This paper presents a novel element differential method for modeling cracks in piezoelectric materials,aiming to simulate fracture behaviors and predict the fracture parameter known as the J-integral accurately.The me...This paper presents a novel element differential method for modeling cracks in piezoelectric materials,aiming to simulate fracture behaviors and predict the fracture parameter known as the J-integral accurately.The method leverages an efficient collocation technique to satisfy traction and electric charge equilibrium on the crack surface,aligning internal nodes with piezoelectric governing equations without needing integration or variational principles.It combines the strengths of the strong form collocation and finite element methods.The J-integral is derived analytically using the equivalent domain integral method,employing Green's formula and Gauss's divergence theorem to transform line integrals into area integrals for solving two-dimensional piezoelectric material problems.The accuracy of the method is validated through comparison with three typical examples,and it offers fracture prevention strategies for engineering piezoelectric structures under different electrical loading patterns.展开更多
In this paper,the convergence of the split-step theta method for stochastic differential equations is analyzed using stochastic C-stability and stochastic B-consistency.The fact that the numerical scheme,which is both...In this paper,the convergence of the split-step theta method for stochastic differential equations is analyzed using stochastic C-stability and stochastic B-consistency.The fact that the numerical scheme,which is both stochastically C-stable and stochastically B-consistent,is convergent has been proved in a previous paper.In order to analyze the convergence of the split-step theta method(θ∈[1/2,1]),the stochastic C-stability and stochastic B-consistency under the condition of global monotonicity have been researched,and the rate of convergence 1/2 has been explored in this paper.It can be seen that the convergence does not require the drift function should satisfy the linear growth condition whenθ=1/2 Furthermore,the rate of the convergence of the split-step scheme for stochastic differential equations with additive noise has been researched and found to be 1.Finally,an example is given to illustrate the convergence with the theoretical results.展开更多
In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error...In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error between the numerical solution and the exact solution is obtained,and then compared with the error formed by the difference method,it is concluded that the Lagrange interpolation method is more effective in solving the variable coefficient ordinary differential equation.展开更多
Aimed at the demand of contingency return at any time during the near-moon phase in the manned lunar landing missions,a fast calculation method for three-impulse contingency return trajectories is proposed.Firstly,a t...Aimed at the demand of contingency return at any time during the near-moon phase in the manned lunar landing missions,a fast calculation method for three-impulse contingency return trajectories is proposed.Firstly,a three-impulse contingency return trajectory scheme is presented by combining the Lambert transfer and maneuver at the special point.Secondly,a calculation model of three-impulse contingency return trajectories is established.Then,fast calculation methods are proposed by adopting the high-order Taylor expansion of differential algebra in the twobody trajectory dynamics model and perturbed trajectory dynamics model.Finally,the performance of the proposed methods is verified by numerical simulation.The results indicate that the fast calculation method of two-body trajectory has higher calculation efficiency compared to the semi-analytical calculation method under a certain accuracy condition.Due to its high efficiency,the characteristics of the three-impulse contingency return trajectories under different contingency scenarios are further analyzed expeditiously.These findings can be used for the design of contingency return trajectories in future manned lunar landing missions.展开更多
This paper investigates the active traveling wave vibration control of an elastic supported rotating porous aluminium conical shell(CS)under impact loading.Piezoelectric smart materials in the form of micro fiber comp...This paper investigates the active traveling wave vibration control of an elastic supported rotating porous aluminium conical shell(CS)under impact loading.Piezoelectric smart materials in the form of micro fiber composites(MFCs)are used as actuators and sensors.To this end,a metal pore truncated CS with MFCs attached to its surface is considered.Adding artificial virtual springs at two edges of the truncated CS achieves various elastic supported boundaries by changing the spring stiffness.Based on the first-order shear deformation theory(FSDT),minimum energy principle,and artificial virtual spring technology,the theoretical formulations considering the electromechanical coupling are derived.The comparison of the natural frequency of the present results with the natural frequencies reported in previous literature evaluates the accuracy of the present approach.To study the vibration control,the integral quadrature method in conjunction with the differential quadrature approximation in the length direction is used to discretize the partial differential dynamical system to form a set of ordinary differential equations.With the aid of the velocity negative feedback method,both the time history and the input control voltage on the actuator are demonstrated to present the effects of velocity feedback gain,pore distribution type,semi-vertex angle,impact loading,and rotational angular velocity on the traveling wave vibration control.展开更多
This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredepend...This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredependent static flexural behavior of a functionally graded(FG)microplate subjected to mechanical loads and placed under full simple supports.In the formulation,we select the transverse stress and displacement components and their first-and second-order derivatives as primary variables.Then,we set up the differential reproducing conditions(DRCs)to obtain the shape functions of the Hermitian C^(2) differential reproducing kernel(DRK)interpolant’s derivatives without using direct differentiation.The interpolant’s shape function is combined with a primitive function that possesses Kronecker delta properties and an enrichment function that constituents DRCs.As a result,the primary variables and their first-and second-order derivatives satisfy the nodal interpolation properties.Subsequently,incorporating ourHermitianC^(2)DRKinterpolant intothe strong formof the3DCCST,we develop a DRKIM method to analyze the FG microplate’s 3D microstructure-dependent static flexural behavior.The Hermitian C^(2) DRKIM method is confirmed to be accurate and fast in its convergence rate by comparing the solutions it produces with the relevant 3D solutions available in the literature.Finally,the impact of essential factors on the transverse stresses,in-plane stresses,displacements,and couple stresses that are induced in the loaded microplate is examined.These factors include the length-to-thickness ratio,the material length-scale parameter,and the inhomogeneity index,which appear to be significant.展开更多
This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node...This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node distribution.Firstly,based on the first-order shear deformation theory,the governing equation of free vibration of a functionally graded beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam axial displacement,transverse displacement,and cross-sectional rotation angle by considering the effects of shear deformation and rotational inertia of the beam cross-section.Then,ignoring the shear deformation of the beam section and only considering the effect of the rotational inertia of the section,the governing equation of the beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam transverse displacement.Based on the differential quadrature method theory,the eigenvalue problem of ordinary differential equations is transformed into the eigenvalue problem of standard generalized algebraic equations.Finally,the first several natural frequencies of the beam can be calculated.The feasibility and accuracy of the improved DQM are verified using the finite element method(FEM)and combined with the results of relevant literature.展开更多
Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridyna...Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed.展开更多
To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’...To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’s and Taylor’s series methods. We have carried out a descriptive analysis using the MATLAB software. Picard’s and Taylor’s techniques for deriving numerical solutions are both strong mathematical instruments that behave similarly. All first-order differential equations in standard form that have a constant function on the right-hand side share this similarity. As a result, we can conclude that Taylor’s approach is simpler to use, more effective, and more accurate. We will contrast Rung Kutta and Taylor’s methods in more detail in the following section.展开更多
In this article, a modified version of the Differential Transform Method (DTM) is employed to examine soliton pulse propagation in a weakly non-local parabolic law medium and wave propagation in optical fibers. This s...In this article, a modified version of the Differential Transform Method (DTM) is employed to examine soliton pulse propagation in a weakly non-local parabolic law medium and wave propagation in optical fibers. This semi-analytic method has the advantage of overcoming the obstacle of the hardest nonlinear terms and is used to explain the origin of the bright and dark soliton solutions through the Schrödinger equation in its non-local form and the Radhakrishnan-Kundu-Laksmannan (RKL) equation. Numerical examples demonstrate the effectiveness of this method.展开更多
The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and ...The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations.展开更多
In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled b...In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.展开更多
This study focuses on numerically investigating thermal behavior within a differentially heated cavity filled with nanofluid with and without obstacles.Numerical comparison with previous studies proves the consistency...This study focuses on numerically investigating thermal behavior within a differentially heated cavity filled with nanofluid with and without obstacles.Numerical comparison with previous studies proves the consistency and efficacy of the lattice Boltzmann method associated with a single relaxation time and its possibility of studying the nanofluid and heat transfer with high accuracy.Key parameters,including nanoparticle type and concentration,Rayleigh number,fluid basis,and obstacle position and dimension,were examined to identify optimal conditions for enhancing heat transfer quality.Principal findings indicated that increasing the Rayleigh number boosts buoyancy forces and alters vortex structure,improving the heat transfer efficiency across all nanofluid configu-rations.Moreover,nanoparticles with higher thermal conductivity,particularly Cu nanoparticles,exhibit slight improvements in heat transfer quality compared to Al2O3 nanoparticles,while higher nanoparticle concentrations generally lead to enhanced heat transfer effectiveness.Water-Cu nanofluids also demonstrate superior heat transfer performance over ethylene glycol-Cu nanofluids.Furthermore,the presence of obstacles at cavity extremities hampers overall heat transfer,whereas those positioned centrally augment heat exchange rates.This research offers valuable insights into optimizing convective heat transfer in nanofluid-filled cavities crucial for various engineering applications.展开更多
In soil water infiltration problems,the basic control equation,i.e.,Richards equation is a nonlinear partial differential equation(PDE),and is difficult to solve.In this study,a finite difference lattice Boltzmann met...In soil water infiltration problems,the basic control equation,i.e.,Richards equation is a nonlinear partial differential equation(PDE),and is difficult to solve.In this study,a finite difference lattice Boltzmann method(FDLBM),in which the D1Q5 model is employed as the lattice layout scheme,is developed to solve the 1-D Richards equation with water content as the main variable in unsaturated soil.The relationship between the lattice Boltzmann equation(LBE)and the Richards equation is established using a multiscale expansion technique.Numerical examples show that LBM is suitable to solve Richards equation in unsaturated soil water infiltration problems.展开更多
Streptococcus suis(S.suis)is a major disease impacting pig farming globally.It can also be transferred to humans by eating raw pork.A comprehensive study was recently carried out to determine the indices throughmultip...Streptococcus suis(S.suis)is a major disease impacting pig farming globally.It can also be transferred to humans by eating raw pork.A comprehensive study was recently carried out to determine the indices throughmultiple geographic regions in China.Methods:The well-posed theorems were employed to conduct a thorough analysis of the model’s feasible features,including positivity,boundedness equilibria,reproduction number,and parameter sensitivity.Stochastic Euler,Runge Kutta,and EulerMaruyama are some of the numerical techniques used to replicate the behavior of the streptococcus suis infection in the pig population.However,the dynamic qualities of the suggested model cannot be restored using these techniques.Results:For the stochastic delay differential equations of the model,the non-standard finite difference approach in the sense of stochasticity is developed to avoid several problems such as negativity,unboundedness,inconsistency,and instability of the findings.Results from traditional stochastic methods either converge conditionally or diverge over time.The stochastic non-negative step size convergence nonstandard finite difference(NSFD)method unconditionally converges to the model’s true states.Conclusions:This study improves our understanding of the dynamics of streptococcus suis infection using versions of stochastic with delay approaches and opens up new avenues for the study of cognitive processes and neuronal analysis.Theplotted interaction behaviour and new solution comparison profiles.展开更多
基金Financial support of this work by the Technology Development program of China(Grant No.2022204B003)National Natural Science Foundation of China(12272083 and 12172078)the Fundamental Research Funds for the Central Universities(DUT24YJ136)is gratefully acknowledged.
文摘This paper presents a novel element differential method for modeling cracks in piezoelectric materials,aiming to simulate fracture behaviors and predict the fracture parameter known as the J-integral accurately.The method leverages an efficient collocation technique to satisfy traction and electric charge equilibrium on the crack surface,aligning internal nodes with piezoelectric governing equations without needing integration or variational principles.It combines the strengths of the strong form collocation and finite element methods.The J-integral is derived analytically using the equivalent domain integral method,employing Green's formula and Gauss's divergence theorem to transform line integrals into area integrals for solving two-dimensional piezoelectric material problems.The accuracy of the method is validated through comparison with three typical examples,and it offers fracture prevention strategies for engineering piezoelectric structures under different electrical loading patterns.
基金Supported by the National Natural Science Foundation of China (Grant No. 12301521)the Natural Science Foundation of Shanxi Province (Grant No. 20210302124081)。
文摘In this paper,the convergence of the split-step theta method for stochastic differential equations is analyzed using stochastic C-stability and stochastic B-consistency.The fact that the numerical scheme,which is both stochastically C-stable and stochastically B-consistent,is convergent has been proved in a previous paper.In order to analyze the convergence of the split-step theta method(θ∈[1/2,1]),the stochastic C-stability and stochastic B-consistency under the condition of global monotonicity have been researched,and the rate of convergence 1/2 has been explored in this paper.It can be seen that the convergence does not require the drift function should satisfy the linear growth condition whenθ=1/2 Furthermore,the rate of the convergence of the split-step scheme for stochastic differential equations with additive noise has been researched and found to be 1.Finally,an example is given to illustrate the convergence with the theoretical results.
文摘In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error between the numerical solution and the exact solution is obtained,and then compared with the error formed by the difference method,it is concluded that the Lagrange interpolation method is more effective in solving the variable coefficient ordinary differential equation.
基金co-supported by the National Natural Science Foundation of China(No.12072365)the Technology Innovation Team of Manned Space Engineering,China。
文摘Aimed at the demand of contingency return at any time during the near-moon phase in the manned lunar landing missions,a fast calculation method for three-impulse contingency return trajectories is proposed.Firstly,a three-impulse contingency return trajectory scheme is presented by combining the Lambert transfer and maneuver at the special point.Secondly,a calculation model of three-impulse contingency return trajectories is established.Then,fast calculation methods are proposed by adopting the high-order Taylor expansion of differential algebra in the twobody trajectory dynamics model and perturbed trajectory dynamics model.Finally,the performance of the proposed methods is verified by numerical simulation.The results indicate that the fast calculation method of two-body trajectory has higher calculation efficiency compared to the semi-analytical calculation method under a certain accuracy condition.Due to its high efficiency,the characteristics of the three-impulse contingency return trajectories under different contingency scenarios are further analyzed expeditiously.These findings can be used for the design of contingency return trajectories in future manned lunar landing missions.
基金Supported by the National Natural Science Foundation of China(Nos.12272056 and 11832002)。
文摘This paper investigates the active traveling wave vibration control of an elastic supported rotating porous aluminium conical shell(CS)under impact loading.Piezoelectric smart materials in the form of micro fiber composites(MFCs)are used as actuators and sensors.To this end,a metal pore truncated CS with MFCs attached to its surface is considered.Adding artificial virtual springs at two edges of the truncated CS achieves various elastic supported boundaries by changing the spring stiffness.Based on the first-order shear deformation theory(FSDT),minimum energy principle,and artificial virtual spring technology,the theoretical formulations considering the electromechanical coupling are derived.The comparison of the natural frequency of the present results with the natural frequencies reported in previous literature evaluates the accuracy of the present approach.To study the vibration control,the integral quadrature method in conjunction with the differential quadrature approximation in the length direction is used to discretize the partial differential dynamical system to form a set of ordinary differential equations.With the aid of the velocity negative feedback method,both the time history and the input control voltage on the actuator are demonstrated to present the effects of velocity feedback gain,pore distribution type,semi-vertex angle,impact loading,and rotational angular velocity on the traveling wave vibration control.
基金supported by a grant from the National Science and Technology Council of the Republic of China(Grant Number:MOST 112-2221-E-006-048-MY2).
文摘This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredependent static flexural behavior of a functionally graded(FG)microplate subjected to mechanical loads and placed under full simple supports.In the formulation,we select the transverse stress and displacement components and their first-and second-order derivatives as primary variables.Then,we set up the differential reproducing conditions(DRCs)to obtain the shape functions of the Hermitian C^(2) differential reproducing kernel(DRK)interpolant’s derivatives without using direct differentiation.The interpolant’s shape function is combined with a primitive function that possesses Kronecker delta properties and an enrichment function that constituents DRCs.As a result,the primary variables and their first-and second-order derivatives satisfy the nodal interpolation properties.Subsequently,incorporating ourHermitianC^(2)DRKinterpolant intothe strong formof the3DCCST,we develop a DRKIM method to analyze the FG microplate’s 3D microstructure-dependent static flexural behavior.The Hermitian C^(2) DRKIM method is confirmed to be accurate and fast in its convergence rate by comparing the solutions it produces with the relevant 3D solutions available in the literature.Finally,the impact of essential factors on the transverse stresses,in-plane stresses,displacements,and couple stresses that are induced in the loaded microplate is examined.These factors include the length-to-thickness ratio,the material length-scale parameter,and the inhomogeneity index,which appear to be significant.
基金Anhui Provincial Natural Science Foundation(2308085QD124)Anhui Province University Natural Science Research Project(GrantNo.2023AH050918)The University Outstanding Youth Talent Support Program of Anhui Province.
文摘This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node distribution.Firstly,based on the first-order shear deformation theory,the governing equation of free vibration of a functionally graded beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam axial displacement,transverse displacement,and cross-sectional rotation angle by considering the effects of shear deformation and rotational inertia of the beam cross-section.Then,ignoring the shear deformation of the beam section and only considering the effect of the rotational inertia of the section,the governing equation of the beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam transverse displacement.Based on the differential quadrature method theory,the eigenvalue problem of ordinary differential equations is transformed into the eigenvalue problem of standard generalized algebraic equations.Finally,the first several natural frequencies of the beam can be calculated.The feasibility and accuracy of the improved DQM are verified using the finite element method(FEM)and combined with the results of relevant literature.
文摘Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed.
文摘To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’s and Taylor’s series methods. We have carried out a descriptive analysis using the MATLAB software. Picard’s and Taylor’s techniques for deriving numerical solutions are both strong mathematical instruments that behave similarly. All first-order differential equations in standard form that have a constant function on the right-hand side share this similarity. As a result, we can conclude that Taylor’s approach is simpler to use, more effective, and more accurate. We will contrast Rung Kutta and Taylor’s methods in more detail in the following section.
文摘In this article, a modified version of the Differential Transform Method (DTM) is employed to examine soliton pulse propagation in a weakly non-local parabolic law medium and wave propagation in optical fibers. This semi-analytic method has the advantage of overcoming the obstacle of the hardest nonlinear terms and is used to explain the origin of the bright and dark soliton solutions through the Schrödinger equation in its non-local form and the Radhakrishnan-Kundu-Laksmannan (RKL) equation. Numerical examples demonstrate the effectiveness of this method.
文摘The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations.
文摘In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.
文摘This study focuses on numerically investigating thermal behavior within a differentially heated cavity filled with nanofluid with and without obstacles.Numerical comparison with previous studies proves the consistency and efficacy of the lattice Boltzmann method associated with a single relaxation time and its possibility of studying the nanofluid and heat transfer with high accuracy.Key parameters,including nanoparticle type and concentration,Rayleigh number,fluid basis,and obstacle position and dimension,were examined to identify optimal conditions for enhancing heat transfer quality.Principal findings indicated that increasing the Rayleigh number boosts buoyancy forces and alters vortex structure,improving the heat transfer efficiency across all nanofluid configu-rations.Moreover,nanoparticles with higher thermal conductivity,particularly Cu nanoparticles,exhibit slight improvements in heat transfer quality compared to Al2O3 nanoparticles,while higher nanoparticle concentrations generally lead to enhanced heat transfer effectiveness.Water-Cu nanofluids also demonstrate superior heat transfer performance over ethylene glycol-Cu nanofluids.Furthermore,the presence of obstacles at cavity extremities hampers overall heat transfer,whereas those positioned centrally augment heat exchange rates.This research offers valuable insights into optimizing convective heat transfer in nanofluid-filled cavities crucial for various engineering applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.12461084)supported by the Natural Science Foundation of Ningxia(Grant No.2023AAC02049)+3 种基金the Graduate Innovation Program of North Minzu University(Grant No.YCX24072)the Science and Technology Innovation Team of Water Resource Efficient Applications and Ecological Remediation(Grant No.2024CXTD015)the Innovation Team of North Minzu University(Grant No.2022PT_S02)the Leading Personnel of State Ethnic Affairs Commission,China(Grant No.113114000706).
文摘In soil water infiltration problems,the basic control equation,i.e.,Richards equation is a nonlinear partial differential equation(PDE),and is difficult to solve.In this study,a finite difference lattice Boltzmann method(FDLBM),in which the D1Q5 model is employed as the lattice layout scheme,is developed to solve the 1-D Richards equation with water content as the main variable in unsaturated soil.The relationship between the lattice Boltzmann equation(LBE)and the Richards equation is established using a multiscale expansion technique.Numerical examples show that LBM is suitable to solve Richards equation in unsaturated soil water infiltration problems.
基金supported by the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia[KFU250259].
文摘Streptococcus suis(S.suis)is a major disease impacting pig farming globally.It can also be transferred to humans by eating raw pork.A comprehensive study was recently carried out to determine the indices throughmultiple geographic regions in China.Methods:The well-posed theorems were employed to conduct a thorough analysis of the model’s feasible features,including positivity,boundedness equilibria,reproduction number,and parameter sensitivity.Stochastic Euler,Runge Kutta,and EulerMaruyama are some of the numerical techniques used to replicate the behavior of the streptococcus suis infection in the pig population.However,the dynamic qualities of the suggested model cannot be restored using these techniques.Results:For the stochastic delay differential equations of the model,the non-standard finite difference approach in the sense of stochasticity is developed to avoid several problems such as negativity,unboundedness,inconsistency,and instability of the findings.Results from traditional stochastic methods either converge conditionally or diverge over time.The stochastic non-negative step size convergence nonstandard finite difference(NSFD)method unconditionally converges to the model’s true states.Conclusions:This study improves our understanding of the dynamics of streptococcus suis infection using versions of stochastic with delay approaches and opens up new avenues for the study of cognitive processes and neuronal analysis.Theplotted interaction behaviour and new solution comparison profiles.