This paper presents a novel element differential method for modeling cracks in piezoelectric materials,aiming to simulate fracture behaviors and predict the fracture parameter known as the J-integral accurately.The me...This paper presents a novel element differential method for modeling cracks in piezoelectric materials,aiming to simulate fracture behaviors and predict the fracture parameter known as the J-integral accurately.The method leverages an efficient collocation technique to satisfy traction and electric charge equilibrium on the crack surface,aligning internal nodes with piezoelectric governing equations without needing integration or variational principles.It combines the strengths of the strong form collocation and finite element methods.The J-integral is derived analytically using the equivalent domain integral method,employing Green's formula and Gauss's divergence theorem to transform line integrals into area integrals for solving two-dimensional piezoelectric material problems.The accuracy of the method is validated through comparison with three typical examples,and it offers fracture prevention strategies for engineering piezoelectric structures under different electrical loading patterns.展开更多
The static behavior of piezoelectric circular spherical shallow shells under both electrical and mechanical loads is studied by using the differential quadrature element method (DQEM). Geometrical nonlinearity effect ...The static behavior of piezoelectric circular spherical shallow shells under both electrical and mechanical loads is studied by using the differential quadrature element method (DQEM). Geometrical nonlinearity effect is considered. Detailed formulations and procedures are given for the first time. Several examples are analyzed and accurate results are obtained by the DQEM. Based on the results in this paper, one may conclude that the DQEM is a useful tool for obtaining solutions of structural elements. It can be seen that the shell shape may be theore tically controlled and snap through may occur when the applied voltage reaches a critical value even without mechanical load for certain geometric configurations.展开更多
A nonlinear mathematical model for the analysis of large deformation of frame structures with discontinuity conditions and initial displacements, subject to dynamic loads is formulated with arc-coordinates. The differ...A nonlinear mathematical model for the analysis of large deformation of frame structures with discontinuity conditions and initial displacements, subject to dynamic loads is formulated with arc-coordinates. The differential quadrature element method (DQEM) is then applied to discretize the nonlinear mathematical model in the spatial domain, An effective method is presented to deal with discontinuity conditions of multivariables in the application of DQEM. A set of DQEM discretization equations are obtained, which are a set of nonlinear differential-algebraic equations with singularity in the time domain. This paper also presents a method to solve nonlinear differential-algebra equations. As application, static and dynamical analyses of large deformation of frames and combined frame structures, subjected to concentrated and distributed forces, are presented. The obtained results are compared with those in the literatures. Numerical results show that the proposed method is general, and effective in dealing with disconti- nuity conditions of multi-variables and solving differential-algebraic equations. It requires only a small number of nodes and has low computation complexity with high precision and a good convergence property.展开更多
基金Financial support of this work by the Technology Development program of China(Grant No.2022204B003)National Natural Science Foundation of China(12272083 and 12172078)the Fundamental Research Funds for the Central Universities(DUT24YJ136)is gratefully acknowledged.
文摘This paper presents a novel element differential method for modeling cracks in piezoelectric materials,aiming to simulate fracture behaviors and predict the fracture parameter known as the J-integral accurately.The method leverages an efficient collocation technique to satisfy traction and electric charge equilibrium on the crack surface,aligning internal nodes with piezoelectric governing equations without needing integration or variational principles.It combines the strengths of the strong form collocation and finite element methods.The J-integral is derived analytically using the equivalent domain integral method,employing Green's formula and Gauss's divergence theorem to transform line integrals into area integrals for solving two-dimensional piezoelectric material problems.The accuracy of the method is validated through comparison with three typical examples,and it offers fracture prevention strategies for engineering piezoelectric structures under different electrical loading patterns.
文摘The static behavior of piezoelectric circular spherical shallow shells under both electrical and mechanical loads is studied by using the differential quadrature element method (DQEM). Geometrical nonlinearity effect is considered. Detailed formulations and procedures are given for the first time. Several examples are analyzed and accurate results are obtained by the DQEM. Based on the results in this paper, one may conclude that the DQEM is a useful tool for obtaining solutions of structural elements. It can be seen that the shell shape may be theore tically controlled and snap through may occur when the applied voltage reaches a critical value even without mechanical load for certain geometric configurations.
基金Project supported by Shanghai Pujiang Program(No.07pj14073)and Shanghai Leading Academic Discipline Project(No.Y0103)
文摘A nonlinear mathematical model for the analysis of large deformation of frame structures with discontinuity conditions and initial displacements, subject to dynamic loads is formulated with arc-coordinates. The differential quadrature element method (DQEM) is then applied to discretize the nonlinear mathematical model in the spatial domain, An effective method is presented to deal with discontinuity conditions of multivariables in the application of DQEM. A set of DQEM discretization equations are obtained, which are a set of nonlinear differential-algebraic equations with singularity in the time domain. This paper also presents a method to solve nonlinear differential-algebra equations. As application, static and dynamical analyses of large deformation of frames and combined frame structures, subjected to concentrated and distributed forces, are presented. The obtained results are compared with those in the literatures. Numerical results show that the proposed method is general, and effective in dealing with disconti- nuity conditions of multi-variables and solving differential-algebraic equations. It requires only a small number of nodes and has low computation complexity with high precision and a good convergence property.