformations of sodium layered transition metal oxides(Na_(x)TMO_(2))during desodiation/sodiation seriously suppress their practical applications for sodium ion batteries(SIBs).Undoubtedly,comprehensively investigating of the dynamic crystal structure evolutions of Na_(x)TMO_(2)associating with Na ions extraction/intercalation and then deeply understanding of the relationships between electrochemical performances and phase structures drawing support from advanced characterization techniques are indispensable.In-situ high-energy X-ray diffraction(HEXRD),a powerful technology to distinguish the crystal structure of electrode materials,has been widely used to identify the phase evolutions of Na_(x)TMO_(2)and then profoundly revealed the electrochemical reaction processes.In this review,we begin with the descriptions of synchrotron characterization techniques and then present the advantages of synchrotron X-ray diffraction(XRD)over conventional XRD in detail.The optimizations of structural stability and electrochemical properties for P2-,O3-,and P2/O3-type Na_(x)TMO_(2)cathodes through single/dual-site substitution,high-entropy design,phase composition regulation,and surface engineering are summarized.The dynamic crystal structure evolutions of Na_(x)TMO_(2)polytypes during Na ion extraction/intercalation as well as corresponding structural enhancement mechanisms characterizing by means of HEXRD are concluded.The interior relationships between structure/component of Na_(x)TMO_(2)polytypes and their electrochemical properties are discussed.Finally,we look forward the research directions and issues in the route to improve the electrochemical properties of Na_(x)TMO_(2)cathodes for SIBs in the future and the combined utilizations of multiple characterization techniques.This review will provide significant guidelines for rational designs of high-performance Na_(x)TMO_(2)cathodes.展开更多
Optical monitoring of object position and alignment with nanoscale precision is critical for ultra-precision measurement applications,such as micro/nano-fabrication,weak force sensing,and micro-scopic imaging.Traditio...Optical monitoring of object position and alignment with nanoscale precision is critical for ultra-precision measurement applications,such as micro/nano-fabrication,weak force sensing,and micro-scopic imaging.Traditional optical nanometry methods often rely on precision nanostructure fabrication,multi-beam interferometry,or complex post-processing algorithms,which can limit their practical use.In this study,we introduced a simplified and robust quantum measurement technique with an achievable resolution of 2.2 pm and an experimental demonstration of 1 nm resolution,distinguishing it from conventional interferometry,which depended on multiple reference beams.We designed a metasurface substrate with a mode-conversion function,in which an incident Gaussian beam is converted into higher-order transverse electromagnetic mode(TEM)modes.A theoretical analysis,including calculations of the Fisher information,demonstrated that the accuracy was maintained for nanoscale displacements.In conclusion,the study findings provide a new approach for precise alignment and metrology of nanofabrication and other advanced applications.展开更多
Pyrrhotite naturally occurs in various superstructures including magnetic(4C)and non-magnetic(5C,6C)types,each with distinct physicochemical properties and flotation behaviors.Challenges in accurately identifying and ...Pyrrhotite naturally occurs in various superstructures including magnetic(4C)and non-magnetic(5C,6C)types,each with distinct physicochemical properties and flotation behaviors.Challenges in accurately identifying and quantifying these superstructures hinder the optimization of pyrrhotite depression in flotation processes.To address this critical issue,synchrotron X-ray powder diffraction(S-XRPD)with Rietveld refinement was employed to quantify the distribution of superstructures in the feed and flotation concentrates of a copper–gold ore.To elucidate the mechanisms influencing depression,density functional theory(DFT)calculations were conducted to explore the electronic structures and surface reactivity of the pyrrhotite superstructures toward the adsorption of water,oxygen and hydroxyl ions(OH-)as dominant species present in the flotation process.S-XRPD analysis revealed that flotation recovery rates of pyrrhotite followed the order of 4C<6C<5C.DFT calculations indicated that the Fe 3d and S 3p orbital band centers exhibited a similar trend relative to the Fermi level with 4C being the closest.The Fe3d band center suggested that the 4C structure possessed a more reactive surface toward the oxygen reduction reaction,promoting the formation of hydrophilic Fe-OH sites.The S 3p band center order also implied that xanthate on the non-magnetic 5C and 6C surfaces could oxidize to dixanthogen,increasing hydrophobicity and floatability,while 4C formed less hydrophobic metal-xanthate complexes.Adsorption energy and charge transfer analyses of water,hydroxyl ions and molecular oxygen further supported the high reactivity and hydrophilic nature of 4C pyrrhotite.The strong bonding with hydroxyl ions indicated enhanced surface passivation by hydrophilic Fe–OOH complexes,aligning with the experimentally observed flotation order(4C<6C<5C).These findings provide a compelling correlation between experimental flotation results and electronic structure calculations,delivering crucial insights for optimizing flotation processes and improving pyrrhotite depression.This breakthrough opens up new opportunities to enhance the efficiency of flotation processes in the mining industry.展开更多
When a pump laser beam strikes the surface of a nonlinear crystal with modulated second-order nonlinearity,various nonlinear diffraction phenomena occur,with nonlinear Raman–Nath diffraction(NRND)being a prominent ex...When a pump laser beam strikes the surface of a nonlinear crystal with modulated second-order nonlinearity,various nonlinear diffraction phenomena occur,with nonlinear Raman–Nath diffraction(NRND)being a prominent example.In this study,we use an 800-nm Ti:sapphire femtosecond laser beam to pump the surface of a periodically poled lithium niobate(PPLN)crystal thin-plate nonlinear grating.By rotating the crystal,we change the incidence angle and observe and measure the exit angle,polarization,and power of NRND spots on the other side of the crystal.The experiment shows that NRND characteristics are highly sensitive to the incidence angle of the pump laser beam,which are consistent with the theoretical prediction.We expect that this research will advance the understanding of nonlinear diffraction and provide valuable insights for nonlinear optical interaction in complicated geometric and physical configurations.展开更多
When a laser beam is incident on a nonlinear grating with a laterally modulated second-order nonlinear coefficient,nonlinear diffraction of the noncollinear second-harmonic generation(SHG)signal occurs,with Raman–Nat...When a laser beam is incident on a nonlinear grating with a laterally modulated second-order nonlinear coefficient,nonlinear diffraction of the noncollinear second-harmonic generation(SHG)signal occurs,with Raman–Nath nonlinear diffraction(NRND)being a prominent example.As these SHG NRND processes involve coupling between the fundamental-wave pump laser vectorial field and the SHG laser vectorial field through the second-order nonlinearity secondrank tensor of the nonlinear crystal,the nonlinear interaction between light and the nonlinear grating can be manipulated by adjusting the polarization state of the pump laser.In this paper,we derive the relationship between the polarization state of the incident light and the generated nonlinear diffraction signal based on the nonlinear coupled wave equation and experimentally validate the predicted diffraction characteristics.The results show that the optical properties of each order of NRND are highly sensitive to the polarization angle of the incident pump laser beam.展开更多
In this study,the twinning-detwinning behavior and slip behavior of rolled AZ31 magnesium-alloy plates during a three-step intermittent dynamic compression process along the rolling direction(RD)and normal direction(N...In this study,the twinning-detwinning behavior and slip behavior of rolled AZ31 magnesium-alloy plates during a three-step intermittent dynamic compression process along the rolling direction(RD)and normal direction(ND),are investigated via quasi-in situ electron backscatter diffraction,and the causes of the twinning and detwinning behavior are explained according to Schmid law,local strain coordination,and slip trajectories.It is found that the twins are first nucleated and grow at a compressive strain of 3%along the RD.In addition to the Schmid factor(SF),the strain coordination factor(m’)also influences the selection of the twin variants during the twinning process,resulting in the nucleation of twins with a low SF.During the second and third steps of the application of continuous compressive strains with magnitudes and directions of 3%RD+3%ND and 3%RD+3%ND+2.5%ND,detwinning occurs to different extents.The observation of the detwinning behavior reveals that the order in which multiple twins within the same grain undergo complete detwinning is related to Schmid law and the strain concentration,with a low SF and a high strain concentration promoting complete detwinning.The interaction between slip dislocations and twin boundaries in the deformed grains as well as the pinning of dislocations at the tips of the {1012} tensile twins with a special structure result in incomplete detwinning.Understanding the microstructural evolution and twinning behavior of magnesium alloys under different deformation geometries is important for the development of high-strength and high-toughness magnesium alloys.展开更多
The microstructural factors contributing to the high strength of additive-manufactured Al-Si alloys us-ing laser-beam powder bed fusion(PBF-LB)were identified by in-situ synchrotron X-ray diffraction in tensile deform...The microstructural factors contributing to the high strength of additive-manufactured Al-Si alloys us-ing laser-beam powder bed fusion(PBF-LB)were identified by in-situ synchrotron X-ray diffraction in tensile deformation and transmission electron microscopy.PBF-LB and heat treatment were employed to manufacture Al-12%Si binary alloy specimens with different microstructures.At an early stage of de-formation prior to macroscopic yielding,stress was dominantly partitioned into the α-Al matrix,rather than the Si phase in all specimens.Highly concentrated Si solute(~3%)in the α-Al matrix promoted the dynamic precipitation of nanoscale Si phase during loading,thereby increasing the yield strength.After macroscopic yielding,the partitioned stress in the Si phase monotonically increased in the strain-hardening regime with an increase in the dislocation density in the α-Al matrix.At a later stage of strain hardening,the flow curves of the partitioned stress in the Si phase yielded stress relaxation owing to plastic deformation.Therefore,Si-phase particles localized along the cell walls in the cellular-solidified microstructure play a significant role in dislocation obstacles for strain hardening.Compared with the results of the heat-treated specimens with different microstructural factors,the dominant strengthening factors of PBF-LB manufactured Al-Si alloys were discussed.展开更多
High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Exten...High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.展开更多
The deformation behavior of the as-extruded Mg-Y-Ni alloys with different volume fraction of long period stacking ordered(LPSO)phase during tension and compression was investigated by in-situ synchrotron diffraction.T...The deformation behavior of the as-extruded Mg-Y-Ni alloys with different volume fraction of long period stacking ordered(LPSO)phase during tension and compression was investigated by in-situ synchrotron diffraction.The micro-yielding,macro-yielding,tension-compression asymmetry and strain hardening behavior of the alloys were explored by combining with deformation mechanisms.The micro-yielding is dominated by basal slip of dynamic recrystallized(DRXed)grains in tension,while it is dominated by extension twinning of non-dynamic recrystallized(non-DRXed)grains in compression.At macro-yielding,the non-DRXed grains are still elastic deformed in tension and the basal slip of DRXed grains in compression are activated.Meanwhile,the LPSO phase still retains elastic deformation,but can bear more load,so the higher the volume fraction of hard LPSO phase,the higher the tensile/compressive macro-yield strength of the alloys.Benefiting from the low volume fraction of the non-DRXed grains and the delay effect of LPSO andγphases on extension twinning,the as-extruded alloys exhibit excellent tension-compression symmetry.When the volume fraction of LPSO phase reaches∼50%,tension-compression asymmetry is reversed,which is due to the fact that the LPSO phase is stronger in compression than in tension.The tensile strain hardening behavior is dominated by dislocation slip,while the dominate mechanism for compressive strain hardening changes from twinning in theα-Mg grains to kinking of the LPSO phase with increasing volume fraction of LPSO phase.The activation of kinking leads to the constant compressive strain hardening rate of∼2500 MPa,which is significantly higher than the tensile strain hardening rate.展开更多
BL02U2 of the Shanghai Synchrotron Radiation Facility is a surface diffraction beamline with a photon flux of 5.5×10^(12) photons/s at 10 keV and a beam size of 160µm×80µm at the sample site.It is ...BL02U2 of the Shanghai Synchrotron Radiation Facility is a surface diffraction beamline with a photon flux of 5.5×10^(12) photons/s at 10 keV and a beam size of 160µm×80µm at the sample site.It is dedicated to studying surfaces(solid-vacuum,solid-gas)and interfaces(solid-solid,solid-liquid,and liquid-liquid)in nanoscience,condensed matter,and soft matter systems using various surface scattering techniques over an energy range of 4.8-28 keV with transmission and reflection modes.Moreover,BL02U2 has a high energy resolution,high angular resolution,and low beam divergence,which can provide excellent properties for X-ray diffraction experiments,such as grazing incident X-ray diffraction,X-ray reflectivity,crystal truncation rods,and liquid X-ray scattering.Diversity of in situ environments can also be provided for the samples studied.This paper describes the setup of the new beamline and its applications in various fields.展开更多
The microstructure evolution and micromechanical behaviors of additively manufactured 18Ni_(3)00 marag-ing steel for both as-printed and aged one were investigated using the in situ high-energy X-ray diffrac-tion(HE-X...The microstructure evolution and micromechanical behaviors of additively manufactured 18Ni_(3)00 marag-ing steel for both as-printed and aged one were investigated using the in situ high-energy X-ray diffrac-tion(HE-XRD)technique with uniaxial tensile tests.The investigations revealed that the volume frac-tion of reversed austenite increased as the annealing temperature rose.The maraging steel was strength-ened byη-Ni_(3)Ti precipitates,where the aged maraging steel had a higher UTS value of∼1860 MPa than∼1135 MPa in the as-printed one,but sacrificed more than half of ductility(from∼8.6%to∼4.0%).The austenite in aged steel presents more stability induced by the aging process than that in as-printed counterpart,which has a higher critical martensitic transformation stress of∼1200 MPa than that of∼780 MPa in as-printed steel.The austenite grains orientated with[200]//LD yield before the macro-yielding and preferential martensite transformation occurs.This study provides further insight into the intricated micromechanical responses of additively manufactured 18Ni_(3)00 maraging steel,enlarging the scope of its adaptation and application.展开更多
Silicon(Si)diffraction microlens arrays are usually used to integrating with infrared focal plane arrays(IRFPAs)to improve their performance.The errors of lithography are unavoidable in the process of the Si diffrac-t...Silicon(Si)diffraction microlens arrays are usually used to integrating with infrared focal plane arrays(IRFPAs)to improve their performance.The errors of lithography are unavoidable in the process of the Si diffrac-tion microlens arrays preparation in the conventional engraving method.It has a serious impact on its performance and subsequent applications.In response to the problem of errors of Si diffraction microlens arrays in the conven-tional method,a novel self-alignment method for high precision Si diffraction microlens arrays preparation is pro-posed.The accuracy of the Si diffractive microlens arrays preparation is determined by the accuracy of the first li-thography mask in the novel self-alignment method.In the subsequent etching,the etched area will be protected by the mask layer and the sacrifice layer or the protective layer.The unprotection area is carved to effectively block the non-etching areas,accurately etch the etching area required,and solve the problem of errors.The high precision Si diffraction microlens arrays are obtained by the novel self-alignment method and the diffraction effi-ciency could reach 92.6%.After integrating with IRFPAs,the average blackbody responsity increased by 8.3%,and the average blackbody detectivity increased by 10.3%.It indicates that the Si diffraction microlens arrays can improve the filling factor and reduce crosstalk of IRFPAs through convergence,thereby improving the perfor-mance of the IRFPAs.The results are of great reference significance for improving their performance through opti-mizing the preparation level of micro nano devices.展开更多
We propose a theoretical scheme to realize a two-dimensional(2D)diffraction grating in a four-level inverted-Y-type atomic system coupled by a standing-wave(SW)field and a Laguerre-Gaussian(LG)vortex field.Owing to as...We propose a theoretical scheme to realize a two-dimensional(2D)diffraction grating in a four-level inverted-Y-type atomic system coupled by a standing-wave(SW)field and a Laguerre-Gaussian(LG)vortex field.Owing to asymmetric spatial modulation of the LG vortex field,the incident probe field can be lopsidedly diffracted into four domains and an asymmetric 2D electromagnetically induced grating is created.By adjusting the detunings of the probe field and the LG vortex field,the intensities of the LG vortex field and the coherent SW field,as well as the interaction length,the diffraction properties and efficiency,can be effectively manipulated.In addition,the effect of the azimuthal parameter on the Fraunhofer diffraction of the probe field is also discussed.This asymmetric 2D diffraction grating scheme may provide a versatile platform for designing quantum devices that require asymmetric light transmission.展开更多
Two-dimensional(2D)flume experiments are useful in investigating the performances of floating breakwaters(FBs),including hydrodynamic performances,motion responses,and mooring forces.Designing a reasonable gap between...Two-dimensional(2D)flume experiments are useful in investigating the performances of floating breakwaters(FBs),including hydrodynamic performances,motion responses,and mooring forces.Designing a reasonable gap between the flume wall and the FBs is a critical step in 2D flume tests.However,research on the effect of the gap on the accuracy of 2D FB experimental results is scarce.To address this issue,a numerical wave tank is developed using CFD to estimate the wave-FB interaction of a moored dual-cylindrical FB,and the results are compared to experimental data from a previously published work.There is good agreement between them,indicating that the numerical model is sufficiently accurate.The numerical model is then applied to explore the effect of gap diffraction on the performance of FBs in2D experiments.It was discovered that the nondimensional gap length L_(Gap)/W_(Pool)should be smaller than 7.5%to ensure that the relative error of the transmission coefficient is smaller than 3%.The influence of the gap is also related to the entering wave properties,such as the wave height and period.展开更多
Beam splitting is one of the main approaches to achieving x-ray ghost imaging, and the intensity correlation between diffraction beam and transmission beam will directly affect the imaging quality. In this paper, we i...Beam splitting is one of the main approaches to achieving x-ray ghost imaging, and the intensity correlation between diffraction beam and transmission beam will directly affect the imaging quality. In this paper, we investigate the intensity correlation between the split x-ray beams by Laue diffraction of stress-free crystal. The analysis based on the dynamical theory of x-ray diffraction indicates that the spatial resolution of diffraction image and transmission image are reduced due to the position shift of the exit beam. In the experimental setup, a stress-free crystal with a thickness of hundredmicrometers-level is used for beam splitting. The crystal is in a non-dispersive configuration equipped with a double-crystal monochromator to ensure that the dimension of the diffraction beam and transmission beam are consistent. A correlation coefficient of 0.92 is achieved experimentally and the high signal-to-noise ratio of the x-ray ghost imaging is anticipated.Results of this paper demonstrate that the developed beam splitter of Laue crystal has the potential in the efficient data acquisition of x-ray ghost imaging.展开更多
The yield stress of Fe-24Ni-0.3C(wt%)metastable austenitic steel increased 3.5 times(158→551 MPa)when the average grain size decreased from 35μm(coarse-grained[CG])to 0.5μm(ultrafine-grained[UFG]),whereas the tensi...The yield stress of Fe-24Ni-0.3C(wt%)metastable austenitic steel increased 3.5 times(158→551 MPa)when the average grain size decreased from 35μm(coarse-grained[CG])to 0.5μm(ultrafine-grained[UFG]),whereas the tensile elongation was kept large(0.87→0.82).In situ neutron diffraction measurements of the CG and UFG Fe-24Ni-0.3C steels were performed during tensile deformation at room temperature to quantitatively elucidate the influence of grain size on the mechanical properties and deformation mechanisms.The initial stages of plastic deformation in the CG and UFG specimens were dominated by dislocation slip,with deformation-induced martensitic transformation(DIMT)also occurring in the later stage of deformation.Results show that grain refinement increases the initiation stress of DIMT largely and suppresses the rate of DIMT concerning the strain,which is attributed to the following effects.(i)Grain refinement increased the stabilization of austenite and considerably delayed the initiation of DIMT in the<111>//LD(LD:loading direction)austenite grains,which were the most stable grains for DIMT.As a result,most of the<111>//LD austenite grains in the UFG specimen failed to transform into martensite.(ii)Grain refinement also suppressed the autocatalytic effect of the martensitic transformation.Nevertheless,the DIMT with the low transformation rate in the UFG specimen was more efficient in increasing the flow stress and more appropriate to maintain uniform deformation than that in the CG specimen during deformation.The above phenomena mutually contributed to the excellent combination of strength and ductility of the UFG metastable austenitic steel.展开更多
This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction betwee...This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction between various structural materials and molten salts.The apparatus enables accurate detection of every phase change during hightemperature experiments,including strong reaction processes like corrosion.Molten salts,such as chlorides or fluo⁃rides,together with the structure materials,are inserted into either quartz or boron nitride capillaries,where X-ray diffraction pattern can be continuously collected,as the samples are heated to high temperature.The replacement re⁃action,when molten ZnCl2 are etching Ti3AlC2,can be clearly observed through changes in diffraction peak intensity as well as expansion in c-axis lattice parameter of the hexagonal matrix,due to the larger atomic number and ionic ra⁃dius of Zn2+.Furthermore,we investigated the high-temperature corrosion process when GH3535 alloy is in FLiNaK molten salt,and can help to optimize its stability for potential applications in molten salt reactor.Additionally,this high temperature apparatus is fully compatible with the combined usage of X-ray diffraction and Raman technique,providing both bulk and surface structural information.This high temperature apparatus has been open to users and is extensively used at BL14B1 beamline of the Shanghai Synchrotron Radiation Facility.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12105210)the Knowledge Innovation Program of Wuhan-Basi Research(Grant No.2023010201010149)。
文摘We present a theoretical scheme to realize two-dimensional(2D)asymmetric diffraction grating in a five-level inverted Y-type asymmetric double semiconductor quantum wells(SQWs)structure with resonant tunneling.The SQW structure interacts with a weak probe laser field,a spatially independent 2D standing-wave(SW)field,and a Laguerre–Gaussian(LG)vortex field,respectively.The results indicate that the diffraction patterns are highly sensitive to amplitude modulation and phase modulation.Because of the existence of vortex light,it is possible to realize asymmetric high-order diffraction in the SQW structure,and then a 2D asymmetric grating is established.By adjusting the detunings of the probe field,vortex field,and SW field,as well as the interaction length,diffraction intensity,and direction of the 2D asymmetric electromagnetically induced grating(EIG)can be controlled effectively.In addition,the number of orbital angular momenta(OAM)and beam waist parameter can be used to modulate the diffraction intensity and energy transfer of the probe light in different regions.High-order diffraction intensity is enhanced and high-efficiency 2D asymmetric diffraction grating with different diffraction patterns is obtained in the scheme.Such 2D asymmetric diffraction grating may be beneficial to the research of optical communication and innovative semiconductor quantum devices.
基金supported by Science Fund for Creative Research Groups of the National Natural Science Foundation of China,No.42321002。
文摘In oil and gas exploration,small-scale karst cavities and faults are important targets.The former often serve as reservoir space for carbonate reservoirs,while the latter often provide migration pathways for oil and gas.Due to these differences,the classification and identification of karst cavities and faults are of great significance for reservoir development.Traditional seismic attributes and diffraction imaging techniques can effectively identify discontinuities in seismic images,but these techniques do not distinguish whether these discontinuities are karst cavities,faults,or other structures.It poses a challenge for seismic interpretation to accurately locate and classify karst cavities or faults within the seismic attribute maps and diffraction imaging profiles.In seismic data,the scattering waves are associated with small-scale scatters like karst cavities,while diffracted waves are seismic responses from discontinuous structures such as faults,reflector edges and fractures.In order to achieve classification and identification of small-scale karst cavities and faults in seismic images,we propose a diffraction classification imaging method which classifies diffracted and scattered waves in the azimuth-dip angle image matrix using a modified DenseNet.We introduce a coordinate attention module into DenseNet,enabling more precise extraction of dynamic and azimuthal features of diffracted and scattered waves in the azimuth-dip angle image matrix.Leveraging these extracted features,the modified DenseNet can produce reliable probabilities for diffracted/scattered waves,achieving high-accuracy automatic classification of cavities and faults based on diffraction imaging.The proposed method achieves 96%classification accuracy on the synthetic dataset.The field data experiment demonstrates that the proposed method can accurately classify small-scale faults and scatterers,further enhancing the resolution of diffraction imaging in complex geologic structures,and contributing to the localization of karstic fracture-cavern reservoirs.
基金supported by the National Research Foundation grant funded by the Korean government(No,2023R1A2C2007190,RS-2024-00398068)partially funded by the Natural Science Foundation of Shandong Province,China(No.ZR2022QE206).
文摘The effects of solid solution on the deformation behavior of binary Mg-xZn(x=0,1,2 wt%)alloys featuring a designated texture that enables extension twinning under tension parallel to the basal pole in most grains,were investigated using in-situ neutron diffraction and the EVPSC-TDT model.Neutron diffraction was used to quantitatively track grain-level lattice strains and diffraction intensity changes(related to mechanical twinning)in differently oriented grains of each alloy during cyclic tensile/compressive loadings.These measurements were accurately captured by the model.The stress-strain curves of Mg-1 wt%Zn and Mg-2 wt%Zn alloys show as-expected solid solution strengthening from the addition of Zn compared to pure Mg.The macroscopic yielding and hardening behaviors are explained by alternating slip and twinning modes as calculated by the model.The solid solution's influence on individual deformation modes,including basal〈a〉slip,prismatic〈a〉slip,and extension twinning,was then quantitatively assessed in terms of activity,yielding behavior,and hardening response by combining neutron diffraction results with crystal plasticity predictions.The Mg-1 wt%Zn alloy displays distinct yielding and hardening behavior due to solid solution softening of prismatic〈a〉slip.Additionally,the dependence of extension twinning,in terms of the twinning volume fraction,on Zn content exhibits opposite trends under tensile and compressive loadings.
基金supported by the State Grid Corporation Science and Technology Project(No.5419-202158503A-0-5-ZN)。
文摘The detrimental phase transformations of sodium layered transition metal oxides(Na_(x)TMO_(2))during desodiation/sodiation seriously suppress their practical applications for sodium ion batteries(SIBs).Undoubtedly,comprehensively investigating of the dynamic crystal structure evolutions of Na_(x)TMO_(2)associating with Na ions extraction/intercalation and then deeply understanding of the relationships between electrochemical performances and phase structures drawing support from advanced characterization techniques are indispensable.In-situ high-energy X-ray diffraction(HEXRD),a powerful technology to distinguish the crystal structure of electrode materials,has been widely used to identify the phase evolutions of Na_(x)TMO_(2)and then profoundly revealed the electrochemical reaction processes.In this review,we begin with the descriptions of synchrotron characterization techniques and then present the advantages of synchrotron X-ray diffraction(XRD)over conventional XRD in detail.The optimizations of structural stability and electrochemical properties for P2-,O3-,and P2/O3-type Na_(x)TMO_(2)cathodes through single/dual-site substitution,high-entropy design,phase composition regulation,and surface engineering are summarized.The dynamic crystal structure evolutions of Na_(x)TMO_(2)polytypes during Na ion extraction/intercalation as well as corresponding structural enhancement mechanisms characterizing by means of HEXRD are concluded.The interior relationships between structure/component of Na_(x)TMO_(2)polytypes and their electrochemical properties are discussed.Finally,we look forward the research directions and issues in the route to improve the electrochemical properties of Na_(x)TMO_(2)cathodes for SIBs in the future and the combined utilizations of multiple characterization techniques.This review will provide significant guidelines for rational designs of high-performance Na_(x)TMO_(2)cathodes.
基金supported by the West Light Project,CAS(xbzg-zdsys-202206)the National Key Research and Development Program of China(2021YFA1401003)+1 种基金the National Natural Science Foundation of China(NSFC)(62222513,U24A6010,and U24A20317)the Sichuan Engineering Research Center of Digital Materials.
文摘Optical monitoring of object position and alignment with nanoscale precision is critical for ultra-precision measurement applications,such as micro/nano-fabrication,weak force sensing,and micro-scopic imaging.Traditional optical nanometry methods often rely on precision nanostructure fabrication,multi-beam interferometry,or complex post-processing algorithms,which can limit their practical use.In this study,we introduced a simplified and robust quantum measurement technique with an achievable resolution of 2.2 pm and an experimental demonstration of 1 nm resolution,distinguishing it from conventional interferometry,which depended on multiple reference beams.We designed a metasurface substrate with a mode-conversion function,in which an incident Gaussian beam is converted into higher-order transverse electromagnetic mode(TEM)modes.A theoretical analysis,including calculations of the Fisher information,demonstrated that the accuracy was maintained for nanoscale displacements.In conclusion,the study findings provide a new approach for precise alignment and metrology of nanofabrication and other advanced applications.
基金supported by the Australian Research Council Linkage Project(No.LP200200717)co sponsored by Newmont Corporation(United States)and Vega Industries(India)+1 种基金the Powder Diffraction Beamline at the Australia’s Nuclear Science and Technology Organisation(No.PDR19870),Australiathe Centre for Microscopy and Microanalysis at the University of Queensland(No.1366),Australia。
文摘Pyrrhotite naturally occurs in various superstructures including magnetic(4C)and non-magnetic(5C,6C)types,each with distinct physicochemical properties and flotation behaviors.Challenges in accurately identifying and quantifying these superstructures hinder the optimization of pyrrhotite depression in flotation processes.To address this critical issue,synchrotron X-ray powder diffraction(S-XRPD)with Rietveld refinement was employed to quantify the distribution of superstructures in the feed and flotation concentrates of a copper–gold ore.To elucidate the mechanisms influencing depression,density functional theory(DFT)calculations were conducted to explore the electronic structures and surface reactivity of the pyrrhotite superstructures toward the adsorption of water,oxygen and hydroxyl ions(OH-)as dominant species present in the flotation process.S-XRPD analysis revealed that flotation recovery rates of pyrrhotite followed the order of 4C<6C<5C.DFT calculations indicated that the Fe 3d and S 3p orbital band centers exhibited a similar trend relative to the Fermi level with 4C being the closest.The Fe3d band center suggested that the 4C structure possessed a more reactive surface toward the oxygen reduction reaction,promoting the formation of hydrophilic Fe-OH sites.The S 3p band center order also implied that xanthate on the non-magnetic 5C and 6C surfaces could oxidize to dixanthogen,increasing hydrophobicity and floatability,while 4C formed less hydrophobic metal-xanthate complexes.Adsorption energy and charge transfer analyses of water,hydroxyl ions and molecular oxygen further supported the high reactivity and hydrophilic nature of 4C pyrrhotite.The strong bonding with hydroxyl ions indicated enhanced surface passivation by hydrophilic Fe–OOH complexes,aligning with the experimentally observed flotation order(4C<6C<5C).These findings provide a compelling correlation between experimental flotation results and electronic structure calculations,delivering crucial insights for optimizing flotation processes and improving pyrrhotite depression.This breakthrough opens up new opportunities to enhance the efficiency of flotation processes in the mining industry.
基金supported by the Science and Technology Project of Guangdong Province,China(Grant No.2020B010190001)the National Natural Science Foundation of China(Grant No.12434016)the National Funded Postdoctoral Researcher Program(Grant No.GZB20240785).
文摘When a pump laser beam strikes the surface of a nonlinear crystal with modulated second-order nonlinearity,various nonlinear diffraction phenomena occur,with nonlinear Raman–Nath diffraction(NRND)being a prominent example.In this study,we use an 800-nm Ti:sapphire femtosecond laser beam to pump the surface of a periodically poled lithium niobate(PPLN)crystal thin-plate nonlinear grating.By rotating the crystal,we change the incidence angle and observe and measure the exit angle,polarization,and power of NRND spots on the other side of the crystal.The experiment shows that NRND characteristics are highly sensitive to the incidence angle of the pump laser beam,which are consistent with the theoretical prediction.We expect that this research will advance the understanding of nonlinear diffraction and provide valuable insights for nonlinear optical interaction in complicated geometric and physical configurations.
基金Project supported by Science and Technology Project of Guangdong(Grant No.2020B010190001)the National Natural Science Foundation of China(Grant No.12434016)National Funded Postdoctoral Researcher Program(Grant No.GZB20240785)。
文摘When a laser beam is incident on a nonlinear grating with a laterally modulated second-order nonlinear coefficient,nonlinear diffraction of the noncollinear second-harmonic generation(SHG)signal occurs,with Raman–Nath nonlinear diffraction(NRND)being a prominent example.As these SHG NRND processes involve coupling between the fundamental-wave pump laser vectorial field and the SHG laser vectorial field through the second-order nonlinearity secondrank tensor of the nonlinear crystal,the nonlinear interaction between light and the nonlinear grating can be manipulated by adjusting the polarization state of the pump laser.In this paper,we derive the relationship between the polarization state of the incident light and the generated nonlinear diffraction signal based on the nonlinear coupled wave equation and experimentally validate the predicted diffraction characteristics.The results show that the optical properties of each order of NRND are highly sensitive to the polarization angle of the incident pump laser beam.
基金supported by the General Project of Liaoning Provincial Department of Education(NO:JYTMS20231199)Project of Liaoning Education Department(No:LKMZ20220462 and No:LJKMZ20220467)+1 种基金Basic scientific research project of Liaoning Provincial Department of Education(key research project)(No:JYTZD2023108)Liaoning Nature Fund Guidance Plan(No:42022-BS.179)。
文摘In this study,the twinning-detwinning behavior and slip behavior of rolled AZ31 magnesium-alloy plates during a three-step intermittent dynamic compression process along the rolling direction(RD)and normal direction(ND),are investigated via quasi-in situ electron backscatter diffraction,and the causes of the twinning and detwinning behavior are explained according to Schmid law,local strain coordination,and slip trajectories.It is found that the twins are first nucleated and grow at a compressive strain of 3%along the RD.In addition to the Schmid factor(SF),the strain coordination factor(m’)also influences the selection of the twin variants during the twinning process,resulting in the nucleation of twins with a low SF.During the second and third steps of the application of continuous compressive strains with magnitudes and directions of 3%RD+3%ND and 3%RD+3%ND+2.5%ND,detwinning occurs to different extents.The observation of the detwinning behavior reveals that the order in which multiple twins within the same grain undergo complete detwinning is related to Schmid law and the strain concentration,with a low SF and a high strain concentration promoting complete detwinning.The interaction between slip dislocations and twin boundaries in the deformed grains as well as the pinning of dislocations at the tips of the {1012} tensile twins with a special structure result in incomplete detwinning.Understanding the microstructural evolution and twinning behavior of magnesium alloys under different deformation geometries is important for the development of high-strength and high-toughness magnesium alloys.
基金JST PRESTO(grant number JPMJPR22Q4)(Japan)The Light Metal Educational Foundation,Inc.(Japan),and“Knowledge Hub Aichi”Aichi Prefectural Government(Japan)The synchrotron radiation experiments were performed at BL46XUof SPring-8with the approval of the Japan Synchrotron Radiation Research Institute(JASRI)(Proposal No.2021A1663,2022A1001and 2022A1798).
文摘The microstructural factors contributing to the high strength of additive-manufactured Al-Si alloys us-ing laser-beam powder bed fusion(PBF-LB)were identified by in-situ synchrotron X-ray diffraction in tensile deformation and transmission electron microscopy.PBF-LB and heat treatment were employed to manufacture Al-12%Si binary alloy specimens with different microstructures.At an early stage of de-formation prior to macroscopic yielding,stress was dominantly partitioned into the α-Al matrix,rather than the Si phase in all specimens.Highly concentrated Si solute(~3%)in the α-Al matrix promoted the dynamic precipitation of nanoscale Si phase during loading,thereby increasing the yield strength.After macroscopic yielding,the partitioned stress in the Si phase monotonically increased in the strain-hardening regime with an increase in the dislocation density in the α-Al matrix.At a later stage of strain hardening,the flow curves of the partitioned stress in the Si phase yielded stress relaxation owing to plastic deformation.Therefore,Si-phase particles localized along the cell walls in the cellular-solidified microstructure play a significant role in dislocation obstacles for strain hardening.Compared with the results of the heat-treated specimens with different microstructural factors,the dominant strengthening factors of PBF-LB manufactured Al-Si alloys were discussed.
基金supported by the National Natural Science Foundation of China(Nos.52171098 and 51921001)the State Key Laboratory for Advanced Metals and Materials(No.2022Z-02)+1 种基金the National High-level Personnel of Special Support Program(No.ZYZZ2021001)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-20-03C2 and FRF-BD-20-02B).
文摘High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.
基金supported by National Natural Science Foundation of China(no.U21A2047,no.51971076 and no.52001069).
文摘The deformation behavior of the as-extruded Mg-Y-Ni alloys with different volume fraction of long period stacking ordered(LPSO)phase during tension and compression was investigated by in-situ synchrotron diffraction.The micro-yielding,macro-yielding,tension-compression asymmetry and strain hardening behavior of the alloys were explored by combining with deformation mechanisms.The micro-yielding is dominated by basal slip of dynamic recrystallized(DRXed)grains in tension,while it is dominated by extension twinning of non-dynamic recrystallized(non-DRXed)grains in compression.At macro-yielding,the non-DRXed grains are still elastic deformed in tension and the basal slip of DRXed grains in compression are activated.Meanwhile,the LPSO phase still retains elastic deformation,but can bear more load,so the higher the volume fraction of hard LPSO phase,the higher the tensile/compressive macro-yield strength of the alloys.Benefiting from the low volume fraction of the non-DRXed grains and the delay effect of LPSO andγphases on extension twinning,the as-extruded alloys exhibit excellent tension-compression symmetry.When the volume fraction of LPSO phase reaches∼50%,tension-compression asymmetry is reversed,which is due to the fact that the LPSO phase is stronger in compression than in tension.The tensile strain hardening behavior is dominated by dislocation slip,while the dominate mechanism for compressive strain hardening changes from twinning in theα-Mg grains to kinking of the LPSO phase with increasing volume fraction of LPSO phase.The activation of kinking leads to the constant compressive strain hardening rate of∼2500 MPa,which is significantly higher than the tensile strain hardening rate.
基金National Natural Science Foundation of China(Nos.12275344,12304132)National Key Research and Development Program of China(No.2022YFA1603901).
文摘BL02U2 of the Shanghai Synchrotron Radiation Facility is a surface diffraction beamline with a photon flux of 5.5×10^(12) photons/s at 10 keV and a beam size of 160µm×80µm at the sample site.It is dedicated to studying surfaces(solid-vacuum,solid-gas)and interfaces(solid-solid,solid-liquid,and liquid-liquid)in nanoscience,condensed matter,and soft matter systems using various surface scattering techniques over an energy range of 4.8-28 keV with transmission and reflection modes.Moreover,BL02U2 has a high energy resolution,high angular resolution,and low beam divergence,which can provide excellent properties for X-ray diffraction experiments,such as grazing incident X-ray diffraction,X-ray reflectivity,crystal truncation rods,and liquid X-ray scattering.Diversity of in situ environments can also be provided for the samples studied.This paper describes the setup of the new beamline and its applications in various fields.
基金supported by the National Key Research and De-velopment Program of China(No.2023YFB3711901)the National Natural Science Foundation of China(NSFC)(Nos.52171098 and 51921001)+2 种基金the State Key Laboratory for Advanced Metals and Ma-terials(Grant No.2022Z-02)the Fundamental Research Funds for the Central Universities(No.FRF-TP-20-03C2)supported by the U.S.Department of En-ergy,Office of Science,Office of Basic Energy Sciences,under Con-tract No.DE-AC02-06CH11357.
文摘The microstructure evolution and micromechanical behaviors of additively manufactured 18Ni_(3)00 marag-ing steel for both as-printed and aged one were investigated using the in situ high-energy X-ray diffrac-tion(HE-XRD)technique with uniaxial tensile tests.The investigations revealed that the volume frac-tion of reversed austenite increased as the annealing temperature rose.The maraging steel was strength-ened byη-Ni_(3)Ti precipitates,where the aged maraging steel had a higher UTS value of∼1860 MPa than∼1135 MPa in the as-printed one,but sacrificed more than half of ductility(from∼8.6%to∼4.0%).The austenite in aged steel presents more stability induced by the aging process than that in as-printed counterpart,which has a higher critical martensitic transformation stress of∼1200 MPa than that of∼780 MPa in as-printed steel.The austenite grains orientated with[200]//LD yield before the macro-yielding and preferential martensite transformation occurs.This study provides further insight into the intricated micromechanical responses of additively manufactured 18Ni_(3)00 maraging steel,enlarging the scope of its adaptation and application.
基金Supported by the National Natural Science Foundation of China(NSFC 62105100)the National Key research and development program in the 14th five year plan(2021YFA1200700)。
文摘Silicon(Si)diffraction microlens arrays are usually used to integrating with infrared focal plane arrays(IRFPAs)to improve their performance.The errors of lithography are unavoidable in the process of the Si diffrac-tion microlens arrays preparation in the conventional engraving method.It has a serious impact on its performance and subsequent applications.In response to the problem of errors of Si diffraction microlens arrays in the conven-tional method,a novel self-alignment method for high precision Si diffraction microlens arrays preparation is pro-posed.The accuracy of the Si diffractive microlens arrays preparation is determined by the accuracy of the first li-thography mask in the novel self-alignment method.In the subsequent etching,the etched area will be protected by the mask layer and the sacrifice layer or the protective layer.The unprotection area is carved to effectively block the non-etching areas,accurately etch the etching area required,and solve the problem of errors.The high precision Si diffraction microlens arrays are obtained by the novel self-alignment method and the diffraction effi-ciency could reach 92.6%.After integrating with IRFPAs,the average blackbody responsity increased by 8.3%,and the average blackbody detectivity increased by 10.3%.It indicates that the Si diffraction microlens arrays can improve the filling factor and reduce crosstalk of IRFPAs through convergence,thereby improving the perfor-mance of the IRFPAs.The results are of great reference significance for improving their performance through opti-mizing the preparation level of micro nano devices.
基金supported by the National Natural Science Foundation of China (grant no. 12105210)the Knowledge Innovation Program of Wuhan-Basic Research (grant no. 2023010201010149)
文摘We propose a theoretical scheme to realize a two-dimensional(2D)diffraction grating in a four-level inverted-Y-type atomic system coupled by a standing-wave(SW)field and a Laguerre-Gaussian(LG)vortex field.Owing to asymmetric spatial modulation of the LG vortex field,the incident probe field can be lopsidedly diffracted into four domains and an asymmetric 2D electromagnetically induced grating is created.By adjusting the detunings of the probe field and the LG vortex field,the intensities of the LG vortex field and the coherent SW field,as well as the interaction length,the diffraction properties and efficiency,can be effectively manipulated.In addition,the effect of the azimuthal parameter on the Fraunhofer diffraction of the probe field is also discussed.This asymmetric 2D diffraction grating scheme may provide a versatile platform for designing quantum devices that require asymmetric light transmission.
基金financially supported by China National Funds for Distinguished Young Scientists(Grant No.52025112)the Key Projects of the National Natural Science Foundation of China(Grant No.52331011)。
文摘Two-dimensional(2D)flume experiments are useful in investigating the performances of floating breakwaters(FBs),including hydrodynamic performances,motion responses,and mooring forces.Designing a reasonable gap between the flume wall and the FBs is a critical step in 2D flume tests.However,research on the effect of the gap on the accuracy of 2D FB experimental results is scarce.To address this issue,a numerical wave tank is developed using CFD to estimate the wave-FB interaction of a moored dual-cylindrical FB,and the results are compared to experimental data from a previously published work.There is good agreement between them,indicating that the numerical model is sufficiently accurate.The numerical model is then applied to explore the effect of gap diffraction on the performance of FBs in2D experiments.It was discovered that the nondimensional gap length L_(Gap)/W_(Pool)should be smaller than 7.5%to ensure that the relative error of the transmission coefficient is smaller than 3%.The influence of the gap is also related to the entering wave properties,such as the wave height and period.
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2022YFF0709103,2022YFA1603601,2021YFF0601203,and 2021YFA1600703)the National Natural Science Foundation of China (Grant No.81430087)the Shanghai Pilot Program for Basic Research-Chinese Academy of Sciences,Shanghai Branch (Grant No.JCYJ-SHFY-2021-010)。
文摘Beam splitting is one of the main approaches to achieving x-ray ghost imaging, and the intensity correlation between diffraction beam and transmission beam will directly affect the imaging quality. In this paper, we investigate the intensity correlation between the split x-ray beams by Laue diffraction of stress-free crystal. The analysis based on the dynamical theory of x-ray diffraction indicates that the spatial resolution of diffraction image and transmission image are reduced due to the position shift of the exit beam. In the experimental setup, a stress-free crystal with a thickness of hundredmicrometers-level is used for beam splitting. The crystal is in a non-dispersive configuration equipped with a double-crystal monochromator to ensure that the dimension of the diffraction beam and transmission beam are consistent. A correlation coefficient of 0.92 is achieved experimentally and the high signal-to-noise ratio of the x-ray ghost imaging is anticipated.Results of this paper demonstrate that the developed beam splitter of Laue crystal has the potential in the efficient data acquisition of x-ray ghost imaging.
基金financial support from the Japan Society for the Promotion of Science(No.JP18H05479)JST(Japan Science and Technology Agency)CREST(No.JPMJCR1994)+1 种基金the Grant-in-Aid for Scientific Research(Nos.JP20H00306 and JP22K18888)the Data Creation and Utilization Type Material Research and Development(No.JPMXP1122684766)。
文摘The yield stress of Fe-24Ni-0.3C(wt%)metastable austenitic steel increased 3.5 times(158→551 MPa)when the average grain size decreased from 35μm(coarse-grained[CG])to 0.5μm(ultrafine-grained[UFG]),whereas the tensile elongation was kept large(0.87→0.82).In situ neutron diffraction measurements of the CG and UFG Fe-24Ni-0.3C steels were performed during tensile deformation at room temperature to quantitatively elucidate the influence of grain size on the mechanical properties and deformation mechanisms.The initial stages of plastic deformation in the CG and UFG specimens were dominated by dislocation slip,with deformation-induced martensitic transformation(DIMT)also occurring in the later stage of deformation.Results show that grain refinement increases the initiation stress of DIMT largely and suppresses the rate of DIMT concerning the strain,which is attributed to the following effects.(i)Grain refinement increased the stabilization of austenite and considerably delayed the initiation of DIMT in the<111>//LD(LD:loading direction)austenite grains,which were the most stable grains for DIMT.As a result,most of the<111>//LD austenite grains in the UFG specimen failed to transform into martensite.(ii)Grain refinement also suppressed the autocatalytic effect of the martensitic transformation.Nevertheless,the DIMT with the low transformation rate in the UFG specimen was more efficient in increasing the flow stress and more appropriate to maintain uniform deformation than that in the CG specimen during deformation.The above phenomena mutually contributed to the excellent combination of strength and ductility of the UFG metastable austenitic steel.
基金CAS Photon Science Research Center for Carbon DioxideCAS President’s International Fellowship Initiative(2024PVA0097)+1 种基金National Key Research and Development Program of China(2017YFA0403000,2017YFA0402800)National Natural Science Foundation of China(U1932201,U1732121)。
文摘This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction between various structural materials and molten salts.The apparatus enables accurate detection of every phase change during hightemperature experiments,including strong reaction processes like corrosion.Molten salts,such as chlorides or fluo⁃rides,together with the structure materials,are inserted into either quartz or boron nitride capillaries,where X-ray diffraction pattern can be continuously collected,as the samples are heated to high temperature.The replacement re⁃action,when molten ZnCl2 are etching Ti3AlC2,can be clearly observed through changes in diffraction peak intensity as well as expansion in c-axis lattice parameter of the hexagonal matrix,due to the larger atomic number and ionic ra⁃dius of Zn2+.Furthermore,we investigated the high-temperature corrosion process when GH3535 alloy is in FLiNaK molten salt,and can help to optimize its stability for potential applications in molten salt reactor.Additionally,this high temperature apparatus is fully compatible with the combined usage of X-ray diffraction and Raman technique,providing both bulk and surface structural information.This high temperature apparatus has been open to users and is extensively used at BL14B1 beamline of the Shanghai Synchrotron Radiation Facility.