A family of integrable differential-difference equations is derived from a new matrix spectral problem. The Hamiltonian forms of obtained differential-difference equations are constructed. The Liouville integrability ...A family of integrable differential-difference equations is derived from a new matrix spectral problem. The Hamiltonian forms of obtained differential-difference equations are constructed. The Liouville integrability for the obtained integrable family is proved. Then, Bargmann symmetry constraint of the obtained integrable family is presented by binary nonliearization method of Lax pairs and adjoint Lax pairs. Under this Bargmann symmetry constraints, an integrable symplectic map and a sequences of completely integrable finite-dimensional Hamiltonian systems in Liouville sense are worked out, and every integrable differential-difference equations in the obtained family is factored by the integrable symplectie map and a completely integrable tinite-dimensionai Hamiltonian system.展开更多
Two hierarchies of nonlinear integrable positive and negative lattice equations are derived from a discrete spectrak problem. The two lattice hierarchies are proved to have discrete zero curvature representations asso...Two hierarchies of nonlinear integrable positive and negative lattice equations are derived from a discrete spectrak problem. The two lattice hierarchies are proved to have discrete zero curvature representations associated with a discrete spectral problem, which also shows that the positive and negative hierarchies correspond to positive and negative power expansions of Lax operators with respect to the spectral parameter, respectively. Moreover, the integrable lattice models in the positive hierarchy are of polynomial type, and the integrable lattice models in the negative hierarchy are of rational type. Further, we construct infinite conservation laws about the positive hierarchy.展开更多
In this paper,we mainly investigate the forms of entire solutions for certain Fermattype partial differential-difference equations in C^(2)by using Nevanlinna’s theory of several complex variables.
A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and...A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and then by making use of the Tu scheme the multi-component Dirac equation hierarchy is obtained. Finally, an expanding loop algebra ~FM of the loop algebra ~X is presented. Based on the ~FM, the multi-component integrable coupling system of the multi-component Dirac equation hierarchy is investigated. The method in this paper can be applied to other nonlinear evolution equation hierarchies.展开更多
In this paper,we study an integral system involving m equations■where ui>0 in R^(n),0<α<n,and pi>1(i=1,2,…,m).Based on the optimal integrability intervals,we estimate the decay rates of the positive sol...In this paper,we study an integral system involving m equations■where ui>0 in R^(n),0<α<n,and pi>1(i=1,2,…,m).Based on the optimal integrability intervals,we estimate the decay rates of the positive solutions of the system at infinity.But estimating these rates is difficult because the relation between pi(i=1,2,…,m)is uncertain.To overcome this difficulty,we obtain the asymptotic behavior of all cases by discussing them separately.In addition,we also get the radial symmetry of positive solutions under some integrability condition.展开更多
The main purpose of this paper is to use the Chelyshkov-collocation spectral method for solving nonlinear Quadratic integral equations of Volterra type.The method is based on the approximate solutions in terms of Chel...The main purpose of this paper is to use the Chelyshkov-collocation spectral method for solving nonlinear Quadratic integral equations of Volterra type.The method is based on the approximate solutions in terms of Chelyshkov polynomials with unknown coefficients.The Chelyshkov polynomials and their properties are employed to derive the operational matrices of integral and product.The application of these operational matrices for solving the mentioned problem is explained.The error analysis of the proposed method is investigated.Finally,some numerical examples are provided to demonstrate the efficiency of the method.展开更多
The Jacobi elliptic function expansion method is extended to derive the explicit periodic wave solutions for nonlinear differential-difference equations. Three well-known examples are chosen to illustrate the applicat...The Jacobi elliptic function expansion method is extended to derive the explicit periodic wave solutions for nonlinear differential-difference equations. Three well-known examples are chosen to illustrate the application of the Jacobi elliptic function expansion method. As a result, three types of periodic wave solutions including Jacobi elliptic sine function, Jacobi elliptic cosine function and the third elliptic function solutions are obtained. It is shown that the shock wave solutions and solitary wave solutions can be obtained at their limit condition.展开更多
In this paper,we will mainly investigate entire solutions with finite order of two types of systems of differential-difference equations,and obtain some interesting results.It extends some results concerning complex d...In this paper,we will mainly investigate entire solutions with finite order of two types of systems of differential-difference equations,and obtain some interesting results.It extends some results concerning complex differential(difference) equations to the systems of differential-difference equations.展开更多
We investigate the blow-up effect of solutions for a non-homogeneous wave equation u_(tt)−∆u−∆u_(t)=I_(0+)^(α)(|u|^(p))+ω(x),where p>1,0≤α<1 andω(x)with∫_(R)^(N)ω(x)dx>0.By a way of combining the argum...We investigate the blow-up effect of solutions for a non-homogeneous wave equation u_(tt)−∆u−∆u_(t)=I_(0+)^(α)(|u|^(p))+ω(x),where p>1,0≤α<1 andω(x)with∫_(R)^(N)ω(x)dx>0.By a way of combining the argument by contradiction with the test function techniques,we prove that not only any non-trivial solution blows up in finite time under 0<α<1,N≥1 and p>1,but also any non-trivial solution blows up in finite time underα=0,2≤N≤4 and p being the Strauss exponent.展开更多
In this study,we explore some of the best proximity point results for generalized proximal contractions in the setting of double-controlled metric-type spaces.A non-trivial example is given to elucidate our analysis,a...In this study,we explore some of the best proximity point results for generalized proximal contractions in the setting of double-controlled metric-type spaces.A non-trivial example is given to elucidate our analysis,and some novel results are derived.The discovered results generalize previously known results in the context of a double controlled metric type space environment.This article’s proximity point results are the first of their kind in the realm of controlled metric spaces.To build on the results achieved in this article,we present an application demonstrating the usability of the given results.展开更多
This article is concerned with the Hirota direct method for studying novel multisoliton solutions of the discrete KdV equation. First the Hirota method was introduced, then the novel multisoliton solutions were obtain...This article is concerned with the Hirota direct method for studying novel multisoliton solutions of the discrete KdV equation. First the Hirota method was introduced, then the novel multisoliton solutions were obtained. Simultaneously the figures of the novel one-soliton solution and two-soliton solution were given and the singularity of the novel multisoliton solutions was discussed. Finally it was pointed out that the multisoliton solutions with sigularity can only be called soliton-like solutions. Key words differential-difference KdV equation - Hirota method - multisoliton-like solutions MSC 2000 35Q51 Project supported by the National Natural Science Foundation of China(Grant No. 19571052)展开更多
The goal of this paper is to investigate the theory of Noether solvability for Volterra singular integral equations(VSIEs)with convolution and Cauchy kernels in a more general function class.To obtain the analytic sol...The goal of this paper is to investigate the theory of Noether solvability for Volterra singular integral equations(VSIEs)with convolution and Cauchy kernels in a more general function class.To obtain the analytic solutions,we transform such equations into boundary value problems with discontinuous coefficients by the properties of Fourier analysis.In view of the analytical Riemann-Hilbert method,the generalized Liouville theorem and Sokhotski-Plemelj formula,we get the uniqueness and existence of solutions for such problems,and study the asymptotic property of solutions at nodes.Therefore,this paper improves the theory of singular integral equations and boundary value problems.展开更多
Based on a kind of non-semisimple Lie algebras, we establish a way to construct nonlinear continuous integrable couplings. Variational identities over the associated loop algebras are used to furnish Hamiltonian struc...Based on a kind of non-semisimple Lie algebras, we establish a way to construct nonlinear continuous integrable couplings. Variational identities over the associated loop algebras are used to furnish Hamiltonian structures of the resulting continuous couplings.As an illustrative example of the scheme is given nonlinear continuous integrable couplings of the Yang hierarchy.展开更多
In this letter, the Clarkson-Kruskal direct method is extended to similarity reduce some differentialdifference equations. As examples, the differential-difference KZ equation and KP equation are considered.
A discrete matrix spectral problem and the associated hierarchy of Lax integrable lattice equations are presented, and it is shown that the resulting Lax integrable lattice equations are all Liouville integrable discr...A discrete matrix spectral problem and the associated hierarchy of Lax integrable lattice equations are presented, and it is shown that the resulting Lax integrable lattice equations are all Liouville integrable discrete Hamiltonian systems. A new integrable symplectic map is given by binary Bargmann constraint of the resulting hierarchy. Finally, an infinite set of conservation laws is given for the resulting hierarchy.展开更多
A new approach is presented by means of a new general ansitz and some relations among Jacobian elliptic functions, which enables one to construct more new exact solutions of nonlinear differential-difference equations...A new approach is presented by means of a new general ansitz and some relations among Jacobian elliptic functions, which enables one to construct more new exact solutions of nonlinear differential-difference equations. As an example, we apply this new method to Hybrid lattice, diseretized mKdV lattice, and modified Volterra lattice. As a result, many exact solutions expressible in rational formal hyperbolic and elliptic functions are conveniently obtained with the help of Maple.展开更多
In this article, the interior layer for a second order nonlinear singularly perturbed differential-difference equation is considered. Using the methods of boundary function and fractional steps, we construct the formu...In this article, the interior layer for a second order nonlinear singularly perturbed differential-difference equation is considered. Using the methods of boundary function and fractional steps, we construct the formula of asymptotic expansion and point out that the boundary layer at t = 0 has a great influence upon the interior layer at t = a. At the same time, on the basis of differential inequality techniques, the existence of the smooth solution and the uniform validity of the asymptotic expansion are proved. Finally, an example is given to demonstrate the effectiveness of our result. The result of this article is new and it complements the previously known ones.展开更多
The derivation of nonlinear integrable evolution partial differential equations in higher dimensions has always been the holy grail in the field of integrability.The well-known modified Kd V equation is a prototypical...The derivation of nonlinear integrable evolution partial differential equations in higher dimensions has always been the holy grail in the field of integrability.The well-known modified Kd V equation is a prototypical example of an integrable evolution equation in one spatial dimension.Do there exist integrable analogs of the modified Kd V equation in higher spatial dimensions?In what follows,we present a positive answer to this question.In particular,rewriting the(1+1)-dimensional integrable modified Kd V equation in conservation forms and adding deformation mappings during the process allows one to construct higher-dimensional integrable equations.Further,we illustrate this idea with examples from the modified Kd V hierarchy and also present the Lax pairs of these higher-dimensional integrable evolution equations.展开更多
In this paper, an extended Riccati sub-ODE method is proposed to establish new exact solutions for fractional differential-difference equations in the sense of modified Riemann-Liouville derivative. By a fractional co...In this paper, an extended Riccati sub-ODE method is proposed to establish new exact solutions for fractional differential-difference equations in the sense of modified Riemann-Liouville derivative. By a fractional complex transformation, a given fractional differential-difference equation can be turned into another differential-difference equation of integer order. The validity of the method is illustrated by applying it to solve the fractional Hybrid lattice equation and the fractional relativistic Toda lattice system. As a result, some new exact solutions including hyperbolic function solutions, trigonometric function solutions and rational solutions are established.展开更多
基金Supported by the Science and Technology Plan Projects of the Educational Department of Shandong Province of China under GrantNo. J08LI08
文摘A family of integrable differential-difference equations is derived from a new matrix spectral problem. The Hamiltonian forms of obtained differential-difference equations are constructed. The Liouville integrability for the obtained integrable family is proved. Then, Bargmann symmetry constraint of the obtained integrable family is presented by binary nonliearization method of Lax pairs and adjoint Lax pairs. Under this Bargmann symmetry constraints, an integrable symplectic map and a sequences of completely integrable finite-dimensional Hamiltonian systems in Liouville sense are worked out, and every integrable differential-difference equations in the obtained family is factored by the integrable symplectie map and a completely integrable tinite-dimensionai Hamiltonian system.
基金supported by the "Chunlei" Project of Shandong University of Science and Technology of China under Grant No. 2008BWZ070
文摘Two hierarchies of nonlinear integrable positive and negative lattice equations are derived from a discrete spectrak problem. The two lattice hierarchies are proved to have discrete zero curvature representations associated with a discrete spectral problem, which also shows that the positive and negative hierarchies correspond to positive and negative power expansions of Lax operators with respect to the spectral parameter, respectively. Moreover, the integrable lattice models in the positive hierarchy are of polynomial type, and the integrable lattice models in the negative hierarchy are of rational type. Further, we construct infinite conservation laws about the positive hierarchy.
基金Supported by the National Natural Science Foundation of China(Grant No.11971344).
文摘In this paper,we mainly investigate the forms of entire solutions for certain Fermattype partial differential-difference equations in C^(2)by using Nevanlinna’s theory of several complex variables.
文摘A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and then by making use of the Tu scheme the multi-component Dirac equation hierarchy is obtained. Finally, an expanding loop algebra ~FM of the loop algebra ~X is presented. Based on the ~FM, the multi-component integrable coupling system of the multi-component Dirac equation hierarchy is investigated. The method in this paper can be applied to other nonlinear evolution equation hierarchies.
基金supported by the NSFC(11871278)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23-1669).
文摘In this paper,we study an integral system involving m equations■where ui>0 in R^(n),0<α<n,and pi>1(i=1,2,…,m).Based on the optimal integrability intervals,we estimate the decay rates of the positive solutions of the system at infinity.But estimating these rates is difficult because the relation between pi(i=1,2,…,m)is uncertain.To overcome this difficulty,we obtain the asymptotic behavior of all cases by discussing them separately.In addition,we also get the radial symmetry of positive solutions under some integrability condition.
文摘The main purpose of this paper is to use the Chelyshkov-collocation spectral method for solving nonlinear Quadratic integral equations of Volterra type.The method is based on the approximate solutions in terms of Chelyshkov polynomials with unknown coefficients.The Chelyshkov polynomials and their properties are employed to derive the operational matrices of integral and product.The application of these operational matrices for solving the mentioned problem is explained.The error analysis of the proposed method is investigated.Finally,some numerical examples are provided to demonstrate the efficiency of the method.
基金the State Key Programme of Basic Research of China under,高等学校博士学科点专项科研项目
文摘The Jacobi elliptic function expansion method is extended to derive the explicit periodic wave solutions for nonlinear differential-difference equations. Three well-known examples are chosen to illustrate the application of the Jacobi elliptic function expansion method. As a result, three types of periodic wave solutions including Jacobi elliptic sine function, Jacobi elliptic cosine function and the third elliptic function solutions are obtained. It is shown that the shock wave solutions and solitary wave solutions can be obtained at their limit condition.
文摘In this paper,we will mainly investigate entire solutions with finite order of two types of systems of differential-difference equations,and obtain some interesting results.It extends some results concerning complex differential(difference) equations to the systems of differential-difference equations.
基金Supported by National Natural Science Foundation of China(Grant No.62363005).
文摘We investigate the blow-up effect of solutions for a non-homogeneous wave equation u_(tt)−∆u−∆u_(t)=I_(0+)^(α)(|u|^(p))+ω(x),where p>1,0≤α<1 andω(x)with∫_(R)^(N)ω(x)dx>0.By a way of combining the argument by contradiction with the test function techniques,we prove that not only any non-trivial solution blows up in finite time under 0<α<1,N≥1 and p>1,but also any non-trivial solution blows up in finite time underα=0,2≤N≤4 and p being the Strauss exponent.
文摘In this study,we explore some of the best proximity point results for generalized proximal contractions in the setting of double-controlled metric-type spaces.A non-trivial example is given to elucidate our analysis,and some novel results are derived.The discovered results generalize previously known results in the context of a double controlled metric type space environment.This article’s proximity point results are the first of their kind in the realm of controlled metric spaces.To build on the results achieved in this article,we present an application demonstrating the usability of the given results.
文摘This article is concerned with the Hirota direct method for studying novel multisoliton solutions of the discrete KdV equation. First the Hirota method was introduced, then the novel multisoliton solutions were obtained. Simultaneously the figures of the novel one-soliton solution and two-soliton solution were given and the singularity of the novel multisoliton solutions was discussed. Finally it was pointed out that the multisoliton solutions with sigularity can only be called soliton-like solutions. Key words differential-difference KdV equation - Hirota method - multisoliton-like solutions MSC 2000 35Q51 Project supported by the National Natural Science Foundation of China(Grant No. 19571052)
基金Supported by National Natural Science Foundation of China(Grant No.11971015).
文摘The goal of this paper is to investigate the theory of Noether solvability for Volterra singular integral equations(VSIEs)with convolution and Cauchy kernels in a more general function class.To obtain the analytic solutions,we transform such equations into boundary value problems with discontinuous coefficients by the properties of Fourier analysis.In view of the analytical Riemann-Hilbert method,the generalized Liouville theorem and Sokhotski-Plemelj formula,we get the uniqueness and existence of solutions for such problems,and study the asymptotic property of solutions at nodes.Therefore,this paper improves the theory of singular integral equations and boundary value problems.
基金Foundation item: Supported by the Natural Science Foundation of China(11271008, 61072147, 11071159) Supported by the First-class Discipline of Universities in Shanghai Supported by the Shanghai University Leading Academic Discipline Project(A13-0101-12-004)
文摘Based on a kind of non-semisimple Lie algebras, we establish a way to construct nonlinear continuous integrable couplings. Variational identities over the associated loop algebras are used to furnish Hamiltonian structures of the resulting continuous couplings.As an illustrative example of the scheme is given nonlinear continuous integrable couplings of the Yang hierarchy.
文摘In this letter, the Clarkson-Kruskal direct method is extended to similarity reduce some differentialdifference equations. As examples, the differential-difference KZ equation and KP equation are considered.
基金The project supported by the Scientific Research Award Foundation for Outstanding Young and Middle-Aged Scientists of Shandong Province of China
文摘A discrete matrix spectral problem and the associated hierarchy of Lax integrable lattice equations are presented, and it is shown that the resulting Lax integrable lattice equations are all Liouville integrable discrete Hamiltonian systems. A new integrable symplectic map is given by binary Bargmann constraint of the resulting hierarchy. Finally, an infinite set of conservation laws is given for the resulting hierarchy.
基金supported by National Natural Science Foundation of China and the Natural Science Foundation of Shandong Province
文摘A new approach is presented by means of a new general ansitz and some relations among Jacobian elliptic functions, which enables one to construct more new exact solutions of nonlinear differential-difference equations. As an example, we apply this new method to Hybrid lattice, diseretized mKdV lattice, and modified Volterra lattice. As a result, many exact solutions expressible in rational formal hyperbolic and elliptic functions are conveniently obtained with the help of Maple.
基金Supported by the National Natural Science Funds (11071075)the Natural Science Foundation of Shanghai(10ZR1409200)+1 种基金the National Laboratory of Biomacromolecules,Institute of Biophysics,Chinese Academy of Sciencesthe E-Institutes of Shanghai Municipal Education Commissions(E03004)
文摘In this article, the interior layer for a second order nonlinear singularly perturbed differential-difference equation is considered. Using the methods of boundary function and fractional steps, we construct the formula of asymptotic expansion and point out that the boundary layer at t = 0 has a great influence upon the interior layer at t = a. At the same time, on the basis of differential inequality techniques, the existence of the smooth solution and the uniform validity of the asymptotic expansion are proved. Finally, an example is given to demonstrate the effectiveness of our result. The result of this article is new and it complements the previously known ones.
基金sponsored by the National Natural Science Foundations of China(Nos.12235007,11975131,11435005,12275144,11975204)KC Wong Magna Fund in Ningbo UniversityNatural Science Foundation of Zhejiang Province No.LQ20A010009。
文摘The derivation of nonlinear integrable evolution partial differential equations in higher dimensions has always been the holy grail in the field of integrability.The well-known modified Kd V equation is a prototypical example of an integrable evolution equation in one spatial dimension.Do there exist integrable analogs of the modified Kd V equation in higher spatial dimensions?In what follows,we present a positive answer to this question.In particular,rewriting the(1+1)-dimensional integrable modified Kd V equation in conservation forms and adding deformation mappings during the process allows one to construct higher-dimensional integrable equations.Further,we illustrate this idea with examples from the modified Kd V hierarchy and also present the Lax pairs of these higher-dimensional integrable evolution equations.
文摘In this paper, an extended Riccati sub-ODE method is proposed to establish new exact solutions for fractional differential-difference equations in the sense of modified Riemann-Liouville derivative. By a fractional complex transformation, a given fractional differential-difference equation can be turned into another differential-difference equation of integer order. The validity of the method is illustrated by applying it to solve the fractional Hybrid lattice equation and the fractional relativistic Toda lattice system. As a result, some new exact solutions including hyperbolic function solutions, trigonometric function solutions and rational solutions are established.