The properties and feasibility of L-band differential InSAR for detecting and monitoring mining-induced subsidence were systematically analyzed and demonstrated. The largest monitored subsidence gradient of 7.9×1...The properties and feasibility of L-band differential InSAR for detecting and monitoring mining-induced subsidence were systematically analyzed and demonstrated. The largest monitored subsidence gradient of 7.9×10-3 and magnitude of 91 cm were firstly derived by theoretical derivation. Then, the stronger phase maintaining capacity and weaker sensitivity to minor land subsidence compared with C-band DInSAR were illustrated by phase simulation of the actual mine subsidence. Finally, the data processing procedure of two-pass DInSAR was further refined to accurately observe subsidence of a coalfield of Jining in Northern China using 7 ALOS PALSAR images. The largest monitored subsidence magnitude of 39.22 cm and other properties were better investigated by testing results interpretation and subsidence analysis, and the absolute difference varying from 0.5 mm to 17.9 mm was obtained by comparison with leveling-measured subsidence. All of results show that L-band DInSAR technique can investigate the location, amount, area and other detailed subsidence information with relatively higher accuracy.展开更多
Nowadays, the researches of using Differential Interferometric Synthetic Aperture Radar (D-InSAR) tech- nique to monitor the land subsidence are mainly on how to qualitatively analyze the subsidence areas and values, ...Nowadays, the researches of using Differential Interferometric Synthetic Aperture Radar (D-InSAR) tech- nique to monitor the land subsidence are mainly on how to qualitatively analyze the subsidence areas and values, but the analysis of subsidence process and mechanism are insufficient. In order to resolve these problems, 6 scenes of ERS1/2 images captured during 1995 and 2000 in a certain place of Jiangsu province were selected to obtain the subsidence and velocities in three time segments by ''two-pass'' D- InSAR method. Then the relationships among distributions of pumping wells, exploitation quantity of groundwater, and confined water levels were studied and the subsidence mechanism was systematically analyzed. The results show that using D-InSAR technique to monitor the deformation of large area can obtain high accuracies, the disadvantages of classical observation methods can be remedied and there is a linear relationship among the velocities of land subsidence, the water level and the exploitation quantity.展开更多
基金Projects(41274007,40874001)supported by the National Natural Science Foundations of ChinaProjects(ZR2012DM001,ZR2010DQ020)supported by Shandong Province Natural Science Foundation,China+2 种基金Project(2011B04)supported by the Key Laboratory of Surveying and Mapping Technology on Island and Reef,National Administration of Surveying,Mapping and Geoinformation,ChinaProject(2011KYTD103)supported by SDUST Research Fund,ChinaProject(BS2013F013)supported by Shangdong Province Outstanding Youth Scientist Foundation,China
文摘The properties and feasibility of L-band differential InSAR for detecting and monitoring mining-induced subsidence were systematically analyzed and demonstrated. The largest monitored subsidence gradient of 7.9×10-3 and magnitude of 91 cm were firstly derived by theoretical derivation. Then, the stronger phase maintaining capacity and weaker sensitivity to minor land subsidence compared with C-band DInSAR were illustrated by phase simulation of the actual mine subsidence. Finally, the data processing procedure of two-pass DInSAR was further refined to accurately observe subsidence of a coalfield of Jining in Northern China using 7 ALOS PALSAR images. The largest monitored subsidence magnitude of 39.22 cm and other properties were better investigated by testing results interpretation and subsidence analysis, and the absolute difference varying from 0.5 mm to 17.9 mm was obtained by comparison with leveling-measured subsidence. All of results show that L-band DInSAR technique can investigate the location, amount, area and other detailed subsidence information with relatively higher accuracy.
基金provided by the National Natural Science Foundation of China (No.41071273)the Fundamental Research Funds for the Central Universities (No. 2010QNA21)the Project Sponsored by the Scientific Research Foundation of Key Laboratory for Land Environmentand Disaster Monitoring of SBSM (No. LEDM2011B07)
文摘Nowadays, the researches of using Differential Interferometric Synthetic Aperture Radar (D-InSAR) tech- nique to monitor the land subsidence are mainly on how to qualitatively analyze the subsidence areas and values, but the analysis of subsidence process and mechanism are insufficient. In order to resolve these problems, 6 scenes of ERS1/2 images captured during 1995 and 2000 in a certain place of Jiangsu province were selected to obtain the subsidence and velocities in three time segments by ''two-pass'' D- InSAR method. Then the relationships among distributions of pumping wells, exploitation quantity of groundwater, and confined water levels were studied and the subsidence mechanism was systematically analyzed. The results show that using D-InSAR technique to monitor the deformation of large area can obtain high accuracies, the disadvantages of classical observation methods can be remedied and there is a linear relationship among the velocities of land subsidence, the water level and the exploitation quantity.