We obtain several estimates of the essential norms of the products of differen- tiation operators and weighted composition operators between weighted Banach spaces of analytic functions with general weights. As applic...We obtain several estimates of the essential norms of the products of differen- tiation operators and weighted composition operators between weighted Banach spaces of analytic functions with general weights. As applications, we also give estimates of the es- sential norms of weighted composition operators between weighted Banach space of analytic functions and Bloch-type spaces.展开更多
We characterize boundedness and compactness of products of differentiation op- erators and weighted composition operators between weighted Banach spaces of analytic functions and weighted Zygmund spaces or weighted Bl...We characterize boundedness and compactness of products of differentiation op- erators and weighted composition operators between weighted Banach spaces of analytic functions and weighted Zygmund spaces or weighted Bloch spaces with general weights.展开更多
The boundness and compactness of products of multiplication,composition and differentiation on weighted Bergman spaces in the unit ball are studied.We define the differentiation operator on the space of holomorphic fu...The boundness and compactness of products of multiplication,composition and differentiation on weighted Bergman spaces in the unit ball are studied.We define the differentiation operator on the space of holomorphic functions in the unit ball by radial derivative.Then we extend the Sharma's results.展开更多
In this paper,we give a complete characterization of all self-adjoint domains of odd order differential operators on two intervals.These two intervals with all four endpoints are singular(one endpoint of each interval...In this paper,we give a complete characterization of all self-adjoint domains of odd order differential operators on two intervals.These two intervals with all four endpoints are singular(one endpoint of each interval is singular or all four endpoints are regulars are the special cases).And these extensions yield"new"self-adjoint operators,which involve interactions between the two intervals.展开更多
We study the boundedness and compactness of the weighted composition followed and proceeded by differentiation operators from Q_k(p,q)space to weighted α-Bloch space and little weighted α-Bloch space.Some necessar...We study the boundedness and compactness of the weighted composition followed and proceeded by differentiation operators from Q_k(p,q)space to weighted α-Bloch space and little weighted α-Bloch space.Some necessary and sufficient conditions for the boundedness and compactness of these operators are given.展开更多
Fractional discrete systems can enable the modeling and control of the complicated processes more adaptable through the concept of versatility by providing systemdynamics’descriptions withmore degrees of freedom.Nume...Fractional discrete systems can enable the modeling and control of the complicated processes more adaptable through the concept of versatility by providing systemdynamics’descriptions withmore degrees of freedom.Numerical approaches have become necessary and sufficient to be addressed and employed for benefiting from the adaptability of such systems for varied applications.A variety of fractional Layla and Majnun model(LMM)system kinds has been proposed in the current work where some of these systems’key behaviors are addressed.In addition,the necessary and sufficient conditions for the stability and asymptotic stability of the fractional dynamic systems are investigated,as a result of which,the necessary requirements of the LMM to achieve constant and asymptotically steady zero resolutions are provided.As a special case,when Layla and Majnun have equal feelings,we propose an analysis of the system in view of its equilibrium and fixed point sets.Considering that the system has marginal stability if its eigenvalues have both negative and zero real portions,it is demonstrated that the system neither converges nor diverges to a steady trajectory or equilibrium point.It,rather,continues to hover along the line separating stability and instability based on the fractional LMM system.展开更多
The main focus of this study is to investigate the impact of heat generation/absorption with ramp velocity and ramp temperature on magnetohydrodynamic(MHD)time-dependent Maxwell fluid over an unbounded plate embedded ...The main focus of this study is to investigate the impact of heat generation/absorption with ramp velocity and ramp temperature on magnetohydrodynamic(MHD)time-dependent Maxwell fluid over an unbounded plate embedded in a permeable medium.Non-dimensional parameters along with Laplace transformation and inversion algorithms are used to find the solution of shear stress,energy,and velocity profile.Recently,new fractional differential operators are used to define ramped temperature and ramped velocity.The obtained analytical solutions are plotted for different values of emerging parameters.Fractional time derivatives are used to analyze the impact of fractional parameters(memory effect)on the dynamics of the fluid.While making a comparison,it is observed that the fractional-order model is best to explain the memory effect as compared to classical models.Our results suggest that the velocity profile decrease by increasing the effective Prandtl number.The existence of an effective Prandtl number may reflect the control of the thickness of momentum and enlargement of thermal conductivity.The incremental value of the M is observed for a decrease in the velocity field,which reflects to control resistive force.Further,it is noted that the Atangana-Baleanu derivative in Caputo sense(ABC)is the best to highlight the dynamics of the fluid.The influence of pertinent parameters is analyzed graphically for velocity and energy profile.Expressions for skin friction and Nusselt number are also derived for fractional differential operators.展开更多
In the cost function of three- or four-dimensional variational dataassimilation, each term is weighted by the inverse of its associated error covariance matrix and thebackground error covariance matrix is usually much...In the cost function of three- or four-dimensional variational dataassimilation, each term is weighted by the inverse of its associated error covariance matrix and thebackground error covariance matrix is usually much larger than the other covariance matrices.Although the background error covariances are traditionally normalized and parameterized by simplesmooth homogeneous correlation functions, the covariance matrices constructed from these correlationfunctions are often too large to be inverted or even manipulated. It is thus desirable to finddirect representations of the inverses of background error correlations. This problem is studied inthis paper. In particular, it is shown that the background term can be written into ∫ dx∣Dυ(x)∣~2, that is, a squared 1/2 norm of a vector differential operator D, called theD-operator, applied to the field of analysis increment υ(x). For autoregressive correlationfunctions, the D-operators are of finite orders. For Gaussian correlation functions, the D-operatorsare of infinite order. For practical applications, the Gaussian D-operators must be truncated tofinite orders. The truncation errors are found to be small even when the Gaussian D-operators aretruncated to low orders. With a truncated D-operator, the background term can be easily constructedwith neither inversion nor direct calculation of the covariance matrix. D-operators are also derivedfor non-Gaussian correlations and transformed into non-isotropic forms.展开更多
The spectrum of a class of fourth order left-definite differential operators is studied. By using the theory of indefinite differential operators in Krein space and the relationship between left-definite and right-def...The spectrum of a class of fourth order left-definite differential operators is studied. By using the theory of indefinite differential operators in Krein space and the relationship between left-definite and right-definite operators, the following conclusions are obtained: if a fourth order differential operator with a self-adjoint boundary condition that is left-definite and right-indefinite, then all its eigenvalues are real, and there exist countably infinitely many positive and negative eigenvalues which are unbounded from below and above, have no finite cluster point and can be indexed to satisfy the inequality …≤λ-2≤λ-1≤λ-0〈0〈λ0≤λ1≤λ2≤…展开更多
In this paper, Leibniz' formula of generalized divided difference with respect to a class of differential operators whose basic sets of solutions have power form, is considered. The recurrence formula of Green fun...In this paper, Leibniz' formula of generalized divided difference with respect to a class of differential operators whose basic sets of solutions have power form, is considered. The recurrence formula of Green function about the operators is also given.展开更多
This paper provides several linear isomorphism theorems for certain nonsymmetric differential operators of sixth order under proper topologies about some complex parameters. From these results, one can, to a large ext...This paper provides several linear isomorphism theorems for certain nonsymmetric differential operators of sixth order under proper topologies about some complex parameters. From these results, one can, to a large extent, explain and control the stability of some objects in their moving processes.展开更多
Following the approach of our previous paper we continue to study the asymptotic solution of periodic Schrodinger operators. Using the eigenvalues obtained earlier the corresponding asymptotic wave functions are deriv...Following the approach of our previous paper we continue to study the asymptotic solution of periodic Schrodinger operators. Using the eigenvalues obtained earlier the corresponding asymptotic wave functions are derived. This gives further evidence in favor of the monodromy relations for the Floquet exponent proposed in the previous paper. In particular, the large energy asymptotic wave functions are related to the instanton partition function of N = 2 supersymmetric gauge theory with surface operator. A relevant number theoretic dessert is appended.展开更多
We consider the space of rapidly decreasing sequences s and the derivative operator D defined on it. The object of this article is to study the equivalence of a differential operator of infinite order; that is φ(D)...We consider the space of rapidly decreasing sequences s and the derivative operator D defined on it. The object of this article is to study the equivalence of a differential operator of infinite order; that is φ(D) =^∞∑k=0φkD^k.φk constant numbers an a power of D.Dn, meaning, is there a isomorphism X (from s onto s) such that Xφ(D) = D^nX?. We prove that if φ(D) is equivalent to Dn, then φ(D) is of finite order, in fact a polynomial of degree n. The question of the equivalence of two differential operators of finite order in the space s is addressed too and solved completely when n = 1.展开更多
For a real valued function f defined on a finite interval I we consider the problem of approximating f from null spaces of differential operators of the form Ln(ψ) =∑k=0^n akψ(k) where the constant coefficients...For a real valued function f defined on a finite interval I we consider the problem of approximating f from null spaces of differential operators of the form Ln(ψ) =∑k=0^n akψ(k) where the constant coefficients ak C R may be adapted to f.展开更多
The quantum Euclidean space is a kind of noncommutative space that is obtained from ordinary Euclidean space by deformation with parameter q. When N is odd, the structure of this space is similar to . Motivated by r...The quantum Euclidean space is a kind of noncommutative space that is obtained from ordinary Euclidean space by deformation with parameter q. When N is odd, the structure of this space is similar to . Motivated by realization of by differential operators in , we give such realization for and cases and generalize our results to (N odd) in this paper, that is, we show that the algebra of can be realized by differential operators acting on C<SUP>∞</SUP> functions on undeformed space .展开更多
By using the parameter differential method of operators,we recast the combination function of coordinate and momentum operators into its normal and anti-normal orderings,which is more ecumenical,simpler,and neater tha...By using the parameter differential method of operators,we recast the combination function of coordinate and momentum operators into its normal and anti-normal orderings,which is more ecumenical,simpler,and neater than the existing ways.These products are very useful in obtaining some new differential relations and useful mathematical integral formulas.Further,we derive the normally ordered form of the operator(fQ+gP)^-n with n being an arbitrary positive integer by using the parameter tracing method of operators together with the intermediate coordinate-momentum representation.In addition,general mutual transformation rules of the normal and anti-normal orderings,which have good universality,are derived and hence the anti-normal ordering of(fQ+gP)^-n is also obtained.Finally,the application of some new identities is given.展开更多
When one function is defined as a differential operation on another function, it’s often desirable to invert the definition, to effectively “undo” the differentiation. A Green’s function approach is often used to ...When one function is defined as a differential operation on another function, it’s often desirable to invert the definition, to effectively “undo” the differentiation. A Green’s function approach is often used to accomplish this, but variations on this theme exist, and we examine a few such variations. The mathematical analysis of is sought in the form if such an inverse operator exists, but physics is defined by both mathematical formula and ontological formalism, as I show for an example based on the Dirac equation. Finally, I contrast these “standard” approaches with a novel exact inverse operator for field equations.展开更多
文摘We obtain several estimates of the essential norms of the products of differen- tiation operators and weighted composition operators between weighted Banach spaces of analytic functions with general weights. As applications, we also give estimates of the es- sential norms of weighted composition operators between weighted Banach space of analytic functions and Bloch-type spaces.
基金supported by SQU Grant No.IG/SCI/DOMS/16/12The second author was partially supported by NSFC(11720101003)the Project of International Science and Technology Cooperation Innovation Platform in Universities in Guangdong Province(2014KGJHZ007)
文摘We characterize boundedness and compactness of products of differentiation op- erators and weighted composition operators between weighted Banach spaces of analytic functions and weighted Zygmund spaces or weighted Bloch spaces with general weights.
基金Supported by Natural Science Foundation of Guangdong Province in China(2018KTSCX161)。
文摘The boundness and compactness of products of multiplication,composition and differentiation on weighted Bergman spaces in the unit ball are studied.We define the differentiation operator on the space of holomorphic functions in the unit ball by radial derivative.Then we extend the Sharma's results.
基金Supported by NSFC (No.12361027)NSF of Inner Mongolia (No.2018MS01021)+1 种基金NSF of Shandong Province (No.ZR2020QA009)Science and Technology Innovation Program for Higher Education Institutions of Shanxi Province (No.2024L533)。
文摘In this paper,we give a complete characterization of all self-adjoint domains of odd order differential operators on two intervals.These two intervals with all four endpoints are singular(one endpoint of each interval is singular or all four endpoints are regulars are the special cases).And these extensions yield"new"self-adjoint operators,which involve interactions between the two intervals.
基金Supported by the National Natural Science Foundation of China(Grant No.11171080)the Foundation of Science and Technology Department of Guizhou Province (Grant No.2010[07])
文摘We study the boundedness and compactness of the weighted composition followed and proceeded by differentiation operators from Q_k(p,q)space to weighted α-Bloch space and little weighted α-Bloch space.Some necessary and sufficient conditions for the boundedness and compactness of these operators are given.
基金supported by Ajman University Internal Research Grant No.(DRGS Ref.2024-IRGHBS-3).
文摘Fractional discrete systems can enable the modeling and control of the complicated processes more adaptable through the concept of versatility by providing systemdynamics’descriptions withmore degrees of freedom.Numerical approaches have become necessary and sufficient to be addressed and employed for benefiting from the adaptability of such systems for varied applications.A variety of fractional Layla and Majnun model(LMM)system kinds has been proposed in the current work where some of these systems’key behaviors are addressed.In addition,the necessary and sufficient conditions for the stability and asymptotic stability of the fractional dynamic systems are investigated,as a result of which,the necessary requirements of the LMM to achieve constant and asymptotically steady zero resolutions are provided.As a special case,when Layla and Majnun have equal feelings,we propose an analysis of the system in view of its equilibrium and fixed point sets.Considering that the system has marginal stability if its eigenvalues have both negative and zero real portions,it is demonstrated that the system neither converges nor diverges to a steady trajectory or equilibrium point.It,rather,continues to hover along the line separating stability and instability based on the fractional LMM system.
文摘The main focus of this study is to investigate the impact of heat generation/absorption with ramp velocity and ramp temperature on magnetohydrodynamic(MHD)time-dependent Maxwell fluid over an unbounded plate embedded in a permeable medium.Non-dimensional parameters along with Laplace transformation and inversion algorithms are used to find the solution of shear stress,energy,and velocity profile.Recently,new fractional differential operators are used to define ramped temperature and ramped velocity.The obtained analytical solutions are plotted for different values of emerging parameters.Fractional time derivatives are used to analyze the impact of fractional parameters(memory effect)on the dynamics of the fluid.While making a comparison,it is observed that the fractional-order model is best to explain the memory effect as compared to classical models.Our results suggest that the velocity profile decrease by increasing the effective Prandtl number.The existence of an effective Prandtl number may reflect the control of the thickness of momentum and enlargement of thermal conductivity.The incremental value of the M is observed for a decrease in the velocity field,which reflects to control resistive force.Further,it is noted that the Atangana-Baleanu derivative in Caputo sense(ABC)is the best to highlight the dynamics of the fluid.The influence of pertinent parameters is analyzed graphically for velocity and energy profile.Expressions for skin friction and Nusselt number are also derived for fractional differential operators.
文摘In the cost function of three- or four-dimensional variational dataassimilation, each term is weighted by the inverse of its associated error covariance matrix and thebackground error covariance matrix is usually much larger than the other covariance matrices.Although the background error covariances are traditionally normalized and parameterized by simplesmooth homogeneous correlation functions, the covariance matrices constructed from these correlationfunctions are often too large to be inverted or even manipulated. It is thus desirable to finddirect representations of the inverses of background error correlations. This problem is studied inthis paper. In particular, it is shown that the background term can be written into ∫ dx∣Dυ(x)∣~2, that is, a squared 1/2 norm of a vector differential operator D, called theD-operator, applied to the field of analysis increment υ(x). For autoregressive correlationfunctions, the D-operators are of finite orders. For Gaussian correlation functions, the D-operatorsare of infinite order. For practical applications, the Gaussian D-operators must be truncated tofinite orders. The truncation errors are found to be small even when the Gaussian D-operators aretruncated to low orders. With a truncated D-operator, the background term can be easily constructedwith neither inversion nor direct calculation of the covariance matrix. D-operators are also derivedfor non-Gaussian correlations and transformed into non-isotropic forms.
基金Supported by the National Natural Science Foundation of China(10561005)the Doctor's Discipline Fund of the Ministry of Education of China(20040126008)
文摘The spectrum of a class of fourth order left-definite differential operators is studied. By using the theory of indefinite differential operators in Krein space and the relationship between left-definite and right-definite operators, the following conclusions are obtained: if a fourth order differential operator with a self-adjoint boundary condition that is left-definite and right-indefinite, then all its eigenvalues are real, and there exist countably infinitely many positive and negative eigenvalues which are unbounded from below and above, have no finite cluster point and can be indexed to satisfy the inequality …≤λ-2≤λ-1≤λ-0〈0〈λ0≤λ1≤λ2≤…
文摘In this paper, Leibniz' formula of generalized divided difference with respect to a class of differential operators whose basic sets of solutions have power form, is considered. The recurrence formula of Green function about the operators is also given.
文摘This paper provides several linear isomorphism theorems for certain nonsymmetric differential operators of sixth order under proper topologies about some complex parameters. From these results, one can, to a large extent, explain and control the stability of some objects in their moving processes.
基金supported by the FAPESP No.2011/21812-8,through IFT-UNESP
文摘Following the approach of our previous paper we continue to study the asymptotic solution of periodic Schrodinger operators. Using the eigenvalues obtained earlier the corresponding asymptotic wave functions are derived. This gives further evidence in favor of the monodromy relations for the Floquet exponent proposed in the previous paper. In particular, the large energy asymptotic wave functions are related to the instanton partition function of N = 2 supersymmetric gauge theory with surface operator. A relevant number theoretic dessert is appended.
文摘We consider the space of rapidly decreasing sequences s and the derivative operator D defined on it. The object of this article is to study the equivalence of a differential operator of infinite order; that is φ(D) =^∞∑k=0φkD^k.φk constant numbers an a power of D.Dn, meaning, is there a isomorphism X (from s onto s) such that Xφ(D) = D^nX?. We prove that if φ(D) is equivalent to Dn, then φ(D) is of finite order, in fact a polynomial of degree n. The question of the equivalence of two differential operators of finite order in the space s is addressed too and solved completely when n = 1.
文摘For a real valued function f defined on a finite interval I we consider the problem of approximating f from null spaces of differential operators of the form Ln(ψ) =∑k=0^n akψ(k) where the constant coefficients ak C R may be adapted to f.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10075042 and 10375056
文摘The quantum Euclidean space is a kind of noncommutative space that is obtained from ordinary Euclidean space by deformation with parameter q. When N is odd, the structure of this space is similar to . Motivated by realization of by differential operators in , we give such realization for and cases and generalize our results to (N odd) in this paper, that is, we show that the algebra of can be realized by differential operators acting on C<SUP>∞</SUP> functions on undeformed space .
基金Project supported by the National Natural Science Foundation of China(Grant No.11347026)the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2016AM03 and ZR2017MA011)the Natural Science Foundation of Heze University,China(Grant Nos.XY17KJ09 and XY18PY13).
文摘By using the parameter differential method of operators,we recast the combination function of coordinate and momentum operators into its normal and anti-normal orderings,which is more ecumenical,simpler,and neater than the existing ways.These products are very useful in obtaining some new differential relations and useful mathematical integral formulas.Further,we derive the normally ordered form of the operator(fQ+gP)^-n with n being an arbitrary positive integer by using the parameter tracing method of operators together with the intermediate coordinate-momentum representation.In addition,general mutual transformation rules of the normal and anti-normal orderings,which have good universality,are derived and hence the anti-normal ordering of(fQ+gP)^-n is also obtained.Finally,the application of some new identities is given.
文摘When one function is defined as a differential operation on another function, it’s often desirable to invert the definition, to effectively “undo” the differentiation. A Green’s function approach is often used to accomplish this, but variations on this theme exist, and we examine a few such variations. The mathematical analysis of is sought in the form if such an inverse operator exists, but physics is defined by both mathematical formula and ontological formalism, as I show for an example based on the Dirac equation. Finally, I contrast these “standard” approaches with a novel exact inverse operator for field equations.