To ensure a long-term safety and reliability of electric vehicle and energy storage system,an accurate estimation of the state of health(SOH)for lithium-ion battery is important.In this study,a method for estimating t...To ensure a long-term safety and reliability of electric vehicle and energy storage system,an accurate estimation of the state of health(SOH)for lithium-ion battery is important.In this study,a method for estimating the lithium-ion battery SOH was proposed based on an improved extreme learning machine(ELM).Input weights and hidden layer biases were generated randomly in traditional ELM.To improve the estimation accuracy of ELM,the differential evolution algorithm was used to optimize these parameters in feasible solution spaces.First,incremental capacity curves were obtained by incremental capacity analysis and smoothed by Gaussian filter to extract health interests.Then,the ELM based on differential evolution algorithm(DE-ELM model)was used for a lithium-ion battery SOH estimation.At last,four battery historical aging data sets and one random walk data set were employed to validate the prediction performance of DE-ELM model.Results show that the DE-ELM has a better performance than other studied algorithms in terms of generalization ability.展开更多
Data clustering is an essential technique for analyzing complex datasets and continues to be a central research topic in data analysis.Traditional clustering algorithms,such as K-means,are widely used due to their sim...Data clustering is an essential technique for analyzing complex datasets and continues to be a central research topic in data analysis.Traditional clustering algorithms,such as K-means,are widely used due to their simplicity and efficiency.This paper proposes a novel Spiral Mechanism-Optimized Phasmatodea Population Evolution Algorithm(SPPE)to improve clustering performance.The SPPE algorithm introduces several enhancements to the standard Phasmatodea Population Evolution(PPE)algorithm.Firstly,a Variable Neighborhood Search(VNS)factor is incorporated to strengthen the local search capability and foster population diversity.Secondly,a position update model,incorporating a spiral mechanism,is designed to improve the algorithm’s global exploration and convergence speed.Finally,a dynamic balancing factor,guided by fitness values,adjusts the search process to balance exploration and exploitation effectively.The performance of SPPE is first validated on CEC2013 benchmark functions,where it demonstrates excellent convergence speed and superior optimization results compared to several state-of-the-art metaheuristic algorithms.To further verify its practical applicability,SPPE is combined with the K-means algorithm for data clustering and tested on seven datasets.Experimental results show that SPPE-K-means improves clustering accuracy,reduces dependency on initialization,and outperforms other clustering approaches.This study highlights SPPE’s robustness and efficiency in solving both optimization and clustering challenges,making it a promising tool for complex data analysis tasks.展开更多
Wire-fed laser-arc directed energy deposition(Wire-fed LA-DED)Technol.improves production speed while maintaining high quality and is particularly suited for manufacturing large,complex aluminum or titanium alloy comp...Wire-fed laser-arc directed energy deposition(Wire-fed LA-DED)Technol.improves production speed while maintaining high quality and is particularly suited for manufacturing large,complex aluminum or titanium alloy components.The geometry of the weld bead(height and width)is influenced by multiple intricate parameters and variables during the manufacturing process.Accurately predicting the weld bead shape enables precise control over the surface flatness of the part,helping to prevent defects such as lack of fusion.This significantly reduces dimensional redundancy,enhances printing efficiency,and optimizes material usage.In this study,a quadratic regression prediction model for weld bead geometry was developed using the response surface methodology(RSM),with predictions generated through several machine learning models.These models included the back-propagation neural network(BPNN),support vector regression(SVR),multi-output support vector regression(MOSVR),extreme learning machine(ELM),and a differential evolution-optimized MOSVR(DE-MOSVR)model.Grid search and cross-validation techniques were utilized to identify the optimal parameters for each model to achieve the best predictive performance.A comparison of these models was conducted,followed by an evaluation of their generalization capabilities using an additional 20 sets of test data.The most accurate predictive model was selected based on a comprehensive assessment.The results showed that the DE-MOSVR model outperformed the others,achieving mean squared error,root mean squared error,mean absolute error,and R^(2) values for width(height)predictions of 0.0411(0.0041),0.2028(0.0639),0.1671(0.0550),and 0.9434(0.9433),respectively.It demonstrated the smallest deviation in the validation set,with mean deviations of 1.97% and 1.68%,respectively.The model we developed was validated through the production of prototype parts,providing valuable reference and guidance for predicting and modeling weld bead morphology in the Wire-fed LA-DED process.展开更多
The optimization of the rule base of a fuzzy logic system (FLS) based on evolutionary algorithm has achievednotable results. However, due to the diversity of the deep structure in the hierarchical fuzzy system (HFS) a...The optimization of the rule base of a fuzzy logic system (FLS) based on evolutionary algorithm has achievednotable results. However, due to the diversity of the deep structure in the hierarchical fuzzy system (HFS) and thecorrelation of each sub fuzzy system, the uncertainty of the HFS’s deep structure increases. For the HFS, a largenumber of studies mainly use fixed structures, which cannot be selected automatically. To solve this problem, thispaper proposes a novel approach for constructing the incremental HFS. During system design, the deep structureand the rule base of the HFS are encoded separately. Subsequently, the deep structure is adaptively mutated basedon the fitness value, so as to realize the diversity of deep structures while ensuring reasonable competition amongthe structures. Finally, the differential evolution (DE) is used to optimize the deep structure of HFS and theparameters of antecedent and consequent simultaneously. The simulation results confirm the effectiveness of themodel. Specifically, the root mean square errors in the Laser dataset and Friedman dataset are 0.0395 and 0.0725,respectively with rule counts of rules is 8 and 12, respectively.When compared to alternative methods, the resultsindicate that the proposed method offers improvements in accuracy and rule counts.展开更多
Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation indust...Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process.展开更多
When soldering electronic components onto circuit boards,the temperature curves of the reflow ovens across different zones and the conveyor belt speed significantly influence the product quality.This study focuses on ...When soldering electronic components onto circuit boards,the temperature curves of the reflow ovens across different zones and the conveyor belt speed significantly influence the product quality.This study focuses on optimizing the furnace temperature curve under varying settings of reflow oven zone temperatures and conveyor belt speeds.To address this,the research sequentially develops a heat transfer model for reflow soldering,an optimization model for reflow furnace conditions using the differential evolution algorithm,and an evaluation and decision model combining the differential evolution algorithm with the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)method.This approach aims to determine the optimal furnace temperature curve,zone temperatures of the reflow oven,and the conveyor belt speed.展开更多
Myocarditis is a serious cardiovascular ailment that can lead to severe consequences if not promptly treated.It is triggered by viral infections and presents symptoms such as chest pain and heart dysfunction.Early det...Myocarditis is a serious cardiovascular ailment that can lead to severe consequences if not promptly treated.It is triggered by viral infections and presents symptoms such as chest pain and heart dysfunction.Early detection is crucial for successful treatment,and cardiac magnetic resonance imaging(CMR)is a valuable tool for identifying this condition.However,the detection of myocarditis using CMR images can be challenging due to low contrast,variable noise,and the presence of multiple high CMR slices per patient.To overcome these challenges,the approach proposed incorporates advanced techniques such as convolutional neural networks(CNNs),an improved differential evolution(DE)algorithm for pre-training,and a reinforcement learning(RL)-based model for training.Developing this method presented a significant challenge due to the imbalanced classification of the Z-Alizadeh Sani myocarditis dataset from Omid Hospital in Tehran.To address this,the training process is framed as a sequential decision-making process,where the agent receives higher rewards/penalties for correctly/incorrectly classifying the minority/majority class.Additionally,the authors suggest an enhanced DE algorithm to initiate the backpropagation(BP)process,overcoming the initialisation sensitivity issue of gradient-based methods like back-propagation during the training phase.The effectiveness of the proposed model in diagnosing myocarditis is demonstrated through experimental results based on standard performance metrics.Overall,this method shows promise in expediting the triage of CMR images for automatic screening,facilitating early detection and successful treatment of myocarditis.展开更多
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr...Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%.展开更多
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ...The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem.展开更多
To tackle the path planning problem,this study introduced a novel algorithm called two-stage parameter adjustment-based differential evolution(TPADE).This algorithm draws inspiration from group behavior to implement a...To tackle the path planning problem,this study introduced a novel algorithm called two-stage parameter adjustment-based differential evolution(TPADE).This algorithm draws inspiration from group behavior to implement a two-stage scaling factor variation strategy.In the initial phase,it adapts according to environmental complexity.In the following phase,it combines individual and global experiences to fine-tune the orientation factor,effectively improving its global search capability.Furthermore,this study developed a new population update method,ensuring that well-adapted individuals are retained,which enhances population diversity.In benchmark function tests across different dimensions,the proposed algorithm consistently demonstrates superior convergence accuracy and speed.This study also tested the TPADE algorithm in path planning simulations.The experimental results reveal that the TPADE algorithm outperforms existing algorithms by achieving path lengths of 28.527138 and 31.963990 in simple and complex map environments,respectively.These findings indicate that the proposed algorithm is more adaptive and efficient in path planning.展开更多
This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Op...This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain.展开更多
This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide...This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.展开更多
The rapid expansion of Internet of Things(IoT)networks has introduced challenges in network management,primarily in maintaining energy efficiency and robust connectivity across an increasing array of devices.This pape...The rapid expansion of Internet of Things(IoT)networks has introduced challenges in network management,primarily in maintaining energy efficiency and robust connectivity across an increasing array of devices.This paper introduces the Adaptive Blended Marine Predators Algorithm(AB-MPA),a novel optimization technique designed to enhance Quality of Service(QoS)in IoT systems by dynamically optimizing network configurations for improved energy efficiency and stability.Our results represent significant improvements in network performance metrics such as energy consumption,throughput,and operational stability,indicating that AB-MPA effectively addresses the pressing needs ofmodern IoT environments.Nodes are initiated with 100 J of stored energy,and energy is consumed at 0.01 J per square meter in each node to emphasize energy-efficient networks.The algorithm also provides sufficient network lifetime extension to a resourceful 7000 cycles for up to 200 nodes with a maximum Packet Delivery Ratio(PDR)of 99% and a robust network throughput of up to 1800 kbps in more compact node configurations.This study proposes a viable solution to a critical problem and opens avenues for further research into scalable network management for diverse applications.展开更多
Differential evolution(DE)algorithms are simple and efficient evolutionary algorithms that performwell in various optimization problems.Unfortunately,they inevitably stagnate when differential evolutionary algorithms ...Differential evolution(DE)algorithms are simple and efficient evolutionary algorithms that performwell in various optimization problems.Unfortunately,they inevitably stagnate when differential evolutionary algorithms are used to solve complex problems(e.g.,real-world artificial neural network(ANN)training problems).To resolve this issue,this paper proposes a framework based on an efficient elite centroid operator.It continuously monitors the current state of the population.Once stagnation is detected,two dedicated operators,centroid-based mutation(CM)and centroid-based crossover(CX),are executed to replace the classical mutation and binomial crossover operations in DE.CM and CX are centred on the elite centroid composed of multiple elite individuals,constituting a framework consisting of elitism centroid-based operations(CMX)to improve the performance of the individuals who fall into stagnation.In CM,elite centroid provide evolutionary direction for stagnant individuals,and in CX,elite plasmoids address the limitation that stagnant individuals can only obtain limited information about the population.The CMX framework is simple enough to easily incorporate into both classically well-known DEs with constant population sizes and state-of-the-art DEs with varying populations.Numerical experiments on benchmark functions show that the proposed CMX method can significantly enhance the classical DE algorithm and its advanced variants in solving the stagnation problem and improving performance.展开更多
Robust and efficient AUV path planning is a key element for persistence AUV maneuvering in variable underwater environments. To develop such a path planning system, in this study, differential evolution(DE) algorithm ...Robust and efficient AUV path planning is a key element for persistence AUV maneuvering in variable underwater environments. To develop such a path planning system, in this study, differential evolution(DE) algorithm is employed. The performance of the DE-based planner in generating time-efficient paths to direct the AUV from its initial conditions to the target of interest is investigated within a complexed 3D underwater environment incorporated with turbulent current vector fields, coastal area,islands, and static/dynamic obstacles. The results of simulations indicate the inherent efficiency of the DE-based path planner as it is capable of extracting feasible areas of a real map to determine the allowed spaces for the vehicle deployment while coping undesired current disturbances, exploiting desirable currents, and avoiding collision boundaries in directing the vehicle to its destination. The results are implementable for a realistic scenario and on-board real AUV as the DE planner satisfies all vehicular and environmental constraints while minimizing the travel time/distance, in a computationally efficient manner.展开更多
To determine the optimal or near optimal parameters of PID controller with incomplete derivation, a novel design method based on differential evolution (DE) algorithm is presented. The controller is called DE-PID co...To determine the optimal or near optimal parameters of PID controller with incomplete derivation, a novel design method based on differential evolution (DE) algorithm is presented. The controller is called DE-PID controller. To overcome the disadvantages of the integral performance criteria in the frequency domain such as IAE, ISE, and ITSE, a new performance criterion in the time domain is proposed. The optimization procedures employing the DE algorithm to search the optimal or near optimal PID controller parameters of a control system are demonstrated in detail. Three typical control systems are chosen to test and evaluate the adaptation and robustness of the proposed DE-PID controller. The simulation results show that the proposed approach has superior features of easy implementation, stable convergence characteristic, and good computational efficiency. Compared with the ZN, GA, and ASA, the proposed design method is indeed more efficient and robust in improving the step response of a control system.展开更多
The differential evolution (DE) algorithm has been received increasing attention in terms of optimizing the design for the water distribution systems (WDSs). This paper aims to carry out a comprehensive performari...The differential evolution (DE) algorithm has been received increasing attention in terms of optimizing the design for the water distribution systems (WDSs). This paper aims to carry out a comprehensive performarice comparison between the new emerged DE algorithm and the most popular algorithm-the genetic algorithm (GA). A total of six benchmark WDS case studies were used with the number of decision variables ranging from 8 to 454. A preliminary sensitivity analysis was performed to select the most effective parameter values for both algorithms to enable the fair comparison. It is observed from the results that the DE algorithm consistently outperforms the GA in terms of both efficiency and the solution quality for each case study. Additionally, the DE algorithm was also compared with the previously published optimization algorithms based on the results for those six case studies, indicating that the DE exhibits comparable performance with other algorithms. It can be concluded that the DE is a newly promising optimization algorithm in the design of WDSs.展开更多
Differential evolution (DE) algorithm has been shown to be a simple and efficient evolutionary algorithm for global optimization over continuous spaces, and has been widely used in both benchmark test functions and re...Differential evolution (DE) algorithm has been shown to be a simple and efficient evolutionary algorithm for global optimization over continuous spaces, and has been widely used in both benchmark test functions and real-world applications. This paper introduces a novel mutation operator, without using the scaling factor F, a conventional control parameter, and this mutation can generate multiple trial vectors by incorporating different weighted values at each generation, which can make the best of the selected multiple parents to improve the probability of generating a better offspring. In addition, in order to enhance the capacity of adaptation, a new and adaptive control parameter, i.e. the crossover rate CR, is presented and when one variable is beyond its boundary, a repair rule is also applied in this paper. The proposed algorithm ADE is validated on several constrained engineering design optimization problems reported in the specialized literature. Compared with respect to algorithms representative of the state-of-the-art in the area, the experimental results show that ADE can obtain good solutions on a test set of constrained optimization problems in engineering design.展开更多
To determine structure and parameters of a rheological constitutive model for rocks,a new method based on differential evolution(DE) algorithm combined with FLAC3D(a numerical code for geotechnical engineering) was pr...To determine structure and parameters of a rheological constitutive model for rocks,a new method based on differential evolution(DE) algorithm combined with FLAC3D(a numerical code for geotechnical engineering) was proposed for identification of the global optimum coupled of model structure and its parameters.At first,stochastic coupled mode was initialized,the difference in displacement between the numerical value and in-situ measurements was regarded as fitness value to evaluate quality of the coupled mode.Then the coupled-mode was updated continually using DE rule until the optimal parameters were found.Thus,coupled-mode was identified adaptively during back analysis process.The results of applications to Jinping tunnels in China show that the method is feasible and efficient for identifying the coupled-mode of constitutive structure and its parameters.The method overcomes the limitation of the traditional method and improves significantly precision and speed of displacement back analysis process.展开更多
Propagation models are the foundation for radio planning in mobile networks. They are widely used during feasibility studies and initial network deployment, or during network extensions, particularly in new cities. Th...Propagation models are the foundation for radio planning in mobile networks. They are widely used during feasibility studies and initial network deployment, or during network extensions, particularly in new cities. They can be used to calculate the power of the signal received by a mobile terminal, evaluate the coverage radius, and calculate the number of cells required to cover a given area. This paper takes into account the standard k factors model and then uses the differential evolution algorithm to set up a propagation model adapted to the physical environment of the Cameroonian cities of Bertoua. Drive tests were made on the LTE TDD network in the city of Bertoua. Differential evolution algorithm is used as the optimization algorithm to deduct a propagation model which fits the environment of the considered town. The calculation of the root mean square error between the actual data from the drive tests and the prediction data from the implemented model allows the validation of the obtained results. A comparative study made between the RMSE value obtained by the new model and those obtained by the Okumura Hata and free space models, allowed us to conclude that the new model obtained is better and more representative of our local environment than the Okumura Hata currently used. The implementation shows that Differential evolution can perform well and solve this kind of optimization problem;the newly obtained models can be used for radio planning in the city of Bertoua in Cameroon.展开更多
文摘To ensure a long-term safety and reliability of electric vehicle and energy storage system,an accurate estimation of the state of health(SOH)for lithium-ion battery is important.In this study,a method for estimating the lithium-ion battery SOH was proposed based on an improved extreme learning machine(ELM).Input weights and hidden layer biases were generated randomly in traditional ELM.To improve the estimation accuracy of ELM,the differential evolution algorithm was used to optimize these parameters in feasible solution spaces.First,incremental capacity curves were obtained by incremental capacity analysis and smoothed by Gaussian filter to extract health interests.Then,the ELM based on differential evolution algorithm(DE-ELM model)was used for a lithium-ion battery SOH estimation.At last,four battery historical aging data sets and one random walk data set were employed to validate the prediction performance of DE-ELM model.Results show that the DE-ELM has a better performance than other studied algorithms in terms of generalization ability.
文摘Data clustering is an essential technique for analyzing complex datasets and continues to be a central research topic in data analysis.Traditional clustering algorithms,such as K-means,are widely used due to their simplicity and efficiency.This paper proposes a novel Spiral Mechanism-Optimized Phasmatodea Population Evolution Algorithm(SPPE)to improve clustering performance.The SPPE algorithm introduces several enhancements to the standard Phasmatodea Population Evolution(PPE)algorithm.Firstly,a Variable Neighborhood Search(VNS)factor is incorporated to strengthen the local search capability and foster population diversity.Secondly,a position update model,incorporating a spiral mechanism,is designed to improve the algorithm’s global exploration and convergence speed.Finally,a dynamic balancing factor,guided by fitness values,adjusts the search process to balance exploration and exploitation effectively.The performance of SPPE is first validated on CEC2013 benchmark functions,where it demonstrates excellent convergence speed and superior optimization results compared to several state-of-the-art metaheuristic algorithms.To further verify its practical applicability,SPPE is combined with the K-means algorithm for data clustering and tested on seven datasets.Experimental results show that SPPE-K-means improves clustering accuracy,reduces dependency on initialization,and outperforms other clustering approaches.This study highlights SPPE’s robustness and efficiency in solving both optimization and clustering challenges,making it a promising tool for complex data analysis tasks.
基金supported by Natural Science Foundation of Shandong Province(Grant No.ZR202212010161)Natural Science Foundation of Qingdao(Grant No.23-2-1-83-zyyd-jch)+1 种基金Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515110116)the National Natural Science Foundation of China(Grant No.52405359).
文摘Wire-fed laser-arc directed energy deposition(Wire-fed LA-DED)Technol.improves production speed while maintaining high quality and is particularly suited for manufacturing large,complex aluminum or titanium alloy components.The geometry of the weld bead(height and width)is influenced by multiple intricate parameters and variables during the manufacturing process.Accurately predicting the weld bead shape enables precise control over the surface flatness of the part,helping to prevent defects such as lack of fusion.This significantly reduces dimensional redundancy,enhances printing efficiency,and optimizes material usage.In this study,a quadratic regression prediction model for weld bead geometry was developed using the response surface methodology(RSM),with predictions generated through several machine learning models.These models included the back-propagation neural network(BPNN),support vector regression(SVR),multi-output support vector regression(MOSVR),extreme learning machine(ELM),and a differential evolution-optimized MOSVR(DE-MOSVR)model.Grid search and cross-validation techniques were utilized to identify the optimal parameters for each model to achieve the best predictive performance.A comparison of these models was conducted,followed by an evaluation of their generalization capabilities using an additional 20 sets of test data.The most accurate predictive model was selected based on a comprehensive assessment.The results showed that the DE-MOSVR model outperformed the others,achieving mean squared error,root mean squared error,mean absolute error,and R^(2) values for width(height)predictions of 0.0411(0.0041),0.2028(0.0639),0.1671(0.0550),and 0.9434(0.9433),respectively.It demonstrated the smallest deviation in the validation set,with mean deviations of 1.97% and 1.68%,respectively.The model we developed was validated through the production of prototype parts,providing valuable reference and guidance for predicting and modeling weld bead morphology in the Wire-fed LA-DED process.
基金the Sichuan Science and Technology Program(2021ZYD0016).
文摘The optimization of the rule base of a fuzzy logic system (FLS) based on evolutionary algorithm has achievednotable results. However, due to the diversity of the deep structure in the hierarchical fuzzy system (HFS) and thecorrelation of each sub fuzzy system, the uncertainty of the HFS’s deep structure increases. For the HFS, a largenumber of studies mainly use fixed structures, which cannot be selected automatically. To solve this problem, thispaper proposes a novel approach for constructing the incremental HFS. During system design, the deep structureand the rule base of the HFS are encoded separately. Subsequently, the deep structure is adaptively mutated basedon the fitness value, so as to realize the diversity of deep structures while ensuring reasonable competition amongthe structures. Finally, the differential evolution (DE) is used to optimize the deep structure of HFS and theparameters of antecedent and consequent simultaneously. The simulation results confirm the effectiveness of themodel. Specifically, the root mean square errors in the Laser dataset and Friedman dataset are 0.0395 and 0.0725,respectively with rule counts of rules is 8 and 12, respectively.When compared to alternative methods, the resultsindicate that the proposed method offers improvements in accuracy and rule counts.
基金supported in part by the National Key Research and Development Program of China(2021YFC2902703)the National Natural Science Foundation of China(62173078,61773105,61533007,61873049,61873053,61703085,61374147)。
文摘Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process.
文摘When soldering electronic components onto circuit boards,the temperature curves of the reflow ovens across different zones and the conveyor belt speed significantly influence the product quality.This study focuses on optimizing the furnace temperature curve under varying settings of reflow oven zone temperatures and conveyor belt speeds.To address this,the research sequentially develops a heat transfer model for reflow soldering,an optimization model for reflow furnace conditions using the differential evolution algorithm,and an evaluation and decision model combining the differential evolution algorithm with the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)method.This approach aims to determine the optimal furnace temperature curve,zone temperatures of the reflow oven,and the conveyor belt speed.
文摘Myocarditis is a serious cardiovascular ailment that can lead to severe consequences if not promptly treated.It is triggered by viral infections and presents symptoms such as chest pain and heart dysfunction.Early detection is crucial for successful treatment,and cardiac magnetic resonance imaging(CMR)is a valuable tool for identifying this condition.However,the detection of myocarditis using CMR images can be challenging due to low contrast,variable noise,and the presence of multiple high CMR slices per patient.To overcome these challenges,the approach proposed incorporates advanced techniques such as convolutional neural networks(CNNs),an improved differential evolution(DE)algorithm for pre-training,and a reinforcement learning(RL)-based model for training.Developing this method presented a significant challenge due to the imbalanced classification of the Z-Alizadeh Sani myocarditis dataset from Omid Hospital in Tehran.To address this,the training process is framed as a sequential decision-making process,where the agent receives higher rewards/penalties for correctly/incorrectly classifying the minority/majority class.Additionally,the authors suggest an enhanced DE algorithm to initiate the backpropagation(BP)process,overcoming the initialisation sensitivity issue of gradient-based methods like back-propagation during the training phase.The effectiveness of the proposed model in diagnosing myocarditis is demonstrated through experimental results based on standard performance metrics.Overall,this method shows promise in expediting the triage of CMR images for automatic screening,facilitating early detection and successful treatment of myocarditis.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant(No.51677058).
文摘Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%.
基金in part supported by the Key Research and Development Project of Hubei Province(Nos.2020BAB1141,2023BAB094)the Key Project of Science and Technology Research ProgramofHubei Educational Committee(No.D20211402)+1 种基金the Teaching Research Project of Hubei University of Technology(No.XIAO2018001)the Project of Xiangyang Industrial Research Institute of Hubei University of Technology(No.XYYJ2022C04).
文摘The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem.
基金The National Natural Science Foundation of China(No.62272239,62303214)Jiangsu Agricultural Science and Tech-nology Independent Innovation Fund(No.SJ222051).
文摘To tackle the path planning problem,this study introduced a novel algorithm called two-stage parameter adjustment-based differential evolution(TPADE).This algorithm draws inspiration from group behavior to implement a two-stage scaling factor variation strategy.In the initial phase,it adapts according to environmental complexity.In the following phase,it combines individual and global experiences to fine-tune the orientation factor,effectively improving its global search capability.Furthermore,this study developed a new population update method,ensuring that well-adapted individuals are retained,which enhances population diversity.In benchmark function tests across different dimensions,the proposed algorithm consistently demonstrates superior convergence accuracy and speed.This study also tested the TPADE algorithm in path planning simulations.The experimental results reveal that the TPADE algorithm outperforms existing algorithms by achieving path lengths of 28.527138 and 31.963990 in simple and complex map environments,respectively.These findings indicate that the proposed algorithm is more adaptive and efficient in path planning.
基金supported by the Serbian Ministry of Education and Science under Grant No.TR35006 and COST Action:CA23155—A Pan-European Network of Ocean Tribology(OTC)The research of B.Rosic and M.Rosic was supported by the Serbian Ministry of Education and Science under Grant TR35029.
文摘This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain.
基金supported by the National Natural Science Foundation of China(61973105,62373137)。
文摘This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.
文摘The rapid expansion of Internet of Things(IoT)networks has introduced challenges in network management,primarily in maintaining energy efficiency and robust connectivity across an increasing array of devices.This paper introduces the Adaptive Blended Marine Predators Algorithm(AB-MPA),a novel optimization technique designed to enhance Quality of Service(QoS)in IoT systems by dynamically optimizing network configurations for improved energy efficiency and stability.Our results represent significant improvements in network performance metrics such as energy consumption,throughput,and operational stability,indicating that AB-MPA effectively addresses the pressing needs ofmodern IoT environments.Nodes are initiated with 100 J of stored energy,and energy is consumed at 0.01 J per square meter in each node to emphasize energy-efficient networks.The algorithm also provides sufficient network lifetime extension to a resourceful 7000 cycles for up to 200 nodes with a maximum Packet Delivery Ratio(PDR)of 99% and a robust network throughput of up to 1800 kbps in more compact node configurations.This study proposes a viable solution to a critical problem and opens avenues for further research into scalable network management for diverse applications.
基金funded by National Special Project Number for International Cooperation under Grant 2015DFR11050the Applied Science and Technology Research and Development Special Fund Project of Guangdong Province under Grant 2016B010126004.
文摘Differential evolution(DE)algorithms are simple and efficient evolutionary algorithms that performwell in various optimization problems.Unfortunately,they inevitably stagnate when differential evolutionary algorithms are used to solve complex problems(e.g.,real-world artificial neural network(ANN)training problems).To resolve this issue,this paper proposes a framework based on an efficient elite centroid operator.It continuously monitors the current state of the population.Once stagnation is detected,two dedicated operators,centroid-based mutation(CM)and centroid-based crossover(CX),are executed to replace the classical mutation and binomial crossover operations in DE.CM and CX are centred on the elite centroid composed of multiple elite individuals,constituting a framework consisting of elitism centroid-based operations(CMX)to improve the performance of the individuals who fall into stagnation.In CM,elite centroid provide evolutionary direction for stagnant individuals,and in CX,elite plasmoids address the limitation that stagnant individuals can only obtain limited information about the population.The CMX framework is simple enough to easily incorporate into both classically well-known DEs with constant population sizes and state-of-the-art DEs with varying populations.Numerical experiments on benchmark functions show that the proposed CMX method can significantly enhance the classical DE algorithm and its advanced variants in solving the stagnation problem and improving performance.
文摘Robust and efficient AUV path planning is a key element for persistence AUV maneuvering in variable underwater environments. To develop such a path planning system, in this study, differential evolution(DE) algorithm is employed. The performance of the DE-based planner in generating time-efficient paths to direct the AUV from its initial conditions to the target of interest is investigated within a complexed 3D underwater environment incorporated with turbulent current vector fields, coastal area,islands, and static/dynamic obstacles. The results of simulations indicate the inherent efficiency of the DE-based path planner as it is capable of extracting feasible areas of a real map to determine the allowed spaces for the vehicle deployment while coping undesired current disturbances, exploiting desirable currents, and avoiding collision boundaries in directing the vehicle to its destination. The results are implementable for a realistic scenario and on-board real AUV as the DE planner satisfies all vehicular and environmental constraints while minimizing the travel time/distance, in a computationally efficient manner.
基金the National Natural Science Foundation of China (60375001)the Scientific Research Foundation of Hunan Provincial Education Department (05B016).
文摘To determine the optimal or near optimal parameters of PID controller with incomplete derivation, a novel design method based on differential evolution (DE) algorithm is presented. The controller is called DE-PID controller. To overcome the disadvantages of the integral performance criteria in the frequency domain such as IAE, ISE, and ITSE, a new performance criterion in the time domain is proposed. The optimization procedures employing the DE algorithm to search the optimal or near optimal PID controller parameters of a control system are demonstrated in detail. Three typical control systems are chosen to test and evaluate the adaptation and robustness of the proposed DE-PID controller. The simulation results show that the proposed approach has superior features of easy implementation, stable convergence characteristic, and good computational efficiency. Compared with the ZN, GA, and ASA, the proposed design method is indeed more efficient and robust in improving the step response of a control system.
基金Project (No. 2008AA06A413) supported by the National High-Tech R&D (863) Program of China
文摘The differential evolution (DE) algorithm has been received increasing attention in terms of optimizing the design for the water distribution systems (WDSs). This paper aims to carry out a comprehensive performarice comparison between the new emerged DE algorithm and the most popular algorithm-the genetic algorithm (GA). A total of six benchmark WDS case studies were used with the number of decision variables ranging from 8 to 454. A preliminary sensitivity analysis was performed to select the most effective parameter values for both algorithms to enable the fair comparison. It is observed from the results that the DE algorithm consistently outperforms the GA in terms of both efficiency and the solution quality for each case study. Additionally, the DE algorithm was also compared with the previously published optimization algorithms based on the results for those six case studies, indicating that the DE exhibits comparable performance with other algorithms. It can be concluded that the DE is a newly promising optimization algorithm in the design of WDSs.
文摘Differential evolution (DE) algorithm has been shown to be a simple and efficient evolutionary algorithm for global optimization over continuous spaces, and has been widely used in both benchmark test functions and real-world applications. This paper introduces a novel mutation operator, without using the scaling factor F, a conventional control parameter, and this mutation can generate multiple trial vectors by incorporating different weighted values at each generation, which can make the best of the selected multiple parents to improve the probability of generating a better offspring. In addition, in order to enhance the capacity of adaptation, a new and adaptive control parameter, i.e. the crossover rate CR, is presented and when one variable is beyond its boundary, a repair rule is also applied in this paper. The proposed algorithm ADE is validated on several constrained engineering design optimization problems reported in the specialized literature. Compared with respect to algorithms representative of the state-of-the-art in the area, the experimental results show that ADE can obtain good solutions on a test set of constrained optimization problems in engineering design.
基金Project (50809017) supported by the National Natural Science Foundation of China
文摘To determine structure and parameters of a rheological constitutive model for rocks,a new method based on differential evolution(DE) algorithm combined with FLAC3D(a numerical code for geotechnical engineering) was proposed for identification of the global optimum coupled of model structure and its parameters.At first,stochastic coupled mode was initialized,the difference in displacement between the numerical value and in-situ measurements was regarded as fitness value to evaluate quality of the coupled mode.Then the coupled-mode was updated continually using DE rule until the optimal parameters were found.Thus,coupled-mode was identified adaptively during back analysis process.The results of applications to Jinping tunnels in China show that the method is feasible and efficient for identifying the coupled-mode of constitutive structure and its parameters.The method overcomes the limitation of the traditional method and improves significantly precision and speed of displacement back analysis process.
文摘Propagation models are the foundation for radio planning in mobile networks. They are widely used during feasibility studies and initial network deployment, or during network extensions, particularly in new cities. They can be used to calculate the power of the signal received by a mobile terminal, evaluate the coverage radius, and calculate the number of cells required to cover a given area. This paper takes into account the standard k factors model and then uses the differential evolution algorithm to set up a propagation model adapted to the physical environment of the Cameroonian cities of Bertoua. Drive tests were made on the LTE TDD network in the city of Bertoua. Differential evolution algorithm is used as the optimization algorithm to deduct a propagation model which fits the environment of the considered town. The calculation of the root mean square error between the actual data from the drive tests and the prediction data from the implemented model allows the validation of the obtained results. A comparative study made between the RMSE value obtained by the new model and those obtained by the Okumura Hata and free space models, allowed us to conclude that the new model obtained is better and more representative of our local environment than the Okumura Hata currently used. The implementation shows that Differential evolution can perform well and solve this kind of optimization problem;the newly obtained models can be used for radio planning in the city of Bertoua in Cameroon.