Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation,semiconductor,biomedicine,and other key fields due to their excellent material properties.However,traditional machining...Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation,semiconductor,biomedicine,and other key fields due to their excellent material properties.However,traditional machining technologies often struggle to achieve ultra-precision with DMMs resulting from poor surface quality and low processing efficiency.In recent years,field-assisted machining (FAM) technology has emerged as a new generation of machining technology based on innovative principles such as laser heating,tool vibration,magnetic magnetization,and plasma modification,providing a new solution for improving the machinability of DMMs.This technology not only addresses these limitations of traditional machining methods,but also has become a hot topic of research in the domain of ultra-precision machining of DMMs.Many new methods and principles have been introduced and investigated one after another,yet few studies have presented a comprehensive analysis and summarization.To fill this gap and understand the development trend of FAM,this study provides an important overview of FAM,covering different assisted machining methods,application effects,mechanism analysis,and equipment design.The current deficiencies and future challenges of FAM are summarized to lay the foundation for the further development of multi-field hybrid assisted and intelligent FAM technologies.展开更多
Energy field-assisted machining technology has the potential to overcome the limitations of machining difficult-to-machine metal materials,such as poor machinability,low cutting efficiency,and high energy consumption....Energy field-assisted machining technology has the potential to overcome the limitations of machining difficult-to-machine metal materials,such as poor machinability,low cutting efficiency,and high energy consumption.High-speed dry milling has emerged as a typical green processing technology due to its high processing efficiency and avoidance of cutting fluids.However,the lack of necessary cooling and lubrication in high-speed dry milling makes it difficult to meet the continuous milling requirements for difficult-to-machine metal materials.The introduction of advanced energy-field-assisted green processing technology can improve the machinability of such metallic materials and achieve efficient precision manufacturing,making it a focus of academic and industrial research.In this review,the characteristics and limitations of high-speed dry milling of difficult-to-machine metal materials,including titanium alloys,nickel-based alloys,and high-strength steel,are systematically explored.The laser energy field,ultrasonic energy field,and cryogenic minimum quantity lubrication energy fields are introduced.By analyzing the effects of changing the energy field and cutting parameters on tool wear,chip morphology,cutting force,temperature,and surface quality of the workpiece during milling,the superiority of energy-field-assisted milling of difficult-to-machine metal materials is demonstrated.Finally,the shortcomings and technical challenges of energy-field-assisted milling are summarized in detail,providing feasible ideas for realizing multi-energy field collaborative green machining of difficult-to-machine metal materials in the future.展开更多
The substitution of biolubricant for mineral cutting fluids in aerospace material grinding is an inevitable development direction,under the requirements of the worldwide carbon emission strategy.However,serious tool w...The substitution of biolubricant for mineral cutting fluids in aerospace material grinding is an inevitable development direction,under the requirements of the worldwide carbon emission strategy.However,serious tool wear and workpiece damage in difficult-to-machine material grinding challenges the availability of using biolubricants via minimum quantity lubrication.The primary cause for this condition is the unknown and complex influencing mechanisms of the biolubricant physicochemical properties on grindability.In this review,a comparative assessment of grindability is performed using titanium alloy,nickel-based alloy,and high-strength steel.Firstly,this work considers the physicochemical properties as the main factors,and the antifriction and heat dissipation behaviours of biolubricant in a high temperature and pressure interface are comprehensively analysed.Secondly,the comparative assessment of force,temperature,wheel wear and workpiece surface for titanium alloy,nickel-based alloy,and high-strength steel confirms that biolubricant is a potential replacement of traditional cutting fluids because of its improved lubrication and cooling performance.High-viscosity biolubricant and nano-enhancers with high thermal conductivity are recommended for titanium alloy to solve the burn puzzle of the workpiece.Biolubricant with high viscosity and high fatty acid saturation characteristics should be used to overcome the bottleneck of wheel wear and nickel-based alloy surface burn.The nano-enhancers with high hardness and spherical characteristics are better choices.Furthermore,a different option is available for high-strength steel grinding,which needs low-viscosity biolubricant to address the debris breaking difficulty and wheel clogging.Finally,the current challenges and potential methods are proposed to promote the application of biolubricant.展开更多
基金supported by the National Key Research and Development Project of China (Grant No.2023YFB3407200)the National Natural Science Foundation of China (Grant Nos.52225506,52375430,and 52188102)the Program for HUST Academic Frontier Youth Team (Grant No.2019QYTD12)。
文摘Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation,semiconductor,biomedicine,and other key fields due to their excellent material properties.However,traditional machining technologies often struggle to achieve ultra-precision with DMMs resulting from poor surface quality and low processing efficiency.In recent years,field-assisted machining (FAM) technology has emerged as a new generation of machining technology based on innovative principles such as laser heating,tool vibration,magnetic magnetization,and plasma modification,providing a new solution for improving the machinability of DMMs.This technology not only addresses these limitations of traditional machining methods,but also has become a hot topic of research in the domain of ultra-precision machining of DMMs.Many new methods and principles have been introduced and investigated one after another,yet few studies have presented a comprehensive analysis and summarization.To fill this gap and understand the development trend of FAM,this study provides an important overview of FAM,covering different assisted machining methods,application effects,mechanism analysis,and equipment design.The current deficiencies and future challenges of FAM are summarized to lay the foundation for the further development of multi-field hybrid assisted and intelligent FAM technologies.
基金supported by the National Key R&D Program of China(Grant No.2020YFB2010500).
文摘Energy field-assisted machining technology has the potential to overcome the limitations of machining difficult-to-machine metal materials,such as poor machinability,low cutting efficiency,and high energy consumption.High-speed dry milling has emerged as a typical green processing technology due to its high processing efficiency and avoidance of cutting fluids.However,the lack of necessary cooling and lubrication in high-speed dry milling makes it difficult to meet the continuous milling requirements for difficult-to-machine metal materials.The introduction of advanced energy-field-assisted green processing technology can improve the machinability of such metallic materials and achieve efficient precision manufacturing,making it a focus of academic and industrial research.In this review,the characteristics and limitations of high-speed dry milling of difficult-to-machine metal materials,including titanium alloys,nickel-based alloys,and high-strength steel,are systematically explored.The laser energy field,ultrasonic energy field,and cryogenic minimum quantity lubrication energy fields are introduced.By analyzing the effects of changing the energy field and cutting parameters on tool wear,chip morphology,cutting force,temperature,and surface quality of the workpiece during milling,the superiority of energy-field-assisted milling of difficult-to-machine metal materials is demonstrated.Finally,the shortcomings and technical challenges of energy-field-assisted milling are summarized in detail,providing feasible ideas for realizing multi-energy field collaborative green machining of difficult-to-machine metal materials in the future.
基金supported by the National Natural Science Foundation of China (Grant Nos.52105457 and 51975305)the National Key R&D Program of China (Grant No.2020YFB2010500)+2 种基金the Shandong Natural Science Foundation,China (Grant Nos.ZR2020KE027 and ZR2020ME158)the Innovation Talent Supporting Program for Postdoctoral Fellows of Shandong Province,China (Grant No.SDBX2020012)the Major Science and Technology Innovation Engineering Projects of Shandong Province,China (Grant No.2019JZZY020111).
文摘The substitution of biolubricant for mineral cutting fluids in aerospace material grinding is an inevitable development direction,under the requirements of the worldwide carbon emission strategy.However,serious tool wear and workpiece damage in difficult-to-machine material grinding challenges the availability of using biolubricants via minimum quantity lubrication.The primary cause for this condition is the unknown and complex influencing mechanisms of the biolubricant physicochemical properties on grindability.In this review,a comparative assessment of grindability is performed using titanium alloy,nickel-based alloy,and high-strength steel.Firstly,this work considers the physicochemical properties as the main factors,and the antifriction and heat dissipation behaviours of biolubricant in a high temperature and pressure interface are comprehensively analysed.Secondly,the comparative assessment of force,temperature,wheel wear and workpiece surface for titanium alloy,nickel-based alloy,and high-strength steel confirms that biolubricant is a potential replacement of traditional cutting fluids because of its improved lubrication and cooling performance.High-viscosity biolubricant and nano-enhancers with high thermal conductivity are recommended for titanium alloy to solve the burn puzzle of the workpiece.Biolubricant with high viscosity and high fatty acid saturation characteristics should be used to overcome the bottleneck of wheel wear and nickel-based alloy surface burn.The nano-enhancers with high hardness and spherical characteristics are better choices.Furthermore,a different option is available for high-strength steel grinding,which needs low-viscosity biolubricant to address the debris breaking difficulty and wheel clogging.Finally,the current challenges and potential methods are proposed to promote the application of biolubricant.