In this article we report on the experimental investigation of light storage for several types of diffractionfree beams(Bessel and Airy beams)and quasi-diffraction-free beams by utilizing electromagnetically induced t...In this article we report on the experimental investigation of light storage for several types of diffractionfree beams(Bessel and Airy beams)and quasi-diffraction-free beams by utilizing electromagnetically induced transparency(EIT)technique in a hot atomic gas cell.The experimental results show that the diffraction-free and quasi-diffraction-free beams have better storage performances when compared with ordinary images possessing similar spatial profiles.Meanwhile,the Bessel beams and the quasidiffraction-free images are able to maintain their spatial profiles with a long storage time while the sidelobes of the Airy beam are gradually depleted with the increment of the storage time.We quantitatively analyze the storage results and give physical explanations behind these phenomena.Furthermore,the self-healing of the retrieved diffraction-free beams is verified,signifying that their characteristics preserve well after storage.展开更多
Diffraction-free vectorial elliptic hollow beams(vEHBs)are generated by an optical system composed of a short elliptic hollow fiber(EHF)and an axicon.Each beam has a closed elliptic annular intensity profile and space...Diffraction-free vectorial elliptic hollow beams(vEHBs)are generated by an optical system composed of a short elliptic hollow fiber(EHF)and an axicon.Each beam has a closed elliptic annular intensity profile and space-varying polarization states in its diffraction-free distance of more than 1 m.The generated beams have a counter-clockwise or clockwise periodically-rotated inhomogeneous polarization.And the spin angular momentum(SAM)of the vEHBs is 1ħor-1ħwhich is consistent with the type of dual-mode in the EHF and the periodic polarization rotations of the vEHBs.The vEHBs have potential applications in optically trapping and micromanipulating the micro-or nano-particles,quantum information transmission,and Bose-Einstein condensates,etc.展开更多
[Background]Traveling-wave tubes(TWTs)are widely applied in radar,imaging,and military systems owing to their excellent amplification characteristics.Miniaturization and integration are critical to the future of TWTs,...[Background]Traveling-wave tubes(TWTs)are widely applied in radar,imaging,and military systems owing to their excellent amplification characteristics.Miniaturization and integration are critical to the future of TWTs,with multi-channel slow-wave structures(SWSs)forming the foundation for their realization in high-power vacuum electronic devices.[Purpose]To provide design insights for multi-channel TWTs and simultaneously enhance their output power,a W-band folded-waveguide TWT with dual electron beams and H-plane power combining was proposed.[Methods]Three-dimensional electromagnetic simulations in CST were conducted to verify the highfrequency characteristics,electric field distribution,and amplification performance of the proposed SWS,thereby confirming the validity of the design.[Results]Results indicate that the designed TWT achieves a transmission bandwidth of 10 GHz.With an electron beam voltage of 17.9 kV and a current of 0.35 A,the output power reaches 450 W at 94 GHz,corresponding to an efficiency of 7.18%and a gain of 23.5 dB.Moreover,under fixed beam voltage and current,the TWT delivers over 200 W output power across 91–99 GHz,with a 3 dB bandwidth of 91–98.5 GHz.The particle voltage distribution after modulation further validates the mode analysis.[Conclusions]These results demonstrate the feasibility of compact dual-beam power-combining structures and provide useful guidance for the design of future multi-channel TWTs.展开更多
By introducing noncanonical vortex pairs to partially coherent beams, spatial correlation singularity (SCS) and orbital angular momenta (OAM) of the resulting beams are studied using the Fraunhofer diffraction integra...By introducing noncanonical vortex pairs to partially coherent beams, spatial correlation singularity (SCS) and orbital angular momenta (OAM) of the resulting beams are studied using the Fraunhofer diffraction integral. The effect of noncanonical strength, off-axis distance and vortex sign on spatial correlation singularities in far field is stressed. Furthermore, far-field OAM spectra and densities are also investigated, and the OAM detection and crosstalk probabilities are discussed. The results show that the number of dislocations of SCS always equals the sum of absolute values of topological charges for canonical or noncanonical vortex pairs. Although the sum of the product of each OAM mode and its power weight equals the algebraic sum of topological charges for canonical vortex pairs, the relationship no longer holds in the noncanonical case except for opposite-charge vortex pairs. The changes of off-axis distance, noncanonical strength or coherence length can lead to a more dominant power in adjacent mode than that in center detection mode, which also indicates that crosstalk probabilities of adjacent modes exceed the center detection probability. This work may provide potential applications in OAM-based optical communication, imaging, sensing and computing.展开更多
The significance of laser-driven polarized beam acceleration has been increasingly recognized in recent years.We propose an efficient method for generating polarized proton beams from a pre-polarized hydrogen halide g...The significance of laser-driven polarized beam acceleration has been increasingly recognized in recent years.We propose an efficient method for generating polarized proton beams from a pre-polarized hydrogen halide gas jet,utilizing magnetic vortex acceleration enhanced by a laser-driven plasma bubble.When a petawatt laser pulse passes through a pre-polarized gas jet,a bubble-like ultra-nonlinear plasma wave is formed.As a portion of the particles constituting this wave,background protons are swept by the acceleration field of the bubble and oscillate significantly along the laser propagation axis.Some of the pre-accelerated protons in the plasma wave are trapped by the acceleration field at the rear side of the target.This acceleration field is intensified by the transverse expansion of the laser-driven magnetic vortex,resulting in energetic polarized proton beams.The spin of energetic protons is determined by their precession within the electromagnetic field,which is described using the Thomas-Bargmann-Michel-Telegdi equation in analytical models and particle-in-cell simulations.Multidimensional simulations reveal that monoenergetic proton beams with an energy of hundreds of MeV,a beam charge of hundreds of pC,and a beam polarization of tens of percent can be produced at laser powers of several petawatts.Such laser-driven polarized proton beams have promise for application in polarized beam colliders,where they can be utilized to investigate particle interactions and to explore the properties of matter under extreme conditions.展开更多
This paper investigates the free vibration and transient response of interconnected structures including double curved beams and intermediate straight beams,which are all constructed from functionally graded porous(FG...This paper investigates the free vibration and transient response of interconnected structures including double curved beams and intermediate straight beams,which are all constructed from functionally graded porous(FGP)materials.The strain potential and kinetic energies of each beam along with the work done by the external force are calculated.Additionally,a higher-order beam element is introduced to derive stiffness and mass matrices,along with the force vector.The curved and straight beams are discretized,and their assembled stiffness,mass matrices,and force vectors,are obtained.Continuity conditions at the joints are used to derive the total matrices of the entire structure.Subsequently,the natural frequencies and transient response of the system are determined.The accuracy of the mathematical model and the self-developed computer program is validated through the comparison of the obtained results with those of the existing literature and commercial software ANSYS,demonstrating excellent agreement.Furthermore,a comprehensive study is conducted to investigate the effects of various parameters on the free vibration and transient response of the considered structure.展开更多
This investigation aims to analyze thermal buckling and post-buckling behavior of functionally graded graphene nanoplateletreinforced composite(FG-GPLRC)beams.The beams are classified into two types of ideal and non-i...This investigation aims to analyze thermal buckling and post-buckling behavior of functionally graded graphene nanoplateletreinforced composite(FG-GPLRC)beams.The beams are classified into two types of ideal and non-ideal FG-GPLRC beams in which the ideal beams have smooth profiles of material distributions and another beams have layer-wise distributions of materials.The material profiles of the ideal beams are utilized as the controlling tracks for producing the material distributions of the non-ideal beams via a layer-to-layer integration technique.This technique confirms that the overall weight fraction of the materials is the same for both types of beams.The proposed models can be used to determine the material properties of the beams for further investigation on thermal buckling and post-buckling of the beams.Third-order shear deformation theory is employed to construct the energy equations of the problems,and then they are solved by the implementation of the Jacobi-Ritz method cooperating with the direct iteration procedure and Newton-Raphson technique.From our investigation,it can be disclosed that when non-ideal beams are created using ideal beams parabolic profile,the results differ significantly.However,the differences between the results of ideal and non-ideal beams can be eliminated by adding more layers.展开更多
In order to more accurately calculate the fatigue damage and fatigue life of steel-concrete composite beam under standard vehicle load,the steel beam components of a large-span steel-concrete composite beam suspension...In order to more accurately calculate the fatigue damage and fatigue life of steel-concrete composite beam under standard vehicle load,the steel beam components of a large-span steel-concrete composite beam suspension bridge were taken as the research object.Based on the S-N curve and linear fatigue damage theory,a standard segment model was established.Accordingly,the welding position of the secondary longitudinal beam was identified as the focus fatigue point,and the stress time course calculation was done for the point.The results showed that when the vehicle mass increases from 50 t to 100 t,the amount of fatigue damage will increase by more than 5 times in the same period of time,and the increase in the vehicle mass will reduce the fatigue life of the bridge structure.The fatigue damage of bridge structures increases with the increase of vehicle speed.The increase rate of fatigue damage is greater at low speeds,and the increase rate of fatigue damage slows down at high speeds.展开更多
Steel-concrete composite beams,due to their superior mechanical properties,are widely utilized in engineering structures.This study systematically investigates the calculation methods for internal forces and load-bear...Steel-concrete composite beams,due to their superior mechanical properties,are widely utilized in engineering structures.This study systematically investigates the calculation methods for internal forces and load-bearing capacity of composite beams based on elastic theory,with a focus on the transformed section method and its application under varying neutral axis positions.By deriving the geometric characteristics of the transformed section and incorporating a reduction factor accounting for slip effects,a computational model for sectional stress and ultimate load-bearing capacity is established.The results demonstrate that the slip effect significantly influences the flexural load-bearing capacity of composite beams.The proposed reduction factor,which considers the influence of the steel beam’s top flange thickness,offers higher accuracy compared to traditional methods.These findings provide a theoretical foundation for the design and analysis of composite beams,with significant practical engineering value.展开更多
Without knowing the emittance value, it is difficult to optimize ion beam optics for minimum beam loss during transmission, especially considering the very high emittance values of electron cyclotron resonance(ECR) io...Without knowing the emittance value, it is difficult to optimize ion beam optics for minimum beam loss during transmission, especially considering the very high emittance values of electron cyclotron resonance(ECR) ion sources.With this in mind, to measure the emittance of the ion beams produced by the mVINIS ECR, which is part of the FAMA facility at the Vin?a Institute of Nuclear Sciences, we have developed a pepper-pot scintillator screen system combined with a CMOS camera. The application, developed on the Lab VIEW platform, allows us to control the camera's main attribute settings, such as the shutter speed and the gain, record the images in the region of interest, and process and filter the images in real time. To analyze the data from the obtained image, we have developed an algorithm called measurement and analysis of ion beam luminosity(MAIBL) to reconstruct the four-dimensional(4D) beam profile and calculate the root mean square(RMS) emittance. Before measuring emittance, we performed a simulated experiment using the pepper-pot simulation(PPS) program. An exported file(PPS) gives a numerically generated raw image(mock image) of a beam with a predefined emittance value after it has passed through a pepper-pot mask. By analyzing data from mock images instead of the image obtained by the camera and putting it into the MAIBL algorithm, we can compare the calculated emittance with PPS's initial emittance value. In this paper, we present our computational tools and explain the method for verifying the correctness of the calculated emittance values.展开更多
The dynamics of beams subjected to moving loads are of practical importance since the responses caused by these loads can be greater than those under equivalent static loads in some cases.In this work,a novel inertial...The dynamics of beams subjected to moving loads are of practical importance since the responses caused by these loads can be greater than those under equivalent static loads in some cases.In this work,a novel inertial nonlinear energy sink(NES)is applied for the first time to achieve vibration suppression in beams under moving loads.Based on the Timoshenko beam theory,the nonlinear motion equations of a beam with an inertial NES are derived using the energy method and Lagrange equations.The Newmark-βmethod combined with the Heaviside step function is adopted to calculate the responses of the beam under moving loads of constant amplitude and harmonic excitation.The accuracy of the modelling derivation and solution methodology are validated through comparisons with results from other studies.The results demonstrate that the velocity and excitation frequency of the moving load significantly affect the response of the beam as well as the performance of the inertial NES.To enhance its effectiveness under various moving load conditions,parametric optimization is numerically performed.The optimized inertial NES can achieve good performance by efficiently reducing the maximum deflection of the beam.The findings of this study contribute to advancing the understanding and application of NESs in mitigating structural vibrations caused by moving loads.展开更多
On-chip devices for generating pre-designed vectorial optical fields(VOFs)under surface wave(SW)excitations are highly desired in integrated photonics.However,conventional devices are usually of large footprints,low e...On-chip devices for generating pre-designed vectorial optical fields(VOFs)under surface wave(SW)excitations are highly desired in integrated photonics.However,conventional devices are usually of large footprints,low efficiencies,and limited wave-control capabilities.Here,we present a generic approach to design ultra-compact on-chip devices that can efficiently generate pre-designed VOFs under SW excitations,and experimentally verify the concept in terahertz(THz)regime.We first describe how to design SW-excitation metasurfaces for generating circularly polarized complex beams,and experimentally demonstrate two meta-devices to realize directional emission and focusing of THz waves with oppo-site circular polarizations,respectively.We then establish a systematic approach to construct an integrated device via merging two carefully designed metasurfaces,which,under SW excitations,can separately produce pre-designed far-field patterns with different circular polarizations and generate target VOF based on their interference.As a proof of con-cept,we demonstrate experimentally a meta-device that can generate a radially polarized Bessel beam under SW excita-tion at~0.4 THz.Experimental results agree well with full-wave simulations,collectively verifying the performance of our device.Our study paves the road to realizing highly integrated on-chip functional THz devices,which may find many ap-plications in biological sensing,communications,displays,image multiplexing,and beyond.展开更多
In order to solve the problems of low overload power in MEMS cantilever beams and low sensitivity in traditional MEMS fixed beams,a novel MEMS microwave power detection chip based on the dual-guided fixed beam is desi...In order to solve the problems of low overload power in MEMS cantilever beams and low sensitivity in traditional MEMS fixed beams,a novel MEMS microwave power detection chip based on the dual-guided fixed beam is designed.A gap between guiding beams and measuring electrodes is designed to accelerate the release of the sacrificial layer,effectively enhanc-ing chip performance.A load sensing model for the MEMS fixed beam microwave power detection chip is proposed,and the mechanical characteristics are analyzed based on the uniform load applied.The overload power and sensitivity are investi-gated using the load sensing model,and experimental results are compared with theoretical results.The detection chip exhibits excellent microwave characteristic in the 9-11 GHz frequency band,with a return loss less than-10 dB.At a signal fre-quency of 10 GHz,the theoretical sensitivity is 13.8 fF/W,closely matching the measured value of 14.3 fF/W,with a relative error of only 3.5%.These results demonstrate that the proposed load sensing model provides significant theoretical support for the design and performance optimization of MEMS microwave power detection chips.展开更多
This paper proposes a method to generate Bessel-like collimated beams with suppressed side lobes using the flexural vibration modes of a fixed boundary circular plate,which is excited by a longitudinally vibrating tra...This paper proposes a method to generate Bessel-like collimated beams with suppressed side lobes using the flexural vibration modes of a fixed boundary circular plate,which is excited by a longitudinally vibrating transducer in a ring excitation manner.The factors affecting the generation of Bessel-like collimated beams are investigated by theoretical analysis,numerical simulation and experimental methods.The results indicate that Bessel-like wave can be generated by a thin circular plate with fixed boundaries.The third-order mode of the circular plate can be modified to generate a collimated beam with suppressing side lobes when it is excited in a ring excitation manner and the excitation position lies between the first two nodal circles of the plate.As the excitation radius increases,the main lobe width of the resulting Bessel-like collimated beam decreases,the extent of the focusing region increases,and the amplitude of the side lobes initially increases and then decreases.Based on the simulation results,a prototype Bessel-like collimated beam generation system is made and measured experimentally.The experimental results are in good agreement with the numerical results.The Bessel-like collimated beam can be generated by the proposed system,which has potential application in the fields of long-range detection,imaging of highly attenuated materials,and airflow acceleration.展开更多
Glue-laminated timber(GLT)is an engineered wood product widely used in mass timber construction for its strong structural and fire-resistant properties.However,the fire performance of GLT varies significantly due to t...Glue-laminated timber(GLT)is an engineered wood product widely used in mass timber construction for its strong structural and fire-resistant properties.However,the fire performance of GLT varies significantly due to the natural and uncertain phenomena(moisture,exposure time,isotropic,homogenous properties,etc.)of fire and timber.This makes it difficult to predict the fire behaviour of the GLT structural elements.To ensure building safety,it is crucial to assess GLT’s fire behaviour and post-fire structural integrity during the design stages.This study conducted the experimental tests of GLT beams(280 mm×560 mm)without loading(1.4 m)and under a four-point bending load(5.4 m).Tests identified thermal behaviour and charring rates of GLT beam.Then,the residual stiffness of the GLT beam was calculated,and the charring rates of the beams were compared with Australian and European standards.Reliability analysis was conducted for beams for a fire exposure of 120 min,considering the charring rates observed through the analysis and simulating the fire insulations.Results show that the charring rate of GLT made with spruce pine timber varied between 0.43 and 0.81 mm/min,with a mean rate of 0.7 mm/min,aligning with both Australian and European standards.However,considering timber density and moisture content,the charring rates in Australian standards were conservative.The study also found that structural capacity significantly degrades under fire,with a 22%reduction in flexural stiffness after 120 min of exposure.Additionally,GLT beams can safely function for 30 min under 75%of their design moment capacity and for 60 min under 50%capacity.展开更多
Electron beam fluorescence technology is an advanced non-contact measurement in rarefied flow fields,and the fluorescence signal intensity is positively correlated with the electron beam current.The ion bombardment se...Electron beam fluorescence technology is an advanced non-contact measurement in rarefied flow fields,and the fluorescence signal intensity is positively correlated with the electron beam current.The ion bombardment secondary emission electron gun is suitable for the technology.To enhance the beam current,COMSOL simulations and analyses were conducted to examine plasma density distribution in the discharge chamber under the effects of various conditions and the electric field distribution between the cathode and the spacer gap.The anode shape and discharge pressure conditions were optimized to increase plasma density.Additionally,an improved spacer structure was designed with the dual purpose of enhancing the electric field distribution between the cathode-spacer gaps and improving vacuum differential effects.This design modification aims to increase the pass rate of secondary electrons.Both simulation and experimental results demonstrated that the performance of the optimized electron gun was effectively enhanced.When the electrode voltage remains constant and the discharge gas pressure is adjusted to around 8 Pa,the maximum beam current was increased from 0.9 mA to 1.6 mA.展开更多
The elliptic integral method(EIM) is an efficient analytical approach for analyzing large deformations of elastic beams. However, it faces the following challenges.First, the existing EIM can only handle cases with kn...The elliptic integral method(EIM) is an efficient analytical approach for analyzing large deformations of elastic beams. However, it faces the following challenges.First, the existing EIM can only handle cases with known deformation modes. Second,the existing EIM is only applicable to Euler beams, and there is no EIM available for higher-precision Timoshenko and Reissner beams in cases where both force and moment are applied at the end. This paper proposes a general EIM for Reissner beams under arbitrary boundary conditions. On this basis, an analytical equation for determining the sign of the elliptic integral is provided. Based on the equation, we discover a class of elliptic integral piecewise points that are distinct from inflection points. More importantly, we propose an algorithm that automatically calculates the number of inflection points and other piecewise points during the nonlinear solution process, which is crucial for beams with unknown or changing deformation modes.展开更多
Off-axis-rotating elliptical Gaussian beams(Oare GB)oblique incidence in strong nonlocal medium exhibit novel propagation properties.The analytical expressions of semi-axial beam widths,and center-of-mass trajectory e...Off-axis-rotating elliptical Gaussian beams(Oare GB)oblique incidence in strong nonlocal medium exhibit novel propagation properties.The analytical expressions of semi-axial beam widths,and center-of-mass trajectory equations for transmitting off-axis-rotating elliptical Gaussian beams in strong nonlocal media are obtained using the ABCD transfer matrix method.The study revealed that the trajectory of the mass's center in the cross-section can be controlled by changing the sizes of the Oare GB parameters c,d,ζ,and f.The gradient force of the light field causes the spot region to form a spatial potential well in the media,and this spatial potential well can effectively capture nanoparticles.The particles captured by the light field can move along with the beam,realizing the effective manipulation of the particle trajectory.These laws may be applied to modulating the propagation path of light beams and optical tweezer technology.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.11774286,92050103,12104358,11534008,12033007,and 61875205).
文摘In this article we report on the experimental investigation of light storage for several types of diffractionfree beams(Bessel and Airy beams)and quasi-diffraction-free beams by utilizing electromagnetically induced transparency(EIT)technique in a hot atomic gas cell.The experimental results show that the diffraction-free and quasi-diffraction-free beams have better storage performances when compared with ordinary images possessing similar spatial profiles.Meanwhile,the Bessel beams and the quasidiffraction-free images are able to maintain their spatial profiles with a long storage time while the sidelobes of the Airy beam are gradually depleted with the increment of the storage time.We quantitatively analyze the storage results and give physical explanations behind these phenomena.Furthermore,the self-healing of the retrieved diffraction-free beams is verified,signifying that their characteristics preserve well after storage.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304093 and 11274114)the Hubei Provincial Natural Science Foundation,China(Grant No.2018CFB320)the Academic Discipline Project of Hubei Normal University,China(Grant Nos.2014F012 and 2014F013).
文摘Diffraction-free vectorial elliptic hollow beams(vEHBs)are generated by an optical system composed of a short elliptic hollow fiber(EHF)and an axicon.Each beam has a closed elliptic annular intensity profile and space-varying polarization states in its diffraction-free distance of more than 1 m.The generated beams have a counter-clockwise or clockwise periodically-rotated inhomogeneous polarization.And the spin angular momentum(SAM)of the vEHBs is 1ħor-1ħwhich is consistent with the type of dual-mode in the EHF and the periodic polarization rotations of the vEHBs.The vEHBs have potential applications in optically trapping and micromanipulating the micro-or nano-particles,quantum information transmission,and Bose-Einstein condensates,etc.
基金National Key Research and Development Program of China(2022YFF0707602)National Natural Science Foundation of China(62471097,62471115,62471101)National Natural Science Foundation of Sichuan(2025ZNSFSC0537)。
文摘[Background]Traveling-wave tubes(TWTs)are widely applied in radar,imaging,and military systems owing to their excellent amplification characteristics.Miniaturization and integration are critical to the future of TWTs,with multi-channel slow-wave structures(SWSs)forming the foundation for their realization in high-power vacuum electronic devices.[Purpose]To provide design insights for multi-channel TWTs and simultaneously enhance their output power,a W-band folded-waveguide TWT with dual electron beams and H-plane power combining was proposed.[Methods]Three-dimensional electromagnetic simulations in CST were conducted to verify the highfrequency characteristics,electric field distribution,and amplification performance of the proposed SWS,thereby confirming the validity of the design.[Results]Results indicate that the designed TWT achieves a transmission bandwidth of 10 GHz.With an electron beam voltage of 17.9 kV and a current of 0.35 A,the output power reaches 450 W at 94 GHz,corresponding to an efficiency of 7.18%and a gain of 23.5 dB.Moreover,under fixed beam voltage and current,the TWT delivers over 200 W output power across 91–99 GHz,with a 3 dB bandwidth of 91–98.5 GHz.The particle voltage distribution after modulation further validates the mode analysis.[Conclusions]These results demonstrate the feasibility of compact dual-beam power-combining structures and provide useful guidance for the design of future multi-channel TWTs.
文摘By introducing noncanonical vortex pairs to partially coherent beams, spatial correlation singularity (SCS) and orbital angular momenta (OAM) of the resulting beams are studied using the Fraunhofer diffraction integral. The effect of noncanonical strength, off-axis distance and vortex sign on spatial correlation singularities in far field is stressed. Furthermore, far-field OAM spectra and densities are also investigated, and the OAM detection and crosstalk probabilities are discussed. The results show that the number of dislocations of SCS always equals the sum of absolute values of topological charges for canonical or noncanonical vortex pairs. Although the sum of the product of each OAM mode and its power weight equals the algebraic sum of topological charges for canonical vortex pairs, the relationship no longer holds in the noncanonical case except for opposite-charge vortex pairs. The changes of off-axis distance, noncanonical strength or coherence length can lead to a more dominant power in adjacent mode than that in center detection mode, which also indicates that crosstalk probabilities of adjacent modes exceed the center detection probability. This work may provide potential applications in OAM-based optical communication, imaging, sensing and computing.
基金supported by the National Natural Science Foundation of China(Grant Nos.12075081 and 12404395)the Innovation Group Project of the Natural Science Foundation of Hubei Province of China(Grant No.2024AFA038)Bin Liu acknowledges the support of Guangdong High Level Innovation Research Institute Project,Grant No.2021B0909050006.
文摘The significance of laser-driven polarized beam acceleration has been increasingly recognized in recent years.We propose an efficient method for generating polarized proton beams from a pre-polarized hydrogen halide gas jet,utilizing magnetic vortex acceleration enhanced by a laser-driven plasma bubble.When a petawatt laser pulse passes through a pre-polarized gas jet,a bubble-like ultra-nonlinear plasma wave is formed.As a portion of the particles constituting this wave,background protons are swept by the acceleration field of the bubble and oscillate significantly along the laser propagation axis.Some of the pre-accelerated protons in the plasma wave are trapped by the acceleration field at the rear side of the target.This acceleration field is intensified by the transverse expansion of the laser-driven magnetic vortex,resulting in energetic polarized proton beams.The spin of energetic protons is determined by their precession within the electromagnetic field,which is described using the Thomas-Bargmann-Michel-Telegdi equation in analytical models and particle-in-cell simulations.Multidimensional simulations reveal that monoenergetic proton beams with an energy of hundreds of MeV,a beam charge of hundreds of pC,and a beam polarization of tens of percent can be produced at laser powers of several petawatts.Such laser-driven polarized proton beams have promise for application in polarized beam colliders,where they can be utilized to investigate particle interactions and to explore the properties of matter under extreme conditions.
文摘This paper investigates the free vibration and transient response of interconnected structures including double curved beams and intermediate straight beams,which are all constructed from functionally graded porous(FGP)materials.The strain potential and kinetic energies of each beam along with the work done by the external force are calculated.Additionally,a higher-order beam element is introduced to derive stiffness and mass matrices,along with the force vector.The curved and straight beams are discretized,and their assembled stiffness,mass matrices,and force vectors,are obtained.Continuity conditions at the joints are used to derive the total matrices of the entire structure.Subsequently,the natural frequencies and transient response of the system are determined.The accuracy of the mathematical model and the self-developed computer program is validated through the comparison of the obtained results with those of the existing literature and commercial software ANSYS,demonstrating excellent agreement.Furthermore,a comprehensive study is conducted to investigate the effects of various parameters on the free vibration and transient response of the considered structure.
基金supported by the Thailand Science Research and Innovation Fund(Grant No.FRB660041/0227).
文摘This investigation aims to analyze thermal buckling and post-buckling behavior of functionally graded graphene nanoplateletreinforced composite(FG-GPLRC)beams.The beams are classified into two types of ideal and non-ideal FG-GPLRC beams in which the ideal beams have smooth profiles of material distributions and another beams have layer-wise distributions of materials.The material profiles of the ideal beams are utilized as the controlling tracks for producing the material distributions of the non-ideal beams via a layer-to-layer integration technique.This technique confirms that the overall weight fraction of the materials is the same for both types of beams.The proposed models can be used to determine the material properties of the beams for further investigation on thermal buckling and post-buckling of the beams.Third-order shear deformation theory is employed to construct the energy equations of the problems,and then they are solved by the implementation of the Jacobi-Ritz method cooperating with the direct iteration procedure and Newton-Raphson technique.From our investigation,it can be disclosed that when non-ideal beams are created using ideal beams parabolic profile,the results differ significantly.However,the differences between the results of ideal and non-ideal beams can be eliminated by adding more layers.
文摘In order to more accurately calculate the fatigue damage and fatigue life of steel-concrete composite beam under standard vehicle load,the steel beam components of a large-span steel-concrete composite beam suspension bridge were taken as the research object.Based on the S-N curve and linear fatigue damage theory,a standard segment model was established.Accordingly,the welding position of the secondary longitudinal beam was identified as the focus fatigue point,and the stress time course calculation was done for the point.The results showed that when the vehicle mass increases from 50 t to 100 t,the amount of fatigue damage will increase by more than 5 times in the same period of time,and the increase in the vehicle mass will reduce the fatigue life of the bridge structure.The fatigue damage of bridge structures increases with the increase of vehicle speed.The increase rate of fatigue damage is greater at low speeds,and the increase rate of fatigue damage slows down at high speeds.
文摘Steel-concrete composite beams,due to their superior mechanical properties,are widely utilized in engineering structures.This study systematically investigates the calculation methods for internal forces and load-bearing capacity of composite beams based on elastic theory,with a focus on the transformed section method and its application under varying neutral axis positions.By deriving the geometric characteristics of the transformed section and incorporating a reduction factor accounting for slip effects,a computational model for sectional stress and ultimate load-bearing capacity is established.The results demonstrate that the slip effect significantly influences the flexural load-bearing capacity of composite beams.The proposed reduction factor,which considers the influence of the steel beam’s top flange thickness,offers higher accuracy compared to traditional methods.These findings provide a theoretical foundation for the design and analysis of composite beams,with significant practical engineering value.
基金funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia via the FAMA project (research topic “Physics and chemistry with ion beams”)。
文摘Without knowing the emittance value, it is difficult to optimize ion beam optics for minimum beam loss during transmission, especially considering the very high emittance values of electron cyclotron resonance(ECR) ion sources.With this in mind, to measure the emittance of the ion beams produced by the mVINIS ECR, which is part of the FAMA facility at the Vin?a Institute of Nuclear Sciences, we have developed a pepper-pot scintillator screen system combined with a CMOS camera. The application, developed on the Lab VIEW platform, allows us to control the camera's main attribute settings, such as the shutter speed and the gain, record the images in the region of interest, and process and filter the images in real time. To analyze the data from the obtained image, we have developed an algorithm called measurement and analysis of ion beam luminosity(MAIBL) to reconstruct the four-dimensional(4D) beam profile and calculate the root mean square(RMS) emittance. Before measuring emittance, we performed a simulated experiment using the pepper-pot simulation(PPS) program. An exported file(PPS) gives a numerically generated raw image(mock image) of a beam with a predefined emittance value after it has passed through a pepper-pot mask. By analyzing data from mock images instead of the image obtained by the camera and putting it into the MAIBL algorithm, we can compare the calculated emittance with PPS's initial emittance value. In this paper, we present our computational tools and explain the method for verifying the correctness of the calculated emittance values.
基金supported by the National Natural Science Foundation of China(Grant Nos.12102015 and 12472003)the General Program of Science and Technology Development Project of the Beijing Municipal Education Commission(Grant No.KM202110005030)the Key Research Project of Zhejiang Market Supervision Administration(Grant No.ZD2024013).
文摘The dynamics of beams subjected to moving loads are of practical importance since the responses caused by these loads can be greater than those under equivalent static loads in some cases.In this work,a novel inertial nonlinear energy sink(NES)is applied for the first time to achieve vibration suppression in beams under moving loads.Based on the Timoshenko beam theory,the nonlinear motion equations of a beam with an inertial NES are derived using the energy method and Lagrange equations.The Newmark-βmethod combined with the Heaviside step function is adopted to calculate the responses of the beam under moving loads of constant amplitude and harmonic excitation.The accuracy of the modelling derivation and solution methodology are validated through comparisons with results from other studies.The results demonstrate that the velocity and excitation frequency of the moving load significantly affect the response of the beam as well as the performance of the inertial NES.To enhance its effectiveness under various moving load conditions,parametric optimization is numerically performed.The optimized inertial NES can achieve good performance by efficiently reducing the maximum deflection of the beam.The findings of this study contribute to advancing the understanding and application of NESs in mitigating structural vibrations caused by moving loads.
基金the financial support from National Natural Science Foundation of China (Nos. 62192771, 12374344, 12221004)National Key Research and Development Program of China (2022YFA1204700, 2020YFA0710100)+1 种基金Natural Science Foundation of Shanghai (Grant No. 23dz2260100)China Postdoctoral Science Foundation 2021TQ0077
文摘On-chip devices for generating pre-designed vectorial optical fields(VOFs)under surface wave(SW)excitations are highly desired in integrated photonics.However,conventional devices are usually of large footprints,low efficiencies,and limited wave-control capabilities.Here,we present a generic approach to design ultra-compact on-chip devices that can efficiently generate pre-designed VOFs under SW excitations,and experimentally verify the concept in terahertz(THz)regime.We first describe how to design SW-excitation metasurfaces for generating circularly polarized complex beams,and experimentally demonstrate two meta-devices to realize directional emission and focusing of THz waves with oppo-site circular polarizations,respectively.We then establish a systematic approach to construct an integrated device via merging two carefully designed metasurfaces,which,under SW excitations,can separately produce pre-designed far-field patterns with different circular polarizations and generate target VOF based on their interference.As a proof of con-cept,we demonstrate experimentally a meta-device that can generate a radially polarized Bessel beam under SW excita-tion at~0.4 THz.Experimental results agree well with full-wave simulations,collectively verifying the performance of our device.Our study paves the road to realizing highly integrated on-chip functional THz devices,which may find many ap-plications in biological sensing,communications,displays,image multiplexing,and beyond.
基金supported by the National Natural Science Foundation of China(61904089)the Province Natural Science Foundation of Jiangsu(BK20190731).
文摘In order to solve the problems of low overload power in MEMS cantilever beams and low sensitivity in traditional MEMS fixed beams,a novel MEMS microwave power detection chip based on the dual-guided fixed beam is designed.A gap between guiding beams and measuring electrodes is designed to accelerate the release of the sacrificial layer,effectively enhanc-ing chip performance.A load sensing model for the MEMS fixed beam microwave power detection chip is proposed,and the mechanical characteristics are analyzed based on the uniform load applied.The overload power and sensitivity are investi-gated using the load sensing model,and experimental results are compared with theoretical results.The detection chip exhibits excellent microwave characteristic in the 9-11 GHz frequency band,with a return loss less than-10 dB.At a signal fre-quency of 10 GHz,the theoretical sensitivity is 13.8 fF/W,closely matching the measured value of 14.3 fF/W,with a relative error of only 3.5%.These results demonstrate that the proposed load sensing model provides significant theoretical support for the design and performance optimization of MEMS microwave power detection chips.
基金Project supported by the National Natural Science Foundation of China(Grant No.12474440).
文摘This paper proposes a method to generate Bessel-like collimated beams with suppressed side lobes using the flexural vibration modes of a fixed boundary circular plate,which is excited by a longitudinally vibrating transducer in a ring excitation manner.The factors affecting the generation of Bessel-like collimated beams are investigated by theoretical analysis,numerical simulation and experimental methods.The results indicate that Bessel-like wave can be generated by a thin circular plate with fixed boundaries.The third-order mode of the circular plate can be modified to generate a collimated beam with suppressing side lobes when it is excited in a ring excitation manner and the excitation position lies between the first two nodal circles of the plate.As the excitation radius increases,the main lobe width of the resulting Bessel-like collimated beam decreases,the extent of the focusing region increases,and the amplitude of the side lobes initially increases and then decreases.Based on the simulation results,a prototype Bessel-like collimated beam generation system is made and measured experimentally.The experimental results are in good agreement with the numerical results.The Bessel-like collimated beam can be generated by the proposed system,which has potential application in the fields of long-range detection,imaging of highly attenuated materials,and airflow acceleration.
文摘Glue-laminated timber(GLT)is an engineered wood product widely used in mass timber construction for its strong structural and fire-resistant properties.However,the fire performance of GLT varies significantly due to the natural and uncertain phenomena(moisture,exposure time,isotropic,homogenous properties,etc.)of fire and timber.This makes it difficult to predict the fire behaviour of the GLT structural elements.To ensure building safety,it is crucial to assess GLT’s fire behaviour and post-fire structural integrity during the design stages.This study conducted the experimental tests of GLT beams(280 mm×560 mm)without loading(1.4 m)and under a four-point bending load(5.4 m).Tests identified thermal behaviour and charring rates of GLT beam.Then,the residual stiffness of the GLT beam was calculated,and the charring rates of the beams were compared with Australian and European standards.Reliability analysis was conducted for beams for a fire exposure of 120 min,considering the charring rates observed through the analysis and simulating the fire insulations.Results show that the charring rate of GLT made with spruce pine timber varied between 0.43 and 0.81 mm/min,with a mean rate of 0.7 mm/min,aligning with both Australian and European standards.However,considering timber density and moisture content,the charring rates in Australian standards were conservative.The study also found that structural capacity significantly degrades under fire,with a 22%reduction in flexural stiffness after 120 min of exposure.Additionally,GLT beams can safely function for 30 min under 75%of their design moment capacity and for 60 min under 50%capacity.
文摘Electron beam fluorescence technology is an advanced non-contact measurement in rarefied flow fields,and the fluorescence signal intensity is positively correlated with the electron beam current.The ion bombardment secondary emission electron gun is suitable for the technology.To enhance the beam current,COMSOL simulations and analyses were conducted to examine plasma density distribution in the discharge chamber under the effects of various conditions and the electric field distribution between the cathode and the spacer gap.The anode shape and discharge pressure conditions were optimized to increase plasma density.Additionally,an improved spacer structure was designed with the dual purpose of enhancing the electric field distribution between the cathode-spacer gaps and improving vacuum differential effects.This design modification aims to increase the pass rate of secondary electrons.Both simulation and experimental results demonstrated that the performance of the optimized electron gun was effectively enhanced.When the electrode voltage remains constant and the discharge gas pressure is adjusted to around 8 Pa,the maximum beam current was increased from 0.9 mA to 1.6 mA.
基金supported by the National Natural Science Foundation of China (Nos. 12172388 and 12472400)the Guangdong Basic and Applied Basic Research Foundation of China(No. 2025A1515011975)the Scientific Research Project of Guangdong Polytechnic Normal University of China (No. 2023SDKYA010)
文摘The elliptic integral method(EIM) is an efficient analytical approach for analyzing large deformations of elastic beams. However, it faces the following challenges.First, the existing EIM can only handle cases with known deformation modes. Second,the existing EIM is only applicable to Euler beams, and there is no EIM available for higher-precision Timoshenko and Reissner beams in cases where both force and moment are applied at the end. This paper proposes a general EIM for Reissner beams under arbitrary boundary conditions. On this basis, an analytical equation for determining the sign of the elliptic integral is provided. Based on the equation, we discover a class of elliptic integral piecewise points that are distinct from inflection points. More importantly, we propose an algorithm that automatically calculates the number of inflection points and other piecewise points during the nonlinear solution process, which is crucial for beams with unknown or changing deformation modes.
基金Project supported by the National Natural Science Foundation of China(Grant No.62075047)the Natural Science Foundation of Guangxi Zhuang Autonomous Region,China(Grant No.2020GXNSFDA297019)。
文摘Off-axis-rotating elliptical Gaussian beams(Oare GB)oblique incidence in strong nonlocal medium exhibit novel propagation properties.The analytical expressions of semi-axial beam widths,and center-of-mass trajectory equations for transmitting off-axis-rotating elliptical Gaussian beams in strong nonlocal media are obtained using the ABCD transfer matrix method.The study revealed that the trajectory of the mass's center in the cross-section can be controlled by changing the sizes of the Oare GB parameters c,d,ζ,and f.The gradient force of the light field causes the spot region to form a spatial potential well in the media,and this spatial potential well can effectively capture nanoparticles.The particles captured by the light field can move along with the beam,realizing the effective manipulation of the particle trajectory.These laws may be applied to modulating the propagation path of light beams and optical tweezer technology.