Signal filtering and differential acquisition are classic yet challenging issues in control engineering.The discrete-time optimal control(DTOC)based on classic tracking differentiator(TD)can effectively extract differ...Signal filtering and differential acquisition are classic yet challenging issues in control engineering.The discrete-time optimal control(DTOC)based on classic tracking differentiator(TD)can effectively extract differentiation signals and filter signals,while eliminating the chattering problem that arises during the discretization of the continuous solution.However,under external disturbance,the convergence mode may change,leading to overshoot and noise amplification.In this paper,a dual-switching strategy is proposed,which can alternate between the base double-integral system and its dual system according to the quadrant of the system’s state.And a novel linearized control law is also introduced,deriving a novel dual-switch tracking differentiator.Further analysis of system convergence and time optimality is provided.Simulation results show that the application of this dual-switching strategy notably reduces overshoot in both tracking and differential signals while enhancing noise filtering performance.Moreover,experiments conducted on a permanent magnet synchronous motor(PMSM)platform,where the proposed TD acts as a filter in the speed feedback loop,demonstrate that the standard deviation between the reference speed and the target speed(at a constant speed of 378 r/min)decreased from 5.63 r/min to 4.93 r/min,compared to the moving average algorithm.展开更多
Differential signals are key in control engineering as they anticipate future behavior of process variables and therefore are critical in formulating control laws such as proportional-integral-derivative(PID).The prac...Differential signals are key in control engineering as they anticipate future behavior of process variables and therefore are critical in formulating control laws such as proportional-integral-derivative(PID).The practical challenge,however,is to extract such signals from noisy measurements and this difficulty is addressed first by J.Han in the form of linear and nonlinear tracking differentiator(TD).While improvements were made,TD did not completely resolve the conflict between the noise sensitivity and the accuracy and timeliness of the differentiation.The two approaches proposed in this paper start with the basic linear TD,but apply iterative learning mechanism to the historical data in a moving window(MW),to form two new iterative learning tracking differentiators(IL-TD):one is a parallel IL-TD using an iterative ladder network structure which is implementable in analog circuits;the other a serial IL-TD which is implementable digitally on any computer platform.Both algorithms are validated in simulations which show that the proposed two IL-TDs have better tracking differentiation and de-noise performance compared to the existing linear TD.展开更多
A novel adaptive neural control strategy is exploited for the longitudinal dynamics of a generic flexible air-breathing hypersonic vehicle(FAHV).By utilizing functional decomposition method, the dynamics of FAHV is ...A novel adaptive neural control strategy is exploited for the longitudinal dynamics of a generic flexible air-breathing hypersonic vehicle(FAHV).By utilizing functional decomposition method, the dynamics of FAHV is decomposed into the velocity subsystem and the altitude subsystem.For each subsystem, only one neural network is employed for the unknown function approximation.To further reduce the computational burden, minimal-learning parameter(MLP)technology is used to estimate the norm of ideal weight vectors rather than their elements.By introducing sliding mode differentiator(SMD) to estimate the newly defined variables, there is no need for the strict-feedback form and virtual controller.Hence the developed control law is considerably simpler than the ones derived from back-stepping scheme.Finally, simulation studies are made to illustrate the effectiveness of the proposed control approach in spite of the flexible effects, system uncertainties and varying disturbances.展开更多
The perfectly matched layer(PML) was first introduced by Berenger as an absorbing boundary condition for electromagnetic wave propagation.In this article,a method is developed to ex-tend the PML to simulating seismi...The perfectly matched layer(PML) was first introduced by Berenger as an absorbing boundary condition for electromagnetic wave propagation.In this article,a method is developed to ex-tend the PML to simulating seismic wave propagation in fluid-saturated porous medium.This non-physical boundary is used at the computational edge of a Forsyte polynomial convolutional differenti-ator(FPCD) algorithm as an absorbing boundary condition to truncate unbounded media.The incor-poration of PML in Biot's equations is given.Numerical results show that the PML absorbing bound-ary condition attenuates the outgoing waves effectively and eliminates the reflections adequately.展开更多
Since the quadruped robot possesses predominant environmental adaptability,it is expected to be employed in nature environments. In some situations,such as ice surface and tight space,the quadruped robot is required t...Since the quadruped robot possesses predominant environmental adaptability,it is expected to be employed in nature environments. In some situations,such as ice surface and tight space,the quadruped robot is required to lower the height of center of gravity( COG) to enhance the stability and maneuverability. To properly handle these situations,a quadruped controller based on the central pattern generator( CPG) model,the discrete tracking differentiator( TD) and proportional-derivative( PD) sub-controllers is presented. The CPG is used to generate basic rhythmic motion for the quadruped robot. The discrete TD is not only creatively employed to implement the transition between two different rhythmic medium values of the CPG which results in the adjustment of the height of COG of the quadruped robot,but also modified to control the transition duration which enables the quadruped robot to achieve the stable transition. Additionally,two specific PD sub-controllers are constructed to adjust the oscillation amplitude of the CPG,so as to avoid the severe deviation in the transverse direction during transition locomotion. Finally,the controller is validated on a quadruped model. A tunnel with variable height is built for the quadruped model to travel through. The simulation demonstrates the severe deviation without the PD sub-controllers,and the reduced deviation with the PD sub-controllers.展开更多
A new non-inverting RC active differentiator network base on a current feedback amplifier and using a grounded capacitor is described. Small time constant can be achieved by adjusting a single grounded resistor. Becau...A new non-inverting RC active differentiator network base on a current feedback amplifier and using a grounded capacitor is described. Small time constant can be achieved by adjusting a single grounded resistor. Because the output impedance of the CFA is very low, the output terminal of the proposed circuit can be directly connected to the next stage. Experimental results that confirm theoretical analysis are presented.展开更多
In this paper, the principle techinique of the differentiator method, and some examples using the method to obtain the general solution and special solution of the differential equation are introduced. The essential d...In this paper, the principle techinique of the differentiator method, and some examples using the method to obtain the general solution and special solution of the differential equation are introduced. The essential difference between this method and the others is that by this method special and general solutions can be obtained directly with the operations of the differentor in the differential equation and without the enlightenment of other scientific knowledge.展开更多
We theoretically propose a multifunctional photonic differentiation (DIFF) scheme based on phase demodulation using two cascaded linear filters. The photonic D1FF has a diversity of output forms, such as the 1 st or...We theoretically propose a multifunctional photonic differentiation (DIFF) scheme based on phase demodulation using two cascaded linear filters. The photonic D1FF has a diversity of output forms, such as the 1 st order intensity DIFF, the 1 st order field DIFF and its inversion, and the 2nd-order field DIFF, depending on the relative shift between the optical carrier and the filter's resonant notches. As a proof, we also experimentally demonstrate the DIFF diversity using a phase modulator and two delay interferometers (Dis). The calculated average deviation is less than 7% for all DIFF waveforms. Our schemes show the advantages of flexible DIFF functions and forms, which may have different optical applications. For example, high order field differentiators can be used to generate complex temporal waveforms, and intensity differentiators are useful for the ultra-wideband pulse generation.展开更多
This paper applies the convolutional differentiator method, based on generalized Forsyte orthogonal polynomial (CFPD), to simulate the seismic wave propagation in two-phase media. From the numerical results we can s...This paper applies the convolutional differentiator method, based on generalized Forsyte orthogonal polynomial (CFPD), to simulate the seismic wave propagation in two-phase media. From the numerical results we can see that three types of waves, fast P-waves, S-waves and slow P-waves, can be observed in the seismic wave field. The experiments on anisotropic models demonstrate that the wavefront is elliptic instead of circular and S-wave splitting occurs in anisotropic two-phase media. The research has confirmed that the rules of elastic wave propagation in fluid-saturated porous media are controlled by Biot's theory. Experiment on a layered fault model shows the wavefield generated by the interface and the fault very well, indicating the effectiveness of CFPD method on the wavefield modeling for real layered media in the Earth. This research has potential applications to the investigation of Earth's deep structure and oil/gas exploration.展开更多
Safety automation of complex mobile systems is a current topic issue in industry and research laboratories,especially in aeronautics.The dynamic models of these systems are nonlinear,Multi-Input Multi-Output(MIMO)and ...Safety automation of complex mobile systems is a current topic issue in industry and research laboratories,especially in aeronautics.The dynamic models of these systems are nonlinear,Multi-Input Multi-Output(MIMO)and tightly coupled.The nonlinearity resides in the dynamic equations and also in the aerodynamic coefficients’variability.This paper is devoted to developing the piloting law based on the combination of the robust differentiator with a dynamic adaptation of the gains and the robust controller via second order sliding mode,by using an aircraft in virtual simulated environments.To deal with the design of an autopilot controller,we propose an environment framework based on a Software In the Loop(SIL)methodology and we use Microsoft Flight Simulator(FS-2004)as the environment for plane simulation.The first order sliding mode control may be an appropriate solution to this piloting problem.However,its implementation generates a chattering phenomenon and a singularity problem.To overcome these problems,a new version of the adaptive differentiators for second order sliding modes is proposed and used for piloting.For the sliding mode algorithm,higher gains values may be used to improve accuracy;however this leads to an amplification of noise in the estimated signals.A good tradeoff between these two criteria(accuracy,robustness to noise ratio)is difficult to achieve.On the one hand,these values must increase the gains in order to derive a signal sweeping of some frequency ranges.On the other hand,low gains values have to be imposed to reduce noise amplification.So,our goal is to develop a differentiation algorithm in order to have a good compromise between error and robustness to noise ratio.To fit this requirement,a new version of differentiators with a higher order sliding modes and a dynamic adaptation of the gains,is proposed:the first order differentiator for the control of longitudinal speed and the second order differentiator for the control of the Euler angles.展开更多
A modified tracking differentiator is proposed. Firstly, a nonlinear odd exponent continuous function is adopted which is only stable at one equilibrium point and proved the global asymptotic stability of the modified...A modified tracking differentiator is proposed. Firstly, a nonlinear odd exponent continuous function is adopted which is only stable at one equilibrium point and proved the global asymptotic stability of the modified tracking differentiator by select a Lyapunov function. Through combining of the nonlinear and linear function properly, it can be sure that the state converges to the equilibrium point with high speed automatically no matter that the state was far away from the equilibrium point or near to it, and it can prevent the chattering.?Simulation results show that the modified tracking differentiator tracking results?are?superior to the classical nonlinear tracking differentiator, and the response?of state variables tracking differentiator estimated?is?almost coincide with the real state of the variables of the given system.展开更多
A new current feedback amplifier (CFA) based dual-input differentiator (DID) design with grounded capacitor is presented;its time constant (τo) is independently tunable by a single resistor. The proposed circuit yiel...A new current feedback amplifier (CFA) based dual-input differentiator (DID) design with grounded capacitor is presented;its time constant (τo) is independently tunable by a single resistor. The proposed circuit yields a true DID function with ideal CFA devices. Analysis with nonideal devices having parasitic capacitance (Cp) shows extremely low but finite phase error (θe);suitable design θe could be minimized significantly. The design is practically active-insensitive relative to port mismatch errors (ε) of the active element. An allpass phase shifter circuit implementation is derived with slight modification of the differentiator. Satisfactory experimental results had been verified on typical wave processing and phase-selective filter design applications.展开更多
In this paper, we experimentally demonstrate an all-optical continuously tunable fractional-order differentiator using on-chip cascaded electrically tuned microring resonators (MRRs). By changing the voltage applied...In this paper, we experimentally demonstrate an all-optical continuously tunable fractional-order differentiator using on-chip cascaded electrically tuned microring resonators (MRRs). By changing the voltage applied on a MRR, the phase shift at the resonance frequency of the MRR varies, which can be used to implement tunable fractional-order differentiator. Hence fractional-order differentiator with a larger ttmable range can be obtained by cascading more MRR units on a single chip. In the experiment, we applied two direct current voltage sources on two cascaded MRRs respectively, and a tunable order range of 0.57 to 2 have been demonstrated with Gaussian pulse injection, which is the largest tuning range to our knowledge.展开更多
This paper deals with Mckean-Vlasov backward stochastic differential equations with weak monotonicity coefficients.We first establish the existence and uniqueness of solutions to Mckean-Vlasov backward stochastic diff...This paper deals with Mckean-Vlasov backward stochastic differential equations with weak monotonicity coefficients.We first establish the existence and uniqueness of solutions to Mckean-Vlasov backward stochastic differential equations.Then we obtain a comparison theorem in one-dimensional situation.展开更多
We present a voltage reference using a wide-band cascaded current mode differentiator, for the improved PSRR performance. Compared with the conventional references, the reference with the technique is mainly character...We present a voltage reference using a wide-band cascaded current mode differentiator, for the improved PSRR performance. Compared with the conventional references, the reference with the technique is mainly characterized by a two cascaded stages current mode signal differentiator. In the differentiator, a zero OTA G_m is proposed, to achieve the wide-band differential characteristic. With the technique, the PSRR beyond the pole's corresponding frequency can be significantly improved with the minimum supply voltage only about V_(GS_PMOS) +(V_(GS_NMOS-VTH)). Fabricated with a 0.18 μm CMOS process, with the 0.9 V supply voltage, the PSRR @ 20 MHz of the reference is achieved at-54 dB. Moreover, the power dissipation is 19 μW.展开更多
An all-optical temporal fractional order differentiator with ultrabroad bandwidth (-1.6 THz) and extremely simple fabrication is proposed and experimentally demonstrated based on an in-fiber ellipsoidal air-microcav...An all-optical temporal fractional order differentiator with ultrabroad bandwidth (-1.6 THz) and extremely simple fabrication is proposed and experimentally demonstrated based on an in-fiber ellipsoidal air-microcavity. The ellipsoidal air-microcavity is fabricated by splicing a single mode fiber (SMF) and a photonic crystal fiber (PCF) together using a simple arc-discharging technology. By changing the arc-discharging times, the propagation loss can be adjusted and then the differentiation order is tuned. A nearly Gaussian-like optical pulse with 3 dB bandwidth of 8 nm is launched into the differentiator and a 0.65 order differentiation of the input pulse is achieved with a processing error of 2.55%.展开更多
We design and demonstrate an all-optical temporal differentiator based on a simple Moire fiber grating operated in reflection. The simulation results prove that a single Moire fiber grating with only one π-phase shif...We design and demonstrate an all-optical temporal differentiator based on a simple Moire fiber grating operated in reflection. The simulation results prove that a single Moire fiber grating with only one π-phase shifted point can act as the first-order temporal differentiator and that a Moire fiber grating incorporating two symmetrical π-phase shifted points can act as the second-order temporal differentiator. A practical Moire fiber grating is fabricated, thereby proving that such a grating can act as the first-order temporal differentiator. Our results verify the feasibility, flexibility, and accuracy of the proposed method.展开更多
An all-optical second-order temporal differen- tiator using a mechanically-induced long-period fiber grating (MI-LPFG) with a single n-shift was demonstrated. The MI-LPFG was created by pressing a fiber between two ...An all-optical second-order temporal differen- tiator using a mechanically-induced long-period fiber grating (MI-LPFG) with a single n-shift was demonstrated. The MI-LPFG was created by pressing a fiber between two periodically grooved plates with a n-shift located at the 3/4 length from the input end of LPFG. The coupling coefficient (x) can be adjusted by changing the pressure applied on the fiber. The experimental results show that the transfer function of the proposed MI-LPFG can be adjusted to have a transfer function as an ideal second-order differentiator. The differential performance of the designed differentiator to a Gaussian pulse is also analyzed.展开更多
BACKGROUND The treatment technology of liver cancer is progressing.In addition to traditional surgical resection,combined therapies of immunotherapy based on immune checkpoint inhibitors,chemotherapy,and transcatheter...BACKGROUND The treatment technology of liver cancer is progressing.In addition to traditional surgical resection,combined therapies of immunotherapy based on immune checkpoint inhibitors,chemotherapy,and transcatheter arterial chemoembolization for hepatocellular carcinoma are more and more widely used.Accurate preoperative diagnosis of liver cancer will provide important information for comprehensive treatment and prognosis evaluation of liver cancer.Sonazoidcontrast-enhanced ultrasound is not only helpful for the qualitative diagnosis of liver lesions,but also has great potential in the diagnosis of histological differentiation of liver cancer.AIM To assess the differentiation of hepatocellular carcinoma(HCC)by utilizing the parameters and imaging features of Sonazoid-contrast-enhanced ultrasound(CEUS).METHODS A retrospective analysis was conducted on the CEUS data of 239 lesions through case-control study.These patients received Sonazoid-CEUS within one week before surgery and were confirmed as HCC by postoperative pathology.Within the cases,patients were further categorized into well-differentiated and poorlydifferentiated group.Time-intensity curves of the region of interest in both arterial and Kupffer phases were generated,allowing for the acquisition of quantitative parameters to assess the diagnostic efficacy in distinguishing lesions between these two groups and determining an appropriate cut-off value.RESULTS Univariate analysis showed that the absolute value of enhancement intensity(EIAV),intensity ratio(IR)and intensity difference(ID)in Kupffer phase were statistically different between the groups with different degree(P=0.015,P=0.000,P=0.000).The sensitivity and specificity were 40.2%,82.4%,80.4% and 78.1%,86.9% and 74.5%,respectively,for differentiating HCC lesions with EIAV≥56.384 dB,IR≥1.215 and ID≥9.184 dB.The area under the receiver operating characteristic curve were 0.590,0.877,0.815.There was no significant difference in the parameters of arterial phase,including peak time,initial growth time,rise time and the absolute value of peak intensity of lesions between the two groups(P>0.05).Multivariate analysis showed that the level of alphafetoprotein(AFP)and IR were risk factors for poor differentiation(P=0.001).CONCLUSION Among the parameters of Sonazoid-CEUS,IR in Kupffer phase exhibits superior diagnostic efficacy with high sensitivity and specificity in the diagnose of pathological differentiation of HCC.Combined with preoperative AFP level,a more accurate diagnosis will be obtained.Compared with portal vein phase,Kupffer phase showed the ability to identify HCC lesions more sensitive.These findings hold significant guiding implications and reference value for clinical practice.展开更多
Stem cell proliferation is tightly regulated in developing and adult tissues through the coordinated action of cell-intrinsic and extracellular signals.Although many extracellular cues were identified,the cell-intrins...Stem cell proliferation is tightly regulated in developing and adult tissues through the coordinated action of cell-intrinsic and extracellular signals.Although many extracellular cues were identified,the cell-intrinsic mechanisms underlying the decision of a stem cell to proliferate,enter a dormant quiescent state or differentiate into a specific cell type remains incompletely understood.展开更多
基金Project(QZKFKT2023-012)supported by the State Key Laboratory of Heavy-duty and Express High-power Electric Locomotive,China。
文摘Signal filtering and differential acquisition are classic yet challenging issues in control engineering.The discrete-time optimal control(DTOC)based on classic tracking differentiator(TD)can effectively extract differentiation signals and filter signals,while eliminating the chattering problem that arises during the discretization of the continuous solution.However,under external disturbance,the convergence mode may change,leading to overshoot and noise amplification.In this paper,a dual-switching strategy is proposed,which can alternate between the base double-integral system and its dual system according to the quadrant of the system’s state.And a novel linearized control law is also introduced,deriving a novel dual-switch tracking differentiator.Further analysis of system convergence and time optimality is provided.Simulation results show that the application of this dual-switching strategy notably reduces overshoot in both tracking and differential signals while enhancing noise filtering performance.Moreover,experiments conducted on a permanent magnet synchronous motor(PMSM)platform,where the proposed TD acts as a filter in the speed feedback loop,demonstrate that the standard deviation between the reference speed and the target speed(at a constant speed of 378 r/min)decreased from 5.63 r/min to 4.93 r/min,compared to the moving average algorithm.
基金supported by National Natural Science Foundation of China(61773170,62173151)the Natural Science Foundation of Guangdong Province(2023A1515010949,2021A1515011850).
文摘Differential signals are key in control engineering as they anticipate future behavior of process variables and therefore are critical in formulating control laws such as proportional-integral-derivative(PID).The practical challenge,however,is to extract such signals from noisy measurements and this difficulty is addressed first by J.Han in the form of linear and nonlinear tracking differentiator(TD).While improvements were made,TD did not completely resolve the conflict between the noise sensitivity and the accuracy and timeliness of the differentiation.The two approaches proposed in this paper start with the basic linear TD,but apply iterative learning mechanism to the historical data in a moving window(MW),to form two new iterative learning tracking differentiators(IL-TD):one is a parallel IL-TD using an iterative ladder network structure which is implementable in analog circuits;the other a serial IL-TD which is implementable digitally on any computer platform.Both algorithms are validated in simulations which show that the proposed two IL-TDs have better tracking differentiation and de-noise performance compared to the existing linear TD.
基金supported by the Aeronautical Science Foundation of China (No.20130196004)
文摘A novel adaptive neural control strategy is exploited for the longitudinal dynamics of a generic flexible air-breathing hypersonic vehicle(FAHV).By utilizing functional decomposition method, the dynamics of FAHV is decomposed into the velocity subsystem and the altitude subsystem.For each subsystem, only one neural network is employed for the unknown function approximation.To further reduce the computational burden, minimal-learning parameter(MLP)technology is used to estimate the norm of ideal weight vectors rather than their elements.By introducing sliding mode differentiator(SMD) to estimate the newly defined variables, there is no need for the strict-feedback form and virtual controller.Hence the developed control law is considerably simpler than the ones derived from back-stepping scheme.Finally, simulation studies are made to illustrate the effectiveness of the proposed control approach in spite of the flexible effects, system uncertainties and varying disturbances.
基金supported by the National Natural ScienceFoundation of China (No. 40804008)
文摘The perfectly matched layer(PML) was first introduced by Berenger as an absorbing boundary condition for electromagnetic wave propagation.In this article,a method is developed to ex-tend the PML to simulating seismic wave propagation in fluid-saturated porous medium.This non-physical boundary is used at the computational edge of a Forsyte polynomial convolutional differenti-ator(FPCD) algorithm as an absorbing boundary condition to truncate unbounded media.The incor-poration of PML in Biot's equations is given.Numerical results show that the PML absorbing bound-ary condition attenuates the outgoing waves effectively and eliminates the reflections adequately.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61375101)
文摘Since the quadruped robot possesses predominant environmental adaptability,it is expected to be employed in nature environments. In some situations,such as ice surface and tight space,the quadruped robot is required to lower the height of center of gravity( COG) to enhance the stability and maneuverability. To properly handle these situations,a quadruped controller based on the central pattern generator( CPG) model,the discrete tracking differentiator( TD) and proportional-derivative( PD) sub-controllers is presented. The CPG is used to generate basic rhythmic motion for the quadruped robot. The discrete TD is not only creatively employed to implement the transition between two different rhythmic medium values of the CPG which results in the adjustment of the height of COG of the quadruped robot,but also modified to control the transition duration which enables the quadruped robot to achieve the stable transition. Additionally,two specific PD sub-controllers are constructed to adjust the oscillation amplitude of the CPG,so as to avoid the severe deviation in the transverse direction during transition locomotion. Finally,the controller is validated on a quadruped model. A tunnel with variable height is built for the quadruped model to travel through. The simulation demonstrates the severe deviation without the PD sub-controllers,and the reduced deviation with the PD sub-controllers.
文摘A new non-inverting RC active differentiator network base on a current feedback amplifier and using a grounded capacitor is described. Small time constant can be achieved by adjusting a single grounded resistor. Because the output impedance of the CFA is very low, the output terminal of the proposed circuit can be directly connected to the next stage. Experimental results that confirm theoretical analysis are presented.
文摘In this paper, the principle techinique of the differentiator method, and some examples using the method to obtain the general solution and special solution of the differential equation are introduced. The essential difference between this method and the others is that by this method special and general solutions can be obtained directly with the operations of the differentor in the differential equation and without the enlightenment of other scientific knowledge.
基金Project supported by the National Basic Research Program of China(Grant No.2011CB301704)the Program for New Century Excellent Talents in Universities of China(Grant No.NCET-11-0168)+1 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.201139)the National Natural Science Foundation of China(Grant Nos.60901006 and 11174096)
文摘We theoretically propose a multifunctional photonic differentiation (DIFF) scheme based on phase demodulation using two cascaded linear filters. The photonic D1FF has a diversity of output forms, such as the 1 st order intensity DIFF, the 1 st order field DIFF and its inversion, and the 2nd-order field DIFF, depending on the relative shift between the optical carrier and the filter's resonant notches. As a proof, we also experimentally demonstrate the DIFF diversity using a phase modulator and two delay interferometers (Dis). The calculated average deviation is less than 7% for all DIFF waveforms. Our schemes show the advantages of flexible DIFF functions and forms, which may have different optical applications. For example, high order field differentiators can be used to generate complex temporal waveforms, and intensity differentiators are useful for the ultra-wideband pulse generation.
基金supported by the National Natural Science Foundation of China(Grant No.40874045)Special Funds for Sciences and Technology Research of Public Welfare Trades(Grant Nos. 200811021 and 201011042)
文摘This paper applies the convolutional differentiator method, based on generalized Forsyte orthogonal polynomial (CFPD), to simulate the seismic wave propagation in two-phase media. From the numerical results we can see that three types of waves, fast P-waves, S-waves and slow P-waves, can be observed in the seismic wave field. The experiments on anisotropic models demonstrate that the wavefront is elliptic instead of circular and S-wave splitting occurs in anisotropic two-phase media. The research has confirmed that the rules of elastic wave propagation in fluid-saturated porous media are controlled by Biot's theory. Experiment on a layered fault model shows the wavefield generated by the interface and the fault very well, indicating the effectiveness of CFPD method on the wavefield modeling for real layered media in the Earth. This research has potential applications to the investigation of Earth's deep structure and oil/gas exploration.
文摘Safety automation of complex mobile systems is a current topic issue in industry and research laboratories,especially in aeronautics.The dynamic models of these systems are nonlinear,Multi-Input Multi-Output(MIMO)and tightly coupled.The nonlinearity resides in the dynamic equations and also in the aerodynamic coefficients’variability.This paper is devoted to developing the piloting law based on the combination of the robust differentiator with a dynamic adaptation of the gains and the robust controller via second order sliding mode,by using an aircraft in virtual simulated environments.To deal with the design of an autopilot controller,we propose an environment framework based on a Software In the Loop(SIL)methodology and we use Microsoft Flight Simulator(FS-2004)as the environment for plane simulation.The first order sliding mode control may be an appropriate solution to this piloting problem.However,its implementation generates a chattering phenomenon and a singularity problem.To overcome these problems,a new version of the adaptive differentiators for second order sliding modes is proposed and used for piloting.For the sliding mode algorithm,higher gains values may be used to improve accuracy;however this leads to an amplification of noise in the estimated signals.A good tradeoff between these two criteria(accuracy,robustness to noise ratio)is difficult to achieve.On the one hand,these values must increase the gains in order to derive a signal sweeping of some frequency ranges.On the other hand,low gains values have to be imposed to reduce noise amplification.So,our goal is to develop a differentiation algorithm in order to have a good compromise between error and robustness to noise ratio.To fit this requirement,a new version of differentiators with a higher order sliding modes and a dynamic adaptation of the gains,is proposed:the first order differentiator for the control of longitudinal speed and the second order differentiator for the control of the Euler angles.
文摘A modified tracking differentiator is proposed. Firstly, a nonlinear odd exponent continuous function is adopted which is only stable at one equilibrium point and proved the global asymptotic stability of the modified tracking differentiator by select a Lyapunov function. Through combining of the nonlinear and linear function properly, it can be sure that the state converges to the equilibrium point with high speed automatically no matter that the state was far away from the equilibrium point or near to it, and it can prevent the chattering.?Simulation results show that the modified tracking differentiator tracking results?are?superior to the classical nonlinear tracking differentiator, and the response?of state variables tracking differentiator estimated?is?almost coincide with the real state of the variables of the given system.
文摘A new current feedback amplifier (CFA) based dual-input differentiator (DID) design with grounded capacitor is presented;its time constant (τo) is independently tunable by a single resistor. The proposed circuit yields a true DID function with ideal CFA devices. Analysis with nonideal devices having parasitic capacitance (Cp) shows extremely low but finite phase error (θe);suitable design θe could be minimized significantly. The design is practically active-insensitive relative to port mismatch errors (ε) of the active element. An allpass phase shifter circuit implementation is derived with slight modification of the differentiator. Satisfactory experimental results had been verified on typical wave processing and phase-selective filter design applications.
基金Acknowledgements This work was partially supported by the National Basic Research Program of China (No. 2011CB301704), the Program for New Century Excellent Talents in Ministry of Education of China (No. NCET-11-0168), and the National Natural Science Foundation of China (Grant Nos. 11174096 and 61475052).
文摘In this paper, we experimentally demonstrate an all-optical continuously tunable fractional-order differentiator using on-chip cascaded electrically tuned microring resonators (MRRs). By changing the voltage applied on a MRR, the phase shift at the resonance frequency of the MRR varies, which can be used to implement tunable fractional-order differentiator. Hence fractional-order differentiator with a larger ttmable range can be obtained by cascading more MRR units on a single chip. In the experiment, we applied two direct current voltage sources on two cascaded MRRs respectively, and a tunable order range of 0.57 to 2 have been demonstrated with Gaussian pulse injection, which is the largest tuning range to our knowledge.
基金Supported by the National Natural Science Foundation of China(12001074)the Research Innovation Program of Graduate Students in Hunan Province(CX20220258)+1 种基金the Research Innovation Program of Graduate Students of Central South University(1053320214147)the Key Scientific Research Project of Higher Education Institutions in Henan Province(25B110025)。
文摘This paper deals with Mckean-Vlasov backward stochastic differential equations with weak monotonicity coefficients.We first establish the existence and uniqueness of solutions to Mckean-Vlasov backward stochastic differential equations.Then we obtain a comparison theorem in one-dimensional situation.
基金Project supported by the National Natural Science Foundation of China(No.61501122)
文摘We present a voltage reference using a wide-band cascaded current mode differentiator, for the improved PSRR performance. Compared with the conventional references, the reference with the technique is mainly characterized by a two cascaded stages current mode signal differentiator. In the differentiator, a zero OTA G_m is proposed, to achieve the wide-band differential characteristic. With the technique, the PSRR beyond the pole's corresponding frequency can be significantly improved with the minimum supply voltage only about V_(GS_PMOS) +(V_(GS_NMOS-VTH)). Fabricated with a 0.18 μm CMOS process, with the 0.9 V supply voltage, the PSRR @ 20 MHz of the reference is achieved at-54 dB. Moreover, the power dissipation is 19 μW.
基金Project supported by the the National Natural Science Foundation of China(Nos.61522509,61377002,61535012)the National HighTech Research&Development Program of China(No.SS2015AA011002)+1 种基金the Beijing Natural Science Foundation(No.4152052)supported in part by the Thousand Young Talent Program
文摘An all-optical temporal fractional order differentiator with ultrabroad bandwidth (-1.6 THz) and extremely simple fabrication is proposed and experimentally demonstrated based on an in-fiber ellipsoidal air-microcavity. The ellipsoidal air-microcavity is fabricated by splicing a single mode fiber (SMF) and a photonic crystal fiber (PCF) together using a simple arc-discharging technology. By changing the arc-discharging times, the propagation loss can be adjusted and then the differentiation order is tuned. A nearly Gaussian-like optical pulse with 3 dB bandwidth of 8 nm is launched into the differentiator and a 0.65 order differentiation of the input pulse is achieved with a processing error of 2.55%.
基金supported by the National Natural Science Foundation of China (No. 60871067)the National Natural Science Association Foundation of China (No. 11076028)the Projects of Science and Technology Commission of Shanghai Municipality (No.08DZ2230400)
文摘We design and demonstrate an all-optical temporal differentiator based on a simple Moire fiber grating operated in reflection. The simulation results prove that a single Moire fiber grating with only one π-phase shifted point can act as the first-order temporal differentiator and that a Moire fiber grating incorporating two symmetrical π-phase shifted points can act as the second-order temporal differentiator. A practical Moire fiber grating is fabricated, thereby proving that such a grating can act as the first-order temporal differentiator. Our results verify the feasibility, flexibility, and accuracy of the proposed method.
文摘An all-optical second-order temporal differen- tiator using a mechanically-induced long-period fiber grating (MI-LPFG) with a single n-shift was demonstrated. The MI-LPFG was created by pressing a fiber between two periodically grooved plates with a n-shift located at the 3/4 length from the input end of LPFG. The coupling coefficient (x) can be adjusted by changing the pressure applied on the fiber. The experimental results show that the transfer function of the proposed MI-LPFG can be adjusted to have a transfer function as an ideal second-order differentiator. The differential performance of the designed differentiator to a Gaussian pulse is also analyzed.
文摘BACKGROUND The treatment technology of liver cancer is progressing.In addition to traditional surgical resection,combined therapies of immunotherapy based on immune checkpoint inhibitors,chemotherapy,and transcatheter arterial chemoembolization for hepatocellular carcinoma are more and more widely used.Accurate preoperative diagnosis of liver cancer will provide important information for comprehensive treatment and prognosis evaluation of liver cancer.Sonazoidcontrast-enhanced ultrasound is not only helpful for the qualitative diagnosis of liver lesions,but also has great potential in the diagnosis of histological differentiation of liver cancer.AIM To assess the differentiation of hepatocellular carcinoma(HCC)by utilizing the parameters and imaging features of Sonazoid-contrast-enhanced ultrasound(CEUS).METHODS A retrospective analysis was conducted on the CEUS data of 239 lesions through case-control study.These patients received Sonazoid-CEUS within one week before surgery and were confirmed as HCC by postoperative pathology.Within the cases,patients were further categorized into well-differentiated and poorlydifferentiated group.Time-intensity curves of the region of interest in both arterial and Kupffer phases were generated,allowing for the acquisition of quantitative parameters to assess the diagnostic efficacy in distinguishing lesions between these two groups and determining an appropriate cut-off value.RESULTS Univariate analysis showed that the absolute value of enhancement intensity(EIAV),intensity ratio(IR)and intensity difference(ID)in Kupffer phase were statistically different between the groups with different degree(P=0.015,P=0.000,P=0.000).The sensitivity and specificity were 40.2%,82.4%,80.4% and 78.1%,86.9% and 74.5%,respectively,for differentiating HCC lesions with EIAV≥56.384 dB,IR≥1.215 and ID≥9.184 dB.The area under the receiver operating characteristic curve were 0.590,0.877,0.815.There was no significant difference in the parameters of arterial phase,including peak time,initial growth time,rise time and the absolute value of peak intensity of lesions between the two groups(P>0.05).Multivariate analysis showed that the level of alphafetoprotein(AFP)and IR were risk factors for poor differentiation(P=0.001).CONCLUSION Among the parameters of Sonazoid-CEUS,IR in Kupffer phase exhibits superior diagnostic efficacy with high sensitivity and specificity in the diagnose of pathological differentiation of HCC.Combined with preoperative AFP level,a more accurate diagnosis will be obtained.Compared with portal vein phase,Kupffer phase showed the ability to identify HCC lesions more sensitive.These findings hold significant guiding implications and reference value for clinical practice.
基金supported by the Argentine Agency for the Promotion of Science and Technology ANPCyT(PICT2019-1472 to GP,PICT2019-4597 to FL,PICT2020-1524 to GP,and PICT2021-00627 to FL)supported by an Independent Career Position from CONICETsupported by a postdoctoral fellowship from ANPCyT。
文摘Stem cell proliferation is tightly regulated in developing and adult tissues through the coordinated action of cell-intrinsic and extracellular signals.Although many extracellular cues were identified,the cell-intrinsic mechanisms underlying the decision of a stem cell to proliferate,enter a dormant quiescent state or differentiate into a specific cell type remains incompletely understood.