Based on the stability theory of the linear fractional order system, projective synchronization of a complex network is studied in the paper, and the coupling functions of the connected nodes are identified. With this...Based on the stability theory of the linear fractional order system, projective synchronization of a complex network is studied in the paper, and the coupling functions of the connected nodes are identified. With this method, the projective synchronization of the network with different fractional order chaos nodes can be achieved, besides, the number of the nodes does not affect the stability of the whole network. In the numerical simulations, the chaotic fractional order Lu system, Liu system and Coullet system are chosen as examples to show the effectiveness of the scheme.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.60573172and60973152)the Superior University Doctor Subject Special Scientific Research Foundation of China(Grant No.20070141014)the Natural Science Foundation of Liaoning Province,China(Grant No.20082165)
文摘Based on the stability theory of the linear fractional order system, projective synchronization of a complex network is studied in the paper, and the coupling functions of the connected nodes are identified. With this method, the projective synchronization of the network with different fractional order chaos nodes can be achieved, besides, the number of the nodes does not affect the stability of the whole network. In the numerical simulations, the chaotic fractional order Lu system, Liu system and Coullet system are chosen as examples to show the effectiveness of the scheme.