The stabilization and H∞ control of nonlinear differential algebraic systems (NDAS) are investigated using the Hamiltonian function method. Firstly, we put forward a novel dissipative Hamiltonian realization (DHR...The stabilization and H∞ control of nonlinear differential algebraic systems (NDAS) are investigated using the Hamiltonian function method. Firstly, we put forward a novel dissipative Hamiltonian realization (DHR) structure and give the condition to complete the Hamiltonian realization. Then, based on the DHR, we present a criterion for the stability analysis of NDAS and construct a stabilization controller for NDAS in absence of disturbances. Finally, for NDAS in presence of disturbances, the L2 gain is analyzed via generalized Hamilton-Jacobi inequality and an H∞ control strategy is constructed. The proposed stabilization and robust controller can effectively take advantage of the structural characteristics of NDAS and is simple in form.展开更多
In this paper, a parallel simulation algorithm for the control problem in differential algebraic system is presented. The error of the algorithm is estimated. The stability analysis is made for a model problem and the...In this paper, a parallel simulation algorithm for the control problem in differential algebraic system is presented. The error of the algorithm is estimated. The stability analysis is made for a model problem and the stability region is given. The numerical example demonstrates that the method is efficient.展开更多
We investigate the problem of growth order of solutions of a type of systems of non-linear algebraic differential equations, and extend some results of the growth order of solutions of algebraic differential equations...We investigate the problem of growth order of solutions of a type of systems of non-linear algebraic differential equations, and extend some results of the growth order of solutions of algebraic differential equations to systems of algebraic differential equations.展开更多
This paper is concerned with the order of the solutions of systems of high-order complex algebraic differential equations.By means of Zalcman Lemma,the systems of equations of[1]is extended to more general form.
The second order Euler-Lagrange equations are transformed to a set of first order differential/algebraic equations, which are then transformed to state equations by using local parameterization. The corresponding disc...The second order Euler-Lagrange equations are transformed to a set of first order differential/algebraic equations, which are then transformed to state equations by using local parameterization. The corresponding discretization method is presented, and the results can be used to implementation of various numerical integration methods. A numerical example is presented finally.展开更多
Using Nevanlinna theory and value distribution of meromorphic functions and the other techniques,we investigate the counting functions of meromorphic solutions of systems of higher-order algebraic differential equatio...Using Nevanlinna theory and value distribution of meromorphic functions and the other techniques,we investigate the counting functions of meromorphic solutions of systems of higher-order algebraic differential equations and obtain some results.展开更多
In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where ...In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where a(z), b_i(z) (0<- i <=2) and d_j (z) (0<=j<= 3) are allpolynomials, and this equation relates closely to the following well-known algebraic differentialequation C(z,w)w'~2 + B(z,w)w' + A(z,w) =0, where G(z,w)not ident to 0, B(z,w) and A(z,w) are threepolynomials in z and w. We give relationships between the growth of entire solutions and the degreesof the above three polynomials in detail.展开更多
Using Nevanlinna theory of the value distribution of meromorphic functions, the author investigates the problem of the growth of solutions of two types of algebraic differential equation and obtains some results.
A novel adaptive fault-tolerant control scheme in the differential algebraic framework was proposed for attitude control of a heavy lift launch vehicle (HLLV). By using purely mathematical transformations, the decou...A novel adaptive fault-tolerant control scheme in the differential algebraic framework was proposed for attitude control of a heavy lift launch vehicle (HLLV). By using purely mathematical transformations, the decoupled input-output representations of HLLV were derived, rendering three decoupled second-order systems, i.e., pitch, yaw and roll channels. Based on a new type of numerical differentiator, a differential algebraic observer (DAO) was proposed for estimating the system states and the generalized disturbances, including various disturbances and additive fault torques. Driven by DAOs, three improved proportional-integral- differential (PID) controllers with disturbance compensation were designed for pitch, yaw and roll control. All signals in the closed-loop system were guaranteed to be ultimately uniformly bounded by utilization of Lyapunov's indirect method. The convincing numerical simulations indicate that the proposed control scheme is successful in achieving high performance in the presence of parametric perturbations, external disturbances, noisy corruptions, and actuator faults.展开更多
Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized higher order algebraic differential equations.
This article investigates the algebraic differential independence concerning the Euler Γ-function and the function F in a certain class F which contains Dirichlet L-functions,L-functions in the extended Selberg class...This article investigates the algebraic differential independence concerning the Euler Γ-function and the function F in a certain class F which contains Dirichlet L-functions,L-functions in the extended Selberg class, or some periodic functions. We prove that the EulerΓ-function and the function F cannot satisfy any nontrivial algebraic differential equations whose coefficients are meromorphic functions Ø with ρ(Ø) < 1.展开更多
A symbolic computation method to decide whether the solutions to the system Of linear partial differential equation is complete via using differential algebra and characteristic set is presented. This is a mechanizati...A symbolic computation method to decide whether the solutions to the system Of linear partial differential equation is complete via using differential algebra and characteristic set is presented. This is a mechanization method, and it can be carried out on the computer in the Maple environment.展开更多
In this paper, by means of the normal family theory, we estimate the growth order of meromorphic solutions of some algebraic differential equations and improve the related result of Barsegian et al. [6]. We also give ...In this paper, by means of the normal family theory, we estimate the growth order of meromorphic solutions of some algebraic differential equations and improve the related result of Barsegian et al. [6]. We also give some examples to show that our results occur in some special cases.展开更多
In this article, we give a simple proof of Malmquist-Yosida type theorem of higher order algebraic differential equations, which is different from the methods as that of Gackstatter and Laine [2], and Steinmetz [12].
Aimed at the demand of contingency return at any time during the near-moon phase in the manned lunar landing missions,a fast calculation method for three-impulse contingency return trajectories is proposed.Firstly,a t...Aimed at the demand of contingency return at any time during the near-moon phase in the manned lunar landing missions,a fast calculation method for three-impulse contingency return trajectories is proposed.Firstly,a three-impulse contingency return trajectory scheme is presented by combining the Lambert transfer and maneuver at the special point.Secondly,a calculation model of three-impulse contingency return trajectories is established.Then,fast calculation methods are proposed by adopting the high-order Taylor expansion of differential algebra in the twobody trajectory dynamics model and perturbed trajectory dynamics model.Finally,the performance of the proposed methods is verified by numerical simulation.The results indicate that the fast calculation method of two-body trajectory has higher calculation efficiency compared to the semi-analytical calculation method under a certain accuracy condition.Due to its high efficiency,the characteristics of the three-impulse contingency return trajectories under different contingency scenarios are further analyzed expeditiously.These findings can be used for the design of contingency return trajectories in future manned lunar landing missions.展开更多
In this paper the method of design of kinematical and dynamical equations of mechanical systems, applied to numerical ealization, is proposed. The corresponding difference equations, which are obtained, give a guarant...In this paper the method of design of kinematical and dynamical equations of mechanical systems, applied to numerical ealization, is proposed. The corresponding difference equations, which are obtained, give a guarantee of computations with a given precision. The equations of programmed constraints and those of constraint perturbations are defined. The stability of the programmed manifold for numerical solutions of the kinematical and dynamical equations is obtained by corresponding construction of the constraint perturbation equations. The dynamical equations of system with programmed constraints are set up in the form of Lagrange’s equations in generalized coordinates. Certain inverse problems of rigid body dynamics are examined.展开更多
In this paper,we study the algebraic differential and the difference independence between the Riemann zeta function and the Euler gamma function.It is proved that the Riemann zeta function and the Euler gamma function...In this paper,we study the algebraic differential and the difference independence between the Riemann zeta function and the Euler gamma function.It is proved that the Riemann zeta function and the Euler gamma function cannot satisfy a class of nontrivial algebraic differential equations and algebraic difference equations.展开更多
The subsystem synthesis method has been developed in order to improve computational efficiency for a multibody vehicle dynamics model. Using the subsystem synthesis method, equations of motion of the base body and eac...The subsystem synthesis method has been developed in order to improve computational efficiency for a multibody vehicle dynamics model. Using the subsystem synthesis method, equations of motion of the base body and each subsystem can be solved separately. In the subsystem synthesis method, various coordinate systems can be used and various integration methods can be applied in each subsystem, as long as the effective mass matrix and the effective force vector are properly produced. In this paper, comparative study has been carried out for the subsystem synthesis method with Cartesian coordinates and with joint relative coordinates. Two different integration methods such as an explicit integrator and an explicit implicit integrator are employed. In order to see the accuracy and computational efficiency from the different models based on the different coordinate systems and different integration methods, a rough terrain run simulations has been carried out with a 6 × 6 off-road multibody vehicle model.展开更多
In this paper, we give an estimate result of Gol'dberg's theorem concern- ing the growth of meromorphic solutions of Mgebraic differential equations by using Zalcman Lemma. It is an extending result of the correspon...In this paper, we give an estimate result of Gol'dberg's theorem concern- ing the growth of meromorphic solutions of Mgebraic differential equations by using Zalcman Lemma. It is an extending result of the corresponding theorem by Yuan et al. (Yuan W J, Xiao B, Zhang J J. The general theorem of Gol'dberg concerning the growth of meromorphic solutions of algebraic differential equations. Comput. Math. Appl., 2009, 58:1788 1791). Meanwhile, we also take some examples to show that our estimate is sharp.展开更多
基金the National Natural Science Foundation of China (Grant Nos. 69774011 and 60433050).
文摘The stabilization and H∞ control of nonlinear differential algebraic systems (NDAS) are investigated using the Hamiltonian function method. Firstly, we put forward a novel dissipative Hamiltonian realization (DHR) structure and give the condition to complete the Hamiltonian realization. Then, based on the DHR, we present a criterion for the stability analysis of NDAS and construct a stabilization controller for NDAS in absence of disturbances. Finally, for NDAS in presence of disturbances, the L2 gain is analyzed via generalized Hamilton-Jacobi inequality and an H∞ control strategy is constructed. The proposed stabilization and robust controller can effectively take advantage of the structural characteristics of NDAS and is simple in form.
文摘In this paper, a parallel simulation algorithm for the control problem in differential algebraic system is presented. The error of the algorithm is estimated. The stability analysis is made for a model problem and the stability region is given. The numerical example demonstrates that the method is efficient.
基金supported by the Natural Science Foundationof China (10471065)the Natural Science Foundation of Guangdong Province (N04010474)
文摘We investigate the problem of growth order of solutions of a type of systems of non-linear algebraic differential equations, and extend some results of the growth order of solutions of algebraic differential equations to systems of algebraic differential equations.
基金Supported by the Natural Science Foundation of Guangdong Province(04010474) Supported by the Foundation of the Education Department of Anhui Province for Outstanding Young Teachers in University(2011SQRL172)
文摘This paper is concerned with the order of the solutions of systems of high-order complex algebraic differential equations.By means of Zalcman Lemma,the systems of equations of[1]is extended to more general form.
文摘The second order Euler-Lagrange equations are transformed to a set of first order differential/algebraic equations, which are then transformed to state equations by using local parameterization. The corresponding discretization method is presented, and the results can be used to implementation of various numerical integration methods. A numerical example is presented finally.
基金Supported by the National Natural Science Foundation of China(10471065) Supported by the Natural Science Foundation of Guangdong Province(04010474)
文摘Using Nevanlinna theory and value distribution of meromorphic functions and the other techniques,we investigate the counting functions of meromorphic solutions of systems of higher-order algebraic differential equations and obtain some results.
文摘In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where a(z), b_i(z) (0<- i <=2) and d_j (z) (0<=j<= 3) are allpolynomials, and this equation relates closely to the following well-known algebraic differentialequation C(z,w)w'~2 + B(z,w)w' + A(z,w) =0, where G(z,w)not ident to 0, B(z,w) and A(z,w) are threepolynomials in z and w. We give relationships between the growth of entire solutions and the degreesof the above three polynomials in detail.
基金The project Supported by NNSF of China(19971052)
文摘Using Nevanlinna theory of the value distribution of meromorphic functions, the author investigates the problem of the growth of solutions of two types of algebraic differential equation and obtains some results.
基金Foundation item: Project(2012M521538) supported by China Postdoctoral Science Foundation Project suppolted by Postdoctoral Science Foundation of Central South University
文摘A novel adaptive fault-tolerant control scheme in the differential algebraic framework was proposed for attitude control of a heavy lift launch vehicle (HLLV). By using purely mathematical transformations, the decoupled input-output representations of HLLV were derived, rendering three decoupled second-order systems, i.e., pitch, yaw and roll channels. Based on a new type of numerical differentiator, a differential algebraic observer (DAO) was proposed for estimating the system states and the generalized disturbances, including various disturbances and additive fault torques. Driven by DAOs, three improved proportional-integral- differential (PID) controllers with disturbance compensation were designed for pitch, yaw and roll control. All signals in the closed-loop system were guaranteed to be ultimately uniformly bounded by utilization of Lyapunov's indirect method. The convincing numerical simulations indicate that the proposed control scheme is successful in achieving high performance in the presence of parametric perturbations, external disturbances, noisy corruptions, and actuator faults.
文摘Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized higher order algebraic differential equations.
基金by Basic and Advanced Research Project of CQCSTC(cstc2019jcyj-msxmX0107)Fundamental Research Funds of Chongqing University of Posts and Telecommunications(CQUPT:A2018-125).
文摘This article investigates the algebraic differential independence concerning the Euler Γ-function and the function F in a certain class F which contains Dirichlet L-functions,L-functions in the extended Selberg class, or some periodic functions. We prove that the EulerΓ-function and the function F cannot satisfy any nontrivial algebraic differential equations whose coefficients are meromorphic functions Ø with ρ(Ø) < 1.
文摘A symbolic computation method to decide whether the solutions to the system Of linear partial differential equation is complete via using differential algebra and characteristic set is presented. This is a mechanization method, and it can be carried out on the computer in the Maple environment.
基金supported by the NNSF of China(11101048)supported by the Tianyuan Youth Fund of the NNSF of China(11326083)+4 种基金the Shanghai University Young Teacher Training Program(ZZSDJ12020)the Innovation Program of Shanghai Municipal Education Commission(14YZ164)the Projects(13XKJC01)from the Leading Academic Discipline Project of Shanghai Dianji Universitysupported by the NNSF of China(11271090)the NSF of Guangdong Province(S2012010010121)
文摘In this paper, by means of the normal family theory, we estimate the growth order of meromorphic solutions of some algebraic differential equations and improve the related result of Barsegian et al. [6]. We also give some examples to show that our results occur in some special cases.
基金supported by the Jiangsu Overseas Research and Training Program for University Prominent Young and Middle-aged Teachers and PresidentsNatural Science Foundation of China(11671191,11426118)+1 种基金Natural Science Foundation of Jiangsu Province(BK20140767)Qing Lan Project of Jiangsu Province
文摘In this article, we give a simple proof of Malmquist-Yosida type theorem of higher order algebraic differential equations, which is different from the methods as that of Gackstatter and Laine [2], and Steinmetz [12].
基金co-supported by the National Natural Science Foundation of China(No.12072365)the Technology Innovation Team of Manned Space Engineering,China。
文摘Aimed at the demand of contingency return at any time during the near-moon phase in the manned lunar landing missions,a fast calculation method for three-impulse contingency return trajectories is proposed.Firstly,a three-impulse contingency return trajectory scheme is presented by combining the Lambert transfer and maneuver at the special point.Secondly,a calculation model of three-impulse contingency return trajectories is established.Then,fast calculation methods are proposed by adopting the high-order Taylor expansion of differential algebra in the twobody trajectory dynamics model and perturbed trajectory dynamics model.Finally,the performance of the proposed methods is verified by numerical simulation.The results indicate that the fast calculation method of two-body trajectory has higher calculation efficiency compared to the semi-analytical calculation method under a certain accuracy condition.Due to its high efficiency,the characteristics of the three-impulse contingency return trajectories under different contingency scenarios are further analyzed expeditiously.These findings can be used for the design of contingency return trajectories in future manned lunar landing missions.
基金Supported by Russian Fund of Fund amental Investigations(Pr.990101064)and Russian Minister of Educatin
文摘In this paper the method of design of kinematical and dynamical equations of mechanical systems, applied to numerical ealization, is proposed. The corresponding difference equations, which are obtained, give a guarantee of computations with a given precision. The equations of programmed constraints and those of constraint perturbations are defined. The stability of the programmed manifold for numerical solutions of the kinematical and dynamical equations is obtained by corresponding construction of the constraint perturbation equations. The dynamical equations of system with programmed constraints are set up in the form of Lagrange’s equations in generalized coordinates. Certain inverse problems of rigid body dynamics are examined.
基金supported by Basic and Advanced Research Project of CQ CSTC(cstc2019jcyj-msxmX0107)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202000621)Fundamental Research Funds of Chongqing University of Posts and Telecommunications(CQUPT:A2018-125)。
文摘In this paper,we study the algebraic differential and the difference independence between the Riemann zeta function and the Euler gamma function.It is proved that the Riemann zeta function and the Euler gamma function cannot satisfy a class of nontrivial algebraic differential equations and algebraic difference equations.
基金supported from by Unmanned Technology Research Center (UTRC) at Korea Advanced Institute of Science and Technology (KAIST),originally funded by DAPA,ADD
文摘The subsystem synthesis method has been developed in order to improve computational efficiency for a multibody vehicle dynamics model. Using the subsystem synthesis method, equations of motion of the base body and each subsystem can be solved separately. In the subsystem synthesis method, various coordinate systems can be used and various integration methods can be applied in each subsystem, as long as the effective mass matrix and the effective force vector are properly produced. In this paper, comparative study has been carried out for the subsystem synthesis method with Cartesian coordinates and with joint relative coordinates. Two different integration methods such as an explicit integrator and an explicit implicit integrator are employed. In order to see the accuracy and computational efficiency from the different models based on the different coordinate systems and different integration methods, a rough terrain run simulations has been carried out with a 6 × 6 off-road multibody vehicle model.
基金The NSF(10471065)of Chinathe Foundation(2011SQRL172)of the Education Department of Anhui Province for Outstanding Young Teachers in Universitythe Foundation(2012xq26)of the Huaibei Normal University for Young Teachers
文摘In this paper, we give an estimate result of Gol'dberg's theorem concern- ing the growth of meromorphic solutions of Mgebraic differential equations by using Zalcman Lemma. It is an extending result of the corresponding theorem by Yuan et al. (Yuan W J, Xiao B, Zhang J J. The general theorem of Gol'dberg concerning the growth of meromorphic solutions of algebraic differential equations. Comput. Math. Appl., 2009, 58:1788 1791). Meanwhile, we also take some examples to show that our estimate is sharp.