期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Harris Hawks Algorithm Incorporating Tuna Swarm Algorithm and Differential Variance Strategy
1
作者 XU Xiaohan YANG Haima +4 位作者 ZHENG Heqing LI Jun LIU Jin ZHANG Dawei HUANG Hongxin 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2023年第6期461-473,共13页
Because of the low convergence accuracy of the basic Harris Hawks algorithm,which quickly falls into the local optimal,a Harris Hawks algorithm combining tuna swarm algorithm and differential mutation strategy(TDHHO)i... Because of the low convergence accuracy of the basic Harris Hawks algorithm,which quickly falls into the local optimal,a Harris Hawks algorithm combining tuna swarm algorithm and differential mutation strategy(TDHHO)is proposed.The escape energy factor of nonlinear periodic energy decline balances the ability of global exploration and regional development.The parabolic foraging approach of the tuna swarm algorithm is introduced to enhance the global exploration ability of the algorithm and accelerate the convergence speed.The difference variation strategy is used to mutate the individual position and calculate the fitness,and the fitness of the original individual position is compared.The greedy technique is used to select the one with better fitness of the objective function,which increases the diversity of the population and improves the possibility of the algorithm jumping out of the local extreme value.The test function tests the TDHHO algorithm,and compared with other optimization algorithms,the experimental results show that the convergence speed and optimization accuracy of the improved Harris Hawks are improved.Finally,the enhanced Harris Hawks algorithm is applied to engineering optimization and wireless sensor networks(WSN)coverage optimization problems,and the feasibility of the TDHHO algorithm in practical application is further verified. 展开更多
关键词 harris hawks optimization nonlinear periodic energy decreases differential mutation strategy wireless sensor networks(WSN)coverage optimization results
原文传递
HHO optimized support vector machine classifier for traditional Chinese medicine syndrome differentiation of diabetic retinopathy 被引量:1
2
作者 Li Xiao Cheng-Wu Wang +4 位作者 Ying Deng Yi-Jing Yang Jing Lu Jun-Feng Yan Qing-Hua Peng 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第6期991-1000,共10页
AIM:To develop a classifier for traditional Chinese medicine(TCM)syndrome differentiation of diabetic retinopathy(DR),using optimized machine learning algorithms,which can provide the basis for TCM objective and intel... AIM:To develop a classifier for traditional Chinese medicine(TCM)syndrome differentiation of diabetic retinopathy(DR),using optimized machine learning algorithms,which can provide the basis for TCM objective and intelligent syndrome differentiation.METHODS:Collated data on real-world DR cases were collected.A variety of machine learning methods were used to construct TCM syndrome classification model,and the best performance was selected as the basic model.Genetic Algorithm(GA)was used for feature selection to obtain the optimal feature combination.Harris Hawk Optimization(HHO)was used for parameter optimization,and a classification model based on feature selection and parameter optimization was constructed.The performance of the model was compared with other optimization algorithms.The models were evaluated with accuracy,precision,recall,and F1 score as indicators.RESULTS:Data on 970 cases that met screening requirements were collected.Support Vector Machine(SVM)was the best basic classification model.The accuracy rate of the model was 82.05%,the precision rate was 82.34%,the recall rate was 81.81%,and the F1 value was 81.76%.After GA screening,the optimal feature combination contained 37 feature values,which was consistent with TCM clinical practice.The model based on optimal combination and SVM(GA_SVM)had an accuracy improvement of 1.92%compared to the basic classifier.SVM model based on HHO and GA optimization(HHO_GA_SVM)had the best performance and convergence speed compared with other optimization algorithms.Compared with the basic classification model,the accuracy was improved by 3.51%.CONCLUSION:HHO and GA optimization can improve the model performance of SVM in TCM syndrome differentiation of DR.It provides a new method and research idea for TCM intelligent assisted syndrome differentiation. 展开更多
关键词 traditional Chinese medicine diabetic retinopathy harris hawk optimization Support Vector Machine syndrome differentiation
原文传递
Optimizing Microgrid Energy Management via DE-HHO Hybrid Metaheuristics
3
作者 Jingrui Liu Zhiwen Hou +1 位作者 Boyu Wang Tianxiang Yin 《Computers, Materials & Continua》 2025年第9期4729-4754,共26页
In response to the increasing global energy demand and environmental pollution,microgrids have emerged as an innovative solution by integrating distributed energy resources(DERs),energy storage systems,and loads to im... In response to the increasing global energy demand and environmental pollution,microgrids have emerged as an innovative solution by integrating distributed energy resources(DERs),energy storage systems,and loads to improve energy efficiency and reliability.This study proposes a novel hybrid optimization algorithm,DE-HHO,combining differential evolution(DE)and Harris Hawks optimization(HHO)to address microgrid scheduling issues.The proposed method adopts a multi-objective optimization framework that simultaneously minimizes operational costs and environmental impacts.The DE-HHO algorithm demonstrates significant advantages in convergence speed and global search capability through the analysis of wind,solar,micro-gas turbine,and battery models.Comprehensive simulation tests show that DE-HHO converges rapidly within 10 iterations and achieves a 4.5%reduction in total cost compared to PSO and a 5.4%reduction compared to HHO.Specifically,DE-HHO attains an optimal total cost of$20,221.37,outperforming PSO($21,184.45)and HHO($21,372.24).The maximum cost obtained by DE-HHO is$23,420.55,with a mean of$21,615.77,indicating stability and cost control capabilities.These results highlight the effectiveness of DE-HHO in reducing operational costs and enhancing system stability for efficient and sustainable microgrid operation. 展开更多
关键词 Microgrid optimization differential evolution harris hawks optimization multi-objective scheduling
在线阅读 下载PDF
基于适应度地形分析的优化算法调度方法
4
作者 朱晓东 任春晓 +2 位作者 刘晓兰 陈科 余春明 《郑州大学学报(工学版)》 北大核心 2025年第6期32-39,共8页
由于不同的优化问题具有不同的适应度地形,而一种优化算法通常只在某一种适应度地形上有更好的效果,因此,提出了一种基于适应度地形分析的优化算法调度方法(FL-AMAS)。首先,通过提取优化目标函数的局部峰簇数特征来描述优化问题的地形特... 由于不同的优化问题具有不同的适应度地形,而一种优化算法通常只在某一种适应度地形上有更好的效果,因此,提出了一种基于适应度地形分析的优化算法调度方法(FL-AMAS)。首先,通过提取优化目标函数的局部峰簇数特征来描述优化问题的地形特征,根据地形特征选择相应具有优势的算法,利用对算法的调度发挥不同算法的最大优势;其次,根据优化问题对探索性与开发性的平衡要求,选择了具有高开发能力的哈里斯鹰优化算法(HHO)和具有高探索能力的差分进化算法(DE)作为调度使用的算法,根据不同的适应度地形特征来选择更适合的算法。实验结果表明:在基准测试集上,相较于单独使用HHO,FL-AMAS在收敛性能上提升了75%;与DE算法相比,FL-AMAS收敛性能提升了40%。将FL-AMAS与6种先进算法进行比较,在75%的基准测试集上,FL-AMAS的收敛精度均优于这些算法。通过调度其他类型优化算法的结果进行对比,也验证了所提调度方法的有效性和扩展性。 展开更多
关键词 优化算法调度 适应度地形 特征提取 局部峰值点 哈里斯鹰优化算法 差分进化算法
在线阅读 下载PDF
融合自适应特征与优化KELM的抽蓄机组振动预测
5
作者 付文龙 祝鑫锋 +4 位作者 熊浩伟 相莹 邵孟欣 孔泽昊 孙政 《水力发电学报》 北大核心 2025年第8期20-30,共11页
为了减小振动信号的非线性与非平稳特性对振动预测精度的影响,本文提出了一种融合自适应特征与优化核极限学习机(KELM)的抽蓄机组振动预测方法。首先,利用改进的自适应噪声完全集成经验模态分解(ICEEMDAN)对振动信号进行分解,获得不同... 为了减小振动信号的非线性与非平稳特性对振动预测精度的影响,本文提出了一种融合自适应特征与优化核极限学习机(KELM)的抽蓄机组振动预测方法。首先,利用改进的自适应噪声完全集成经验模态分解(ICEEMDAN)对振动信号进行分解,获得不同频率成分的本征模态分量;其次,采用自编码器(AE)对所得分量进行自适应特征提取,动态捕捉关键特征;然后,建立KELM预测模型分别对各分量进行预测,并提出差分进化—改进哈里斯鹰算法(DEIHHO)对KELM的正则化参数与核参数进行优化,进而叠加各分量预测结果得到机组振动的最终预测结果;最后,通过实例验证表明,所提方法具有较好的预测性能,能够有效提高抽水蓄能机组振动预测的准确性。 展开更多
关键词 振动预测 自适应特征 核极限学习机 改进的自适应噪声完全集成经验模态分解 自编码器 差分进化–改进哈里斯鹰算法
在线阅读 下载PDF
强化哈里斯鹰算法求解柔性车间调度问题 被引量:1
6
作者 余晓东 叶春明 《智能计算机与应用》 2024年第3期140-146,共7页
针对以最小化最大完工时间为优化目标的单目标柔性作业车间调度问题,本文提出了强化哈里斯鹰优化算法。通过Circle混沌映射改进算法初始种群的质量,提高算法的收敛速度;采用正余弦策略改进逃逸能量的变化方式,并将逃逸能量与跳跃强度相... 针对以最小化最大完工时间为优化目标的单目标柔性作业车间调度问题,本文提出了强化哈里斯鹰优化算法。通过Circle混沌映射改进算法初始种群的质量,提高算法的收敛速度;采用正余弦策略改进逃逸能量的变化方式,并将逃逸能量与跳跃强度相结合,以此提升算法的全局探索能力,预防算法陷入局部最优;使用柯西扰动的差分进化策略提高算法的局部搜索能力以及寻优性能。通过柔性作业车间调度问题典型算例的对比试验,验证了强化哈里斯鹰算法能够有效求解柔性作业车间调度问题。 展开更多
关键词 柔性作业车间调度 哈里斯鹰优化 混沌映射 柯西扰动 差分进化
在线阅读 下载PDF
基于深度迁移学习的电力作业安全带佩戴检测 被引量:11
7
作者 潘志敏 王梓糠 +1 位作者 蒋毅 尹骏刚 《计算机仿真》 北大核心 2022年第5期95-101,共7页
在高空电力检修作业中会出现工人未按规定佩戴安全带的情况,存在严重的安全隐患。为此提出基于深度学习的安全带佩戴检测方法,针对深度学习中存在的样本依赖与超参数敏感问题,引入迁移学习以及群优化算法。首先通过重构预训练残差网络... 在高空电力检修作业中会出现工人未按规定佩戴安全带的情况,存在严重的安全隐患。为此提出基于深度学习的安全带佩戴检测方法,针对深度学习中存在的样本依赖与超参数敏感问题,引入迁移学习以及群优化算法。首先通过重构预训练残差网络的卷积层与全连接层提出三种不同Fine-tuning迁移学习方法,再提出差分动态哈里斯鹰优化算法对三种方法构造的模型在自构建数据集上训练并进行超参数寻优,最后将超参数配置的模型应用到安全带佩戴检测中。仿真结果证明,差分动态哈里斯鹰算法可以实现较好的超参数寻优效果,并且在数据集较少的情况下该方法也能实现较高准确率的检测效果。 展开更多
关键词 安全带佩戴检测 深度学习 迁移学习 差分动态哈里斯鹰优化算法
在线阅读 下载PDF
求解非线性方程组的HHHO算法及工程应用
8
作者 洪丽啦 莫愿斌 鲍冬雪 《计算机仿真》 北大核心 2023年第5期390-397,共8页
非线性方程组的求解具有重要的数学意义和实际意义,结合二次插值和差分进化算法的优点,提出了一种混合哈里斯鹰优化算法(HHHO)用于求解非线性方程组。先在勘探阶段采用二次插值方法,增强了算法的全局搜索能力;当算法陷入局部最优时,根... 非线性方程组的求解具有重要的数学意义和实际意义,结合二次插值和差分进化算法的优点,提出了一种混合哈里斯鹰优化算法(HHHO)用于求解非线性方程组。先在勘探阶段采用二次插值方法,增强了算法的全局搜索能力;当算法陷入局部最优时,根据早熟机制,针对陷入局部最优的哈里斯鹰进行变异、选择操作,增强种群的多样性,避免算法陷入早熟。通过10个基准测试函数的测试,证明了HHHO算法在局部搜索能力,求解精度方面优于HHO算法,通过5个非线性方程组的求解验证上述算法在求解精度、解的求解个数上都有一定的优势。最后把HHHO算法用于求解几何约束问题和三角函数超越方程,进一步验证了算法高效的求解性能。 展开更多
关键词 哈里斯鹰优化算法 差分进化 二次插值 非线性方程组 几何约束问题
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部