Based on the unified Hauser–Feshbach and exciton model,which can describe the particle emission processes between discrete energy levels with energy,angular momentum,and parity conservations,a statistical theory of l...Based on the unified Hauser–Feshbach and exciton model,which can describe the particle emission processes between discrete energy levels with energy,angular momentum,and parity conservations,a statistical theory of light nucleus reaction(STLN)is developed to calculate the double-differential cross-sections of the outgoing neutron and light charged particles for the proton-induced^(6) Li reaction.A significant difference is observed between the p+^(6) Li and p+^(7) Li reactions owing to the discrepancies in the energy-level structures of the targets.The reaction channels,including sequential and simultaneous emission processes,are analyzed in detail.Taking the double-differential cross-sections of the outgoing proton as an example,the influence of contaminations(such as^(1) H,^(7)Li,^(12)C,and^(16)O)on the target is identified in terms of the kinetic energy of the first emitted particles.The optical potential parameters of the proton are obtained by fitting the elastic scattering differential cross-sections.The calculated total double-differential cross-sections of the outgoing proton and deuteron at E_(p)=14 MeV agree well with the experimental data for different outgoing angles.Simultaneously,the mixed double differential cross-sections of^(3) He andαare in good agreement with the measurements.The agreement between the measured data and calculated results indicates that the two-body and three-body breakup reactions need to be considered,and the pre-equilibrium reaction mechanism dominates the reaction processes.Based on the STLN model,a PLUNF code for the p+^(6) Li reaction is developed to obtain an ENDF-6-formatted file of the double-differential cross-sections of the nucleon and light composite charged particles.展开更多
Objective Magnetoencephalography(MEG),a non-invasive neuroimaging technique,meticulously captures the magnetic fields emanating from brain electrical activity.Compared with MEG based on superconducting quantum interfe...Objective Magnetoencephalography(MEG),a non-invasive neuroimaging technique,meticulously captures the magnetic fields emanating from brain electrical activity.Compared with MEG based on superconducting quantum interference devices(SQUID),MEG based on optically pump magnetometer(OPM)has the advantages of higher sensitivity,better spatial resolution and lower cost.However,most of the current studies are clinical studies,and there is a lack of animal studies on MEG based on OPM technology.Pain,a multifaceted sensory and emotional phenomenon,induces intricate alterations in brain activity,exhibiting notable sex differences.Despite clinical revelations of pain-related neuronal activity through MEG,specific properties remain elusive,and comprehensive laboratory studies on pain-associated brain activity alterations are lacking.The aim of this study was to investigate the effects of inflammatory pain(induced by Complete Freund’s Adjuvant(CFA))on brain activity in a rat model using the MEG technique,to analysis changes in brain activity during pain perception,and to explore sex differences in pain-related MEG signaling.Methods This study utilized adult male and female Sprague-Dawley rats.Inflammatory pain was induced via intraplantar injection of CFA(100μl,50%in saline)in the left hind paw,with control groups receiving saline.Pain behavior was assessed using von Frey filaments at baseline and 1 h post-injection.For MEG recording,anesthetized rats had an OPM positioned on their head within a magnetic shield,undergoing two 15-minute sessions:a 5-minute baseline followed by a 10-minute mechanical stimulation phase.Data analysis included artifact removal and time-frequency analysis of spontaneous brain activity using accumulated spectrograms,generating spectrograms focused on the 4-30 Hz frequency range.Results MEG recordings in anesthetized rats during resting states and hind paw mechanical stimulation were compared,before and after saline/CFA injections.Mechanical stimulation elevated alpha activity in both male and female rats pre-and post-saline/CFA injections.Saline/CFA injections augmented average power in both sexes compared to pre-injection states.Remarkably,female rats exhibited higher average spectral power 1 h after CFA injection than after saline injection during resting states.Furthermore,despite comparable pain thresholds measured by classical pain behavioral tests post-CFA treatment,female rats displayed higher average power than males in the resting state after CFA injection.Conclusion These results imply an enhanced perception of inflammatory pain in female rats compared to their male counterparts.Our study exhibits sex differences in alpha activities following CFA injection,highlighting heightened brain alpha activity in female rats during acute inflammatory pain in the resting state.Our study provides a method for OPM-based MEG recordings to be used to study brain activity in anaesthetized animals.In addition,the findings of this study contribute to a deeper understanding of pain-related neural activity and pain sex differences.展开更多
Rack-level loop thermosyphons have been widely adopted as a solution to data centers’growing energy demands.While numerous studies have highlighted the heat transfer performance and energy-saving benefits of this sys...Rack-level loop thermosyphons have been widely adopted as a solution to data centers’growing energy demands.While numerous studies have highlighted the heat transfer performance and energy-saving benefits of this system,its economic feasibility,water usage effectiveness(WUE),and carbon usage effectiveness(CUE)remain underexplored.This study introduces a comprehensive evaluation index designed to assess the applicability of the rack-level loop thermosyphon system across various computing hub nodes.The air wet bulb temperature Ta,w was identified as the most significant factor influencing the variability in the combination of PUE,CUE,and WUE values.The results indicate that the rack-level loop thermosyphon system achieves the highest score in Lanzhou(94.485)and the lowest in Beijing(89.261)based on the comprehensive evaluation index.The overall ranking of cities according to the comprehensive evaluation score is as follows:Gansu hub(Lanzhou)>Inner Mongolia hub(Hohhot)>Ningxia hub(Yinchuan)>Yangtze River Delta hub(Shanghai)>Chengdu Chongqing hub(Chongqing)>Guangdong-Hong Kong-Macao Greater Bay Area hub(Guangzhou)>Guizhou hub(Guiyang)>Beijing-Tianjin-Hebei hub(Beijing).Furthermore,Hohhot,Lanzhou,and Yinchuan consistently rank among the top three cities for comprehensive scores across all load rates,while Guiyang(at a 25%load rate),Guangzhou(at a 50%load rate),and Beijing(at 75%and 100%load rates)exhibited the lowest comprehensive scores.展开更多
Reasonable greening design can effectively alleviate campus heat environment issues.This study uses the ENVI-met numerical model,along with in-situ observations and simulations,to analyze the thermal environment under...Reasonable greening design can effectively alleviate campus heat environment issues.This study uses the ENVI-met numerical model,along with in-situ observations and simulations,to analyze the thermal environment under three different greening schemes in typical areas of the Guangzhou University campus.The results indicate that the outdoor thermal environment is significantly influenced by the underlying surface materials and vegetation.The temperature of brick-paved surface is 0.9℃higher than that of natural soil surfaces under tree shade.Numerical simulations further confirm that increasing vegetation coverage effectively reduces outdoor air temperature.When the greening rate increases to 40%,the outdoor average temperature decreases by 0.7℃and relative humidity increases by approximately 4%,while wind speed remains minimal change.The cooling effect of vegetation is found to extend vertically to an altitude of 13 m.As the greening rate increases from 15%to 40%,the Mean Radiant Temperature(MRT)decreases from 50.6℃to 28.9℃,which is lower than the average ambient temperature,indicating improved thermal conditions.The Physiological Equivalent Temperature(PET)decreases from 40.2℃to 30.0℃,with the proportion of the areas classified as″very hot″reducing by 36.8%,significantly improving thermal comfort across most areas.Therefore,changing the ground material and greening landscape design can effectively alter the outdoor wind and thermal environment of the campus,thereby enhancing the thermal comfort for the campus community.展开更多
Group living is widespread across diverse taxa,and the mechanisms underlying collective decision-making in contexts of variable role division are critical for understanding the dynamics of group stability.While studie...Group living is widespread across diverse taxa,and the mechanisms underlying collective decision-making in contexts of variable role division are critical for understanding the dynamics of group stability.While studies on collective behavior in small animals such as fish and insects are well-established,similar research on large wild animals remains challenging due to the limited availability of sufficient and systematic field data.Here,we aimed to explore the collective decision-making pattern and its sexual difference for the dimorphic Tibetan antelopes Pantholops hodgsonii(chiru)in Xizang Autonomous Region,China,by analyzing individual leadership distribution,as well as the joining process,considering factors such as calving stages and joining ranks.The distinct correlations of decision participants’ratio with group size and decision duration underscore the trade-off between accuracy and speed in decision-making.Male antelopes display a more democratic decision-making pattern,while females exhibit more prompt responses after calving at an early stage.This study uncovers a partially shared decision-making strategy among Tibetan antelopes,suggesting flexible self-organization in group decision processes aligned with animal life cycle progression.展开更多
The main purpose of this paper is to try to find all entire solutions of the Fermat type difference-differential equation[p1(z)f(z+c)]^(2)+[p2(z)f(z)+p3(z)f′(z)]^(2)=p(z);or[p1(z)f(z)]^(2)+[p2(z)f′(z)+p3(z)f(z+c)]^(...The main purpose of this paper is to try to find all entire solutions of the Fermat type difference-differential equation[p1(z)f(z+c)]^(2)+[p2(z)f(z)+p3(z)f′(z)]^(2)=p(z);or[p1(z)f(z)]^(2)+[p2(z)f′(z)+p3(z)f(z+c)]^(2)=p(z)or[p1(z)f′(z)]^(2)+[p2(z)f(z+c)+p3(z)f(z)]^(2)=p(z);where c is a nonzero complex number,p1;p2 and p3 are polynomials in C satisfying p1p3■0;and p is a nonzero irreducible polynomial in C.展开更多
Casting experiments and macro-micro numerical simulations were conducted to examine the microstructure characteristics of K439B nickel-based superalloy casting with varying cross-sections during the gravity investment...Casting experiments and macro-micro numerical simulations were conducted to examine the microstructure characteristics of K439B nickel-based superalloy casting with varying cross-sections during the gravity investment casting process.Firstly,microstructure analysis was conducted on the casting using scanning electron microscopy(SEM)and electron backscatter diffraction(EBSD).Subsequently,calculation of the phase diagram and differential scanning calorimetry(DSC)tests were conducted to determine the macro-micro simulation parameters of the K439B alloy,and the cellular automaton finite element(CAFE)method was employed to develop macro-micro modeling of K439B nickel-based superalloy casting with varying cross-sections.The experimental results revealed that the ratio of the average grain area increased from the edge to the center of the sections as the ratio of the cross-sectional area increased.The simulation results indicated that the average grain area increased from 0.885 to 0.956 mm^(2)as the ratio of the cross-sections increased from 6꞉1 to 12꞉1.The experiment and simulation results showed that the grain size became more heterogeneous and the grain shape became more irregular with an increase in the ratio of the cross-sectional area of the casting.CAFE modeling was an effective method to simulate the microstructure evolution of the K439B alloy and ensure the accuracy of the simulation.展开更多
This paper explores the construction methods of“Same Course with Different Structures”curriculum resources based on knowledge graphs and their applications in the field of education.By reviewing the theoretical foun...This paper explores the construction methods of“Same Course with Different Structures”curriculum resources based on knowledge graphs and their applications in the field of education.By reviewing the theoretical foundations of knowledge graph technology,the“Same Course with Different Structures”teaching model,and curriculum resource construction,and integrating existing literature,the paper analyzes the methods for constructing curriculum resources using knowledge graphs.The research finds that knowledge graphs can effectively integrate multi-source data,support personalized teaching and precision education,and provide both a scientific foundation and technical support for the development of curriculum resources within the“Same Course with Different Structures”framework.展开更多
In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error...In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error between the numerical solution and the exact solution is obtained,and then compared with the error formed by the difference method,it is concluded that the Lagrange interpolation method is more effective in solving the variable coefficient ordinary differential equation.展开更多
Planetary surfaces,shaped by billions of years of geologic evolution,display numerous impact craters whose distribution of size,density,and spatial arrangement reveals the celestial body's history.Identifying thes...Planetary surfaces,shaped by billions of years of geologic evolution,display numerous impact craters whose distribution of size,density,and spatial arrangement reveals the celestial body's history.Identifying these craters is essential for planetary science and is currently mainly achieved with deep learning-driven detection algorithms.However,because impact crater characteristics are substantially affected by the geologic environment,surface materials,and atmospheric conditions,the performance of deep learning models can be inconsistent between celestial bodies.In this paper,we first examine how the surface characteristics of the Moon,Mars,and Earth,along with the differences in their impact crater features,affect model performance.Then,we compare crater detection across celestial bodies by analyzing enhanced convolutional neural networks and U-shaped Convolutional Neural Network-based models to highlight how geology,data,and model design affect accuracy and generalization.Finally,we address current deep learning challenges,suggest directions for model improvement,such as multimodal data fusion and cross-planet learning and list available impact crater databases.This review can provide necessary technical support for deep space exploration and planetary science,as well as new ideas and directions for future research on automatic detection of impact craters on celestial body surfaces and on planetary geology.展开更多
Improving the comprehensive performance of anion exchange membranes(AEMs)has a decisive impact on the wide application of anion exchange membrane fuel cells(AEMFCs).Herein,we prepared a series of new poly(phenanthrene...Improving the comprehensive performance of anion exchange membranes(AEMs)has a decisive impact on the wide application of anion exchange membrane fuel cells(AEMFCs).Herein,we prepared a series of new poly(phenanthrene-co-p-terphenyl piperidinium)(PPTP3F_(x)-DIL)AEMs with different fluorinated monomers for high performance AEMFCs.The polymerization of fluorinated monomers with other aryl monomers can effectively promote the separation of microphase in the membrane.It also has a high OH-conductivity at a low swelling.The membrane(PPTP3F_(4)-DIL)prepared by polycondensation of 2,2,2-trifluoro-1-(p-tolyl)ethan 1-one monomer achieves a high conductivity of 168.5 mS cm^(-1)at 80℃.At the same time,the water uptake is 40.0%and the swelling ratio is 12.1%.In addition,these membranes also have good mechanical properties and alkaline stability.After 1440 h of treatment in a NaOH(2 M)solution at 80℃,PPTP3F_(x)-DIL still maintains excellent tensile strength(>30.3 MPa)and elongation at break(>43.4%),and the conductivity retention of the PPTP3F_(1)-DIL membrane is 90.3%.The PPTP3F_(4)-DIL-based single cell exhibits a high peak power density(918.1 mW cm^(-2))and excellent durability(100 h)at 80℃.Therefore,these PPTP3F_(x)-DIL membranes have a wide range of applications in AEMFCs.展开更多
Nicotine,ethanol,and caffeine are the most common exogenous substances in the men’s living environment,but their effects on the cartilage quality in the father and offspring have not been reported.According to the av...Nicotine,ethanol,and caffeine are the most common exogenous substances in the men’s living environment,but their effects on the cartilage quality in the father and offspring have not been reported.According to the average daily intake of adult men,we constructed a male rat model of paternal mixed exposure(PME)to low-dose nicotine(0.1 mg/(kg·day)),ethanol(0.5 g/(kg·day)),and caffeine(7.5 mg/(kg·day))for 8 weeks.Then,the male rats mated with normal female rats to obtain offspring.The results showed that PME reduced the cartilage quality of paternal and offspring rats.Among them,the paternal cartilage was damaged by enhancing matrix degradation,while the offspring cartilage was damaged by reducing matrix synthesis.The cartilage damage in male offspring rats was more evident than in female offspring.It was further confirmed that differential GC regulation mechanisms were the main reasons for the intergenerational differential damage of paternal/offspring cartilage quality caused by PME.In addition,the androgen receptor(AR)and estrogen receptor beta(ERβ)mediated the sex difference of PME-induced fetal cartilage dysplasia by affecting the binding degree of GR/P300.This study provided a theoretical and experimental basis for guiding male healthy lifestyle and exploring early prevention and treatment strategies for paternal diseases.展开更多
The main purpose of this research is to optimize the hydrothermal performance of a dimpled tube by augmenting the surface area for heat transmission and thermal layer cracking.To achieve that,the impact of different d...The main purpose of this research is to optimize the hydrothermal performance of a dimpled tube by augmenting the surface area for heat transmission and thermal layer cracking.To achieve that,the impact of different dimple diameters and their distribution along the dimpled tube was investigated numerically using the ANSYS Fluent 2022 R1 software by considering two models,A and B.Both models consist of three regions;the first,second,and third have dimple diameters of 3,2,&1 mm,respectively.Model A included an in-line dimple arrangement,while model B involved a staggered dimple arrangement.The finite volume method(FVM)was used in the modeling techniques to address the turbulent flow problem,which ranged in this investigation from Re of 3000 to 8000.The cooling fluid used in this investigation is water,which concentrated primarily on single-phase flow conditions.The investigation results revealed that as the Re increased,all analyzed models showcased higher.A reduction in pressure drops,thermal resistance,Nu,and overall performance standards.Crucially,compared to the traditionalmodel,both suggested models demonstrated improved heat transmission capacities.Within all the models examined,the tube with dimples in(model B)as staggered showed the greatest enhancement in the Nu,which was almost double that of the conventional type.Model A and Model B have respective average total performance criteria of 1.23 and 1.34.展开更多
As emerging services continue to be explored,indoor communications geared towards different user requirements will face severe challenges such as larger penetration losses and more critical multipath issues,leading to...As emerging services continue to be explored,indoor communications geared towards different user requirements will face severe challenges such as larger penetration losses and more critical multipath issues,leading to difficulties in achieving flexible coverage.In this paper,we introduce transmissive reconfigurable intelligent surfaces(RISs)as intelligent passive auxiliary devices into indoor scenes,replacing conventional ultra-dense small cell and relay forwarding approaches to address these issues at low deployment and operation costs.Specifically,we study the optimization design of active and passive beamforming for the transmissive RISs-aided indoor multiuser downlink communication systems.This involves considering more realistic indoor congestion modeling and near-field propagation characteristics.The goal of our optimization is to minimize the total transmit power at the access point(AP)for different user service requirements,including quality-of-service(QoS)and wireless power transfer(WPT).Due to the nonconvex nature of the optimization problem,adaptive penalty coefficients are imported to solve it alternatively with closed-form solutions for both active and passive beamforming.Simulation results demonstrate that the use of transmissive RISs is indeed an efficient way to achieve flexible coverage in indoor scenarios.Furthermore,the proposed optimization algorithm has been proven to be effective and robust in achieving energy-saving transmission.展开更多
In 2022,Leukemia is the 13th most common diagnosis of cancer globally as per the source of the International Agency for Research on Cancer(IARC).Leukemia is still a threat and challenge for all regions because of 46.6...In 2022,Leukemia is the 13th most common diagnosis of cancer globally as per the source of the International Agency for Research on Cancer(IARC).Leukemia is still a threat and challenge for all regions because of 46.6%infection in Asia,and 22.1%and 14.7%infection rates in Europe and North America,respectively.To study the dynamics of Leukemia,the population of cells has been divided into three subpopulations of cells susceptible cells,infected cells,and immune cells.To investigate the memory effects and uncertainty in disease progression,leukemia modeling is developed using stochastic fractional delay differential equations(SFDDEs).The feasible properties of positivity,boundedness,and equilibria(i.e.,Leukemia Free Equilibrium(LFE)and Leukemia Present Equilibrium(LPE))of the model were studied rigorously.The local and global stabilities and sensitivity of the parameters around the equilibria under the assumption of reproduction numbers were investigated.To support the theoretical analysis of the model,the Grunwald Letnikov Nonstandard Finite Difference(GL-NSFD)method was used to simulate the results of each subpopulation with memory effect.Also,the positivity and boundedness of the proposed method were studied.Our results show how different methods can help control the cell population and give useful advice to decision-makers on ways to lower leukemia rates in communities.展开更多
Objectives:This study aimed to survey the geriatric nursing competencies of clinical nursing staff in Chongqing City,China,and provide suggestions to enhance these competencies.Methods:This study was conducted in 204 ...Objectives:This study aimed to survey the geriatric nursing competencies of clinical nursing staff in Chongqing City,China,and provide suggestions to enhance these competencies.Methods:This study was conducted in 204 hospitals in Southwest China from December 24,2022 to January 7,2023.The“Geriatric Nursing Competence of Clinical Nurse Investigation Tool”was used to explore factors that influence geriatric nurses’competencies via stratified sampling.The survey was conducted by distributing and collecting questionnaires through the online platform Wenjuanxing.Results:A total of 10,692 nurses answered the questionnaires.Of these questionnaires,9,442 were valid.The total geriatric nursing competence score of the clinical nursing staff was 2.29±0.81,the secondary hospital score was 2.23±0.78,and the tertiary hospital’s overall mean score was 2.33±0.83.The factors that influenced secondary hospitals included the department of medicine,age of nurses and total length of career(P<0.05).The factors that influenced tertiary hospitals included the department of medicine,age of nurses,nurses’professional title,and geriatric practical advanced nurses’certification(P<0.05).Conclusions:Geriatric nursing competence among clinical nursing staff is imbalanced at a lower-middle level and is influenced by various factors.Thefindings highlight the need for further clinical training in geriatric nursing.The training of geriatric nurses should focus on necessary clinical skills and on preparing them to adequately manage comprehensive geriatric syndromes.展开更多
Dental mesenchymal stem cells(DMSCs)are pivotal for tooth development and periodontal tissue health and play an important role in tissue engineering and regenerative medicine because of their multidirectional differen...Dental mesenchymal stem cells(DMSCs)are pivotal for tooth development and periodontal tissue health and play an important role in tissue engineering and regenerative medicine because of their multidirectional differentiation potential and self-renewal ability.The cellular microenvironment regulates the fate of stem cells and can be modified using various optimization techniques.These methods can influence the cellular microenvironment,activate disparate signaling pathways,and induce different biological effects.“Epigenetic regulation”refers to the process of influencing gene expression and regulating cell fate without altering DNA sequences,such as histone methylation.Histone methylation modifications regulate pivotal transcription factors governing DMSCs differentiation into osteo-/odontogenic lineages.The most important sites of histone methylation in tooth organization were found to be H3K4,H3K9,and H3K27.Histone methylation affects gene expression and regulates stem cell differentiation by maintaining a delicate balance between major trimethylation sites,generating distinct chromatin structures associated with specific downstream transcriptional states.Several crucial signaling pathways associated with osteogenic differentiation are susceptible to modulation via histone methylation modifications.A deeper understanding of the regulatory mechanisms governing histone methylation modifications in osteo-/odontogenic differentiation and immune-inflammatory responses of DMSCs will facilitate further investigation of the epigenetic regulation of histone methylation in DMSC-mediated tissue regeneration and inflammation.Here is a concise overview of the pivotal functions of epigenetic histone methylation at H3K4,H3K9,and H3K27 in the regulation of osteo-/odontogenic differentiation and renewal of DMSCs in both non-inflammatory and inflammatory microenvironments.This review summarizes the current research on these processes in the context of tissue regeneration and therapeutic interventions.展开更多
Double differential cross section (DDCS) of First-Born approximation is calcu-lated for the ionization of metastable 3d-state hydrogen atoms by electron impact energy at 150 eV and 250 eV. A multiple scattering theory...Double differential cross section (DDCS) of First-Born approximation is calcu-lated for the ionization of metastable 3d-state hydrogen atoms by electron impact energy at 150 eV and 250 eV. A multiple scattering theory is applied in the present study. The present results are compared with the other related the-oretical results for the ionization of hydrogen atoms from different metastable states and ground-state experimental results. The findings demonstrate a strong qualitative agreement with the existing results. The obtained results have an extensive scope for further study of such an ionization process.展开更多
Effects of micro heat pipe (MHP) cross-sections and orientations on its thermal performance are experimentally investigated in this study. Tests are conducted using five different cross-sections (circular, semicirc...Effects of micro heat pipe (MHP) cross-sections and orientations on its thermal performance are experimentally investigated in this study. Tests are conducted using five different cross-sections (circular, semicircular, elliptical, semi-elliptical and rectangular) of micro heat pipes having same hydraulic diameter of 3 rnm placed at three different inclination angles (0°, 45°, 90°), where water is used as the working fluid. Evaporator section of the MHP is heated by an electric heater and the condenser section is cooled by circulation of water in an annular space between condenser section and the water jacket. Temperatures at different locations of the MHP are measured using five calibrated K type thermocouples. Heat supply is varied using a voltage regulator which is measured by a precision ammeter and a voltmeter. It is found that thermal performance tends to deteriorate as the MHP is flattened. Thus among all cross-sections of MHP, circular one exhibits the best thermal performance in terms of heat flux dissipation followed by semi-elliptical, semi-circular, elliptical and rectangular cross-sections. Moreover, its heat transfer capability also decreases with decreasing of its inclination angle. Finally, a correlation is developed which covers all the experimental data within +7%.展开更多
Triple differential cross sections (TDCS) are estimated for the ionization of metastable 3d-state hydrogen atoms by electron at 250 eV for various kinematic conditions pursuing a multiple scattering theory. The presen...Triple differential cross sections (TDCS) are estimated for the ionization of metastable 3d-state hydrogen atoms by electron at 250 eV for various kinematic conditions pursuing a multiple scattering theory. The present new results are compared with the theoretical results of hydrogenic different metastable states as well as the hydrogenic ground state experimental data. Obtained new finding results are in good qualitative agreement with those of compared theories. The present results give an immense opportunity for experimental trial in the field of ionization problems.展开更多
基金supported by the National Natural Science Foundation of China(No.12065003)the Guangxi Key R&D Project(2023AB07029)+1 种基金the Scientific Research and Technology Development Project of Guilin(20210104-2)the Central Government Guides Local Scientific and Technological Development Funds of China(Guike ZY22096024)。
文摘Based on the unified Hauser–Feshbach and exciton model,which can describe the particle emission processes between discrete energy levels with energy,angular momentum,and parity conservations,a statistical theory of light nucleus reaction(STLN)is developed to calculate the double-differential cross-sections of the outgoing neutron and light charged particles for the proton-induced^(6) Li reaction.A significant difference is observed between the p+^(6) Li and p+^(7) Li reactions owing to the discrepancies in the energy-level structures of the targets.The reaction channels,including sequential and simultaneous emission processes,are analyzed in detail.Taking the double-differential cross-sections of the outgoing proton as an example,the influence of contaminations(such as^(1) H,^(7)Li,^(12)C,and^(16)O)on the target is identified in terms of the kinetic energy of the first emitted particles.The optical potential parameters of the proton are obtained by fitting the elastic scattering differential cross-sections.The calculated total double-differential cross-sections of the outgoing proton and deuteron at E_(p)=14 MeV agree well with the experimental data for different outgoing angles.Simultaneously,the mixed double differential cross-sections of^(3) He andαare in good agreement with the measurements.The agreement between the measured data and calculated results indicates that the two-body and three-body breakup reactions need to be considered,and the pre-equilibrium reaction mechanism dominates the reaction processes.Based on the STLN model,a PLUNF code for the p+^(6) Li reaction is developed to obtain an ENDF-6-formatted file of the double-differential cross-sections of the nucleon and light composite charged particles.
文摘Objective Magnetoencephalography(MEG),a non-invasive neuroimaging technique,meticulously captures the magnetic fields emanating from brain electrical activity.Compared with MEG based on superconducting quantum interference devices(SQUID),MEG based on optically pump magnetometer(OPM)has the advantages of higher sensitivity,better spatial resolution and lower cost.However,most of the current studies are clinical studies,and there is a lack of animal studies on MEG based on OPM technology.Pain,a multifaceted sensory and emotional phenomenon,induces intricate alterations in brain activity,exhibiting notable sex differences.Despite clinical revelations of pain-related neuronal activity through MEG,specific properties remain elusive,and comprehensive laboratory studies on pain-associated brain activity alterations are lacking.The aim of this study was to investigate the effects of inflammatory pain(induced by Complete Freund’s Adjuvant(CFA))on brain activity in a rat model using the MEG technique,to analysis changes in brain activity during pain perception,and to explore sex differences in pain-related MEG signaling.Methods This study utilized adult male and female Sprague-Dawley rats.Inflammatory pain was induced via intraplantar injection of CFA(100μl,50%in saline)in the left hind paw,with control groups receiving saline.Pain behavior was assessed using von Frey filaments at baseline and 1 h post-injection.For MEG recording,anesthetized rats had an OPM positioned on their head within a magnetic shield,undergoing two 15-minute sessions:a 5-minute baseline followed by a 10-minute mechanical stimulation phase.Data analysis included artifact removal and time-frequency analysis of spontaneous brain activity using accumulated spectrograms,generating spectrograms focused on the 4-30 Hz frequency range.Results MEG recordings in anesthetized rats during resting states and hind paw mechanical stimulation were compared,before and after saline/CFA injections.Mechanical stimulation elevated alpha activity in both male and female rats pre-and post-saline/CFA injections.Saline/CFA injections augmented average power in both sexes compared to pre-injection states.Remarkably,female rats exhibited higher average spectral power 1 h after CFA injection than after saline injection during resting states.Furthermore,despite comparable pain thresholds measured by classical pain behavioral tests post-CFA treatment,female rats displayed higher average power than males in the resting state after CFA injection.Conclusion These results imply an enhanced perception of inflammatory pain in female rats compared to their male counterparts.Our study exhibits sex differences in alpha activities following CFA injection,highlighting heightened brain alpha activity in female rats during acute inflammatory pain in the resting state.Our study provides a method for OPM-based MEG recordings to be used to study brain activity in anaesthetized animals.In addition,the findings of this study contribute to a deeper understanding of pain-related neural activity and pain sex differences.
基金supported by the Natural Science Foundation of Hunan Province,China(Grant Nos.2023JJ50178 and 2023JJ50194)the Excellent Youth Project of Hunan Provincial Department of Education(Grant No.23B0542).
文摘Rack-level loop thermosyphons have been widely adopted as a solution to data centers’growing energy demands.While numerous studies have highlighted the heat transfer performance and energy-saving benefits of this system,its economic feasibility,water usage effectiveness(WUE),and carbon usage effectiveness(CUE)remain underexplored.This study introduces a comprehensive evaluation index designed to assess the applicability of the rack-level loop thermosyphon system across various computing hub nodes.The air wet bulb temperature Ta,w was identified as the most significant factor influencing the variability in the combination of PUE,CUE,and WUE values.The results indicate that the rack-level loop thermosyphon system achieves the highest score in Lanzhou(94.485)and the lowest in Beijing(89.261)based on the comprehensive evaluation index.The overall ranking of cities according to the comprehensive evaluation score is as follows:Gansu hub(Lanzhou)>Inner Mongolia hub(Hohhot)>Ningxia hub(Yinchuan)>Yangtze River Delta hub(Shanghai)>Chengdu Chongqing hub(Chongqing)>Guangdong-Hong Kong-Macao Greater Bay Area hub(Guangzhou)>Guizhou hub(Guiyang)>Beijing-Tianjin-Hebei hub(Beijing).Furthermore,Hohhot,Lanzhou,and Yinchuan consistently rank among the top three cities for comprehensive scores across all load rates,while Guiyang(at a 25%load rate),Guangzhou(at a 50%load rate),and Beijing(at 75%and 100%load rates)exhibited the lowest comprehensive scores.
基金Science and Technology Research Project of Guang-dong Meteorological Bureau(GRMC2022M21)Guangdong Basic and Applied Basic Research Foundation(2023A1515012240)Research Project of Guangzhou Meteor-ological Bureau(M202218)。
文摘Reasonable greening design can effectively alleviate campus heat environment issues.This study uses the ENVI-met numerical model,along with in-situ observations and simulations,to analyze the thermal environment under three different greening schemes in typical areas of the Guangzhou University campus.The results indicate that the outdoor thermal environment is significantly influenced by the underlying surface materials and vegetation.The temperature of brick-paved surface is 0.9℃higher than that of natural soil surfaces under tree shade.Numerical simulations further confirm that increasing vegetation coverage effectively reduces outdoor air temperature.When the greening rate increases to 40%,the outdoor average temperature decreases by 0.7℃and relative humidity increases by approximately 4%,while wind speed remains minimal change.The cooling effect of vegetation is found to extend vertically to an altitude of 13 m.As the greening rate increases from 15%to 40%,the Mean Radiant Temperature(MRT)decreases from 50.6℃to 28.9℃,which is lower than the average ambient temperature,indicating improved thermal conditions.The Physiological Equivalent Temperature(PET)decreases from 40.2℃to 30.0℃,with the proportion of the areas classified as″very hot″reducing by 36.8%,significantly improving thermal comfort across most areas.Therefore,changing the ground material and greening landscape design can effectively alter the outdoor wind and thermal environment of the campus,thereby enhancing the thermal comfort for the campus community.
基金supported by the National Natural Science Foundation of China(Grant no.32101237)the China Postdoctoral Science Foundation(Grant no.2021M691522)+1 种基金the National Key Research and Development Program(Grant no.2022YFC3202104)the Tibet Major Science and Technology Project(Grant no.XZ201901-GA-06).
文摘Group living is widespread across diverse taxa,and the mechanisms underlying collective decision-making in contexts of variable role division are critical for understanding the dynamics of group stability.While studies on collective behavior in small animals such as fish and insects are well-established,similar research on large wild animals remains challenging due to the limited availability of sufficient and systematic field data.Here,we aimed to explore the collective decision-making pattern and its sexual difference for the dimorphic Tibetan antelopes Pantholops hodgsonii(chiru)in Xizang Autonomous Region,China,by analyzing individual leadership distribution,as well as the joining process,considering factors such as calving stages and joining ranks.The distinct correlations of decision participants’ratio with group size and decision duration underscore the trade-off between accuracy and speed in decision-making.Male antelopes display a more democratic decision-making pattern,while females exhibit more prompt responses after calving at an early stage.This study uncovers a partially shared decision-making strategy among Tibetan antelopes,suggesting flexible self-organization in group decision processes aligned with animal life cycle progression.
基金Supported by the National Natural Science Foundation of China(11871260,11761050)the Jiangxi Natural Science Foundation(#20232ACB201005)+1 种基金the Shandong Natural Science Foundation(#ZR2024MA024)Doctoral Startup Fund of Jiangxi Science and Technology Normal University(#2021BSQD30).
文摘The main purpose of this paper is to try to find all entire solutions of the Fermat type difference-differential equation[p1(z)f(z+c)]^(2)+[p2(z)f(z)+p3(z)f′(z)]^(2)=p(z);or[p1(z)f(z)]^(2)+[p2(z)f′(z)+p3(z)f(z+c)]^(2)=p(z)or[p1(z)f′(z)]^(2)+[p2(z)f(z+c)+p3(z)f(z)]^(2)=p(z);where c is a nonzero complex number,p1;p2 and p3 are polynomials in C satisfying p1p3■0;and p is a nonzero irreducible polynomial in C.
基金supported by the National Science and Technology Major Project of China(No.J2019-VI-0004-0117)。
文摘Casting experiments and macro-micro numerical simulations were conducted to examine the microstructure characteristics of K439B nickel-based superalloy casting with varying cross-sections during the gravity investment casting process.Firstly,microstructure analysis was conducted on the casting using scanning electron microscopy(SEM)and electron backscatter diffraction(EBSD).Subsequently,calculation of the phase diagram and differential scanning calorimetry(DSC)tests were conducted to determine the macro-micro simulation parameters of the K439B alloy,and the cellular automaton finite element(CAFE)method was employed to develop macro-micro modeling of K439B nickel-based superalloy casting with varying cross-sections.The experimental results revealed that the ratio of the average grain area increased from the edge to the center of the sections as the ratio of the cross-sectional area increased.The simulation results indicated that the average grain area increased from 0.885 to 0.956 mm^(2)as the ratio of the cross-sections increased from 6꞉1 to 12꞉1.The experiment and simulation results showed that the grain size became more heterogeneous and the grain shape became more irregular with an increase in the ratio of the cross-sectional area of the casting.CAFE modeling was an effective method to simulate the microstructure evolution of the K439B alloy and ensure the accuracy of the simulation.
基金Educational and Teaching Reform Project of Beihua University:Research on the Construction of“Same Course with Different Structures”Course Resources Based on Knowledge Graphs。
文摘This paper explores the construction methods of“Same Course with Different Structures”curriculum resources based on knowledge graphs and their applications in the field of education.By reviewing the theoretical foundations of knowledge graph technology,the“Same Course with Different Structures”teaching model,and curriculum resource construction,and integrating existing literature,the paper analyzes the methods for constructing curriculum resources using knowledge graphs.The research finds that knowledge graphs can effectively integrate multi-source data,support personalized teaching and precision education,and provide both a scientific foundation and technical support for the development of curriculum resources within the“Same Course with Different Structures”framework.
文摘In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error between the numerical solution and the exact solution is obtained,and then compared with the error formed by the difference method,it is concluded that the Lagrange interpolation method is more effective in solving the variable coefficient ordinary differential equation.
基金funded by the National Natural Science Foundation of China(12363009 and 12103020)Natural Science Foundation of Jiangxi Province(20224BAB211011)+1 种基金Youth Talent Project of Science and Technology Plan of Ganzhou(2022CXRC9191 and 2023CYZ26970)Jiangxi Province Graduate Innovation Special Funds Project(YC2024-S529 and YC2023-S672).
文摘Planetary surfaces,shaped by billions of years of geologic evolution,display numerous impact craters whose distribution of size,density,and spatial arrangement reveals the celestial body's history.Identifying these craters is essential for planetary science and is currently mainly achieved with deep learning-driven detection algorithms.However,because impact crater characteristics are substantially affected by the geologic environment,surface materials,and atmospheric conditions,the performance of deep learning models can be inconsistent between celestial bodies.In this paper,we first examine how the surface characteristics of the Moon,Mars,and Earth,along with the differences in their impact crater features,affect model performance.Then,we compare crater detection across celestial bodies by analyzing enhanced convolutional neural networks and U-shaped Convolutional Neural Network-based models to highlight how geology,data,and model design affect accuracy and generalization.Finally,we address current deep learning challenges,suggest directions for model improvement,such as multimodal data fusion and cross-planet learning and list available impact crater databases.This review can provide necessary technical support for deep space exploration and planetary science,as well as new ideas and directions for future research on automatic detection of impact craters on celestial body surfaces and on planetary geology.
基金support of the National Natural Science Foundation of China(Grant 22278340&22078272)。
文摘Improving the comprehensive performance of anion exchange membranes(AEMs)has a decisive impact on the wide application of anion exchange membrane fuel cells(AEMFCs).Herein,we prepared a series of new poly(phenanthrene-co-p-terphenyl piperidinium)(PPTP3F_(x)-DIL)AEMs with different fluorinated monomers for high performance AEMFCs.The polymerization of fluorinated monomers with other aryl monomers can effectively promote the separation of microphase in the membrane.It also has a high OH-conductivity at a low swelling.The membrane(PPTP3F_(4)-DIL)prepared by polycondensation of 2,2,2-trifluoro-1-(p-tolyl)ethan 1-one monomer achieves a high conductivity of 168.5 mS cm^(-1)at 80℃.At the same time,the water uptake is 40.0%and the swelling ratio is 12.1%.In addition,these membranes also have good mechanical properties and alkaline stability.After 1440 h of treatment in a NaOH(2 M)solution at 80℃,PPTP3F_(x)-DIL still maintains excellent tensile strength(>30.3 MPa)and elongation at break(>43.4%),and the conductivity retention of the PPTP3F_(1)-DIL membrane is 90.3%.The PPTP3F_(4)-DIL-based single cell exhibits a high peak power density(918.1 mW cm^(-2))and excellent durability(100 h)at 80℃.Therefore,these PPTP3F_(x)-DIL membranes have a wide range of applications in AEMFCs.
基金supported by the National Natural Science Foundation of China(U22A20362,U23A20407,82030111,82104301)Hubei Province’s Outstanding Medical Academic Leader program.
文摘Nicotine,ethanol,and caffeine are the most common exogenous substances in the men’s living environment,but their effects on the cartilage quality in the father and offspring have not been reported.According to the average daily intake of adult men,we constructed a male rat model of paternal mixed exposure(PME)to low-dose nicotine(0.1 mg/(kg·day)),ethanol(0.5 g/(kg·day)),and caffeine(7.5 mg/(kg·day))for 8 weeks.Then,the male rats mated with normal female rats to obtain offspring.The results showed that PME reduced the cartilage quality of paternal and offspring rats.Among them,the paternal cartilage was damaged by enhancing matrix degradation,while the offspring cartilage was damaged by reducing matrix synthesis.The cartilage damage in male offspring rats was more evident than in female offspring.It was further confirmed that differential GC regulation mechanisms were the main reasons for the intergenerational differential damage of paternal/offspring cartilage quality caused by PME.In addition,the androgen receptor(AR)and estrogen receptor beta(ERβ)mediated the sex difference of PME-induced fetal cartilage dysplasia by affecting the binding degree of GR/P300.This study provided a theoretical and experimental basis for guiding male healthy lifestyle and exploring early prevention and treatment strategies for paternal diseases.
文摘The main purpose of this research is to optimize the hydrothermal performance of a dimpled tube by augmenting the surface area for heat transmission and thermal layer cracking.To achieve that,the impact of different dimple diameters and their distribution along the dimpled tube was investigated numerically using the ANSYS Fluent 2022 R1 software by considering two models,A and B.Both models consist of three regions;the first,second,and third have dimple diameters of 3,2,&1 mm,respectively.Model A included an in-line dimple arrangement,while model B involved a staggered dimple arrangement.The finite volume method(FVM)was used in the modeling techniques to address the turbulent flow problem,which ranged in this investigation from Re of 3000 to 8000.The cooling fluid used in this investigation is water,which concentrated primarily on single-phase flow conditions.The investigation results revealed that as the Re increased,all analyzed models showcased higher.A reduction in pressure drops,thermal resistance,Nu,and overall performance standards.Crucially,compared to the traditionalmodel,both suggested models demonstrated improved heat transmission capacities.Within all the models examined,the tube with dimples in(model B)as staggered showed the greatest enhancement in the Nu,which was almost double that of the conventional type.Model A and Model B have respective average total performance criteria of 1.23 and 1.34.
基金supported in part by the Natural Science Basic Research Plan in Shaanxi Province under Grant 2024JC-ZDXM-36in part by the Key Research and Development Program of Shaanxi Province under Grant 2023-YBGY-255+2 种基金in part by the Excellent Youth Science Foundation of Xi’an University of Science and Technology under Grant 2019YQ3-13in part by the Xi’an Key Laboratory of Network Convergence Communications under Grant 2022NCC-K102in part by the Fundamental Research Funds for the Central Universities under Grant QTZX23029。
文摘As emerging services continue to be explored,indoor communications geared towards different user requirements will face severe challenges such as larger penetration losses and more critical multipath issues,leading to difficulties in achieving flexible coverage.In this paper,we introduce transmissive reconfigurable intelligent surfaces(RISs)as intelligent passive auxiliary devices into indoor scenes,replacing conventional ultra-dense small cell and relay forwarding approaches to address these issues at low deployment and operation costs.Specifically,we study the optimization design of active and passive beamforming for the transmissive RISs-aided indoor multiuser downlink communication systems.This involves considering more realistic indoor congestion modeling and near-field propagation characteristics.The goal of our optimization is to minimize the total transmit power at the access point(AP)for different user service requirements,including quality-of-service(QoS)and wireless power transfer(WPT).Due to the nonconvex nature of the optimization problem,adaptive penalty coefficients are imported to solve it alternatively with closed-form solutions for both active and passive beamforming.Simulation results demonstrate that the use of transmissive RISs is indeed an efficient way to achieve flexible coverage in indoor scenarios.Furthermore,the proposed optimization algorithm has been proven to be effective and robust in achieving energy-saving transmission.
基金supported by the Fundacao para a Ciencia e Tecnologia,FCT,under the project https://doi.org/10.54499/UIDB/04674/2020(accessed on 1 January 2025).
文摘In 2022,Leukemia is the 13th most common diagnosis of cancer globally as per the source of the International Agency for Research on Cancer(IARC).Leukemia is still a threat and challenge for all regions because of 46.6%infection in Asia,and 22.1%and 14.7%infection rates in Europe and North America,respectively.To study the dynamics of Leukemia,the population of cells has been divided into three subpopulations of cells susceptible cells,infected cells,and immune cells.To investigate the memory effects and uncertainty in disease progression,leukemia modeling is developed using stochastic fractional delay differential equations(SFDDEs).The feasible properties of positivity,boundedness,and equilibria(i.e.,Leukemia Free Equilibrium(LFE)and Leukemia Present Equilibrium(LPE))of the model were studied rigorously.The local and global stabilities and sensitivity of the parameters around the equilibria under the assumption of reproduction numbers were investigated.To support the theoretical analysis of the model,the Grunwald Letnikov Nonstandard Finite Difference(GL-NSFD)method was used to simulate the results of each subpopulation with memory effect.Also,the positivity and boundedness of the proposed method were studied.Our results show how different methods can help control the cell population and give useful advice to decision-makers on ways to lower leukemia rates in communities.
基金supported by a key Program of the Chongqing Scientific and Technological Commission(Grant Number.CSTB2022TIAD-KPX0165).
文摘Objectives:This study aimed to survey the geriatric nursing competencies of clinical nursing staff in Chongqing City,China,and provide suggestions to enhance these competencies.Methods:This study was conducted in 204 hospitals in Southwest China from December 24,2022 to January 7,2023.The“Geriatric Nursing Competence of Clinical Nurse Investigation Tool”was used to explore factors that influence geriatric nurses’competencies via stratified sampling.The survey was conducted by distributing and collecting questionnaires through the online platform Wenjuanxing.Results:A total of 10,692 nurses answered the questionnaires.Of these questionnaires,9,442 were valid.The total geriatric nursing competence score of the clinical nursing staff was 2.29±0.81,the secondary hospital score was 2.23±0.78,and the tertiary hospital’s overall mean score was 2.33±0.83.The factors that influenced secondary hospitals included the department of medicine,age of nurses and total length of career(P<0.05).The factors that influenced tertiary hospitals included the department of medicine,age of nurses,nurses’professional title,and geriatric practical advanced nurses’certification(P<0.05).Conclusions:Geriatric nursing competence among clinical nursing staff is imbalanced at a lower-middle level and is influenced by various factors.Thefindings highlight the need for further clinical training in geriatric nursing.The training of geriatric nurses should focus on necessary clinical skills and on preparing them to adequately manage comprehensive geriatric syndromes.
基金supported by grants from the National Key Research and Development Program(2022YFA1104401)CAMS Innovation Fund for Medical Sciences(2019-I2M-5-031 to Z.P.F.)grants from Innovation Research Team Project of Beijing Stomatological Hospital,Capital Medical University(NO.CXTD202204 to Z.P.F.).
文摘Dental mesenchymal stem cells(DMSCs)are pivotal for tooth development and periodontal tissue health and play an important role in tissue engineering and regenerative medicine because of their multidirectional differentiation potential and self-renewal ability.The cellular microenvironment regulates the fate of stem cells and can be modified using various optimization techniques.These methods can influence the cellular microenvironment,activate disparate signaling pathways,and induce different biological effects.“Epigenetic regulation”refers to the process of influencing gene expression and regulating cell fate without altering DNA sequences,such as histone methylation.Histone methylation modifications regulate pivotal transcription factors governing DMSCs differentiation into osteo-/odontogenic lineages.The most important sites of histone methylation in tooth organization were found to be H3K4,H3K9,and H3K27.Histone methylation affects gene expression and regulates stem cell differentiation by maintaining a delicate balance between major trimethylation sites,generating distinct chromatin structures associated with specific downstream transcriptional states.Several crucial signaling pathways associated with osteogenic differentiation are susceptible to modulation via histone methylation modifications.A deeper understanding of the regulatory mechanisms governing histone methylation modifications in osteo-/odontogenic differentiation and immune-inflammatory responses of DMSCs will facilitate further investigation of the epigenetic regulation of histone methylation in DMSC-mediated tissue regeneration and inflammation.Here is a concise overview of the pivotal functions of epigenetic histone methylation at H3K4,H3K9,and H3K27 in the regulation of osteo-/odontogenic differentiation and renewal of DMSCs in both non-inflammatory and inflammatory microenvironments.This review summarizes the current research on these processes in the context of tissue regeneration and therapeutic interventions.
文摘Double differential cross section (DDCS) of First-Born approximation is calcu-lated for the ionization of metastable 3d-state hydrogen atoms by electron impact energy at 150 eV and 250 eV. A multiple scattering theory is applied in the present study. The present results are compared with the other related the-oretical results for the ionization of hydrogen atoms from different metastable states and ground-state experimental results. The findings demonstrate a strong qualitative agreement with the existing results. The obtained results have an extensive scope for further study of such an ionization process.
基金Islamic University of Technology (IUT),OIC,Board Bazar,Gazipur,Bangladesh
文摘Effects of micro heat pipe (MHP) cross-sections and orientations on its thermal performance are experimentally investigated in this study. Tests are conducted using five different cross-sections (circular, semicircular, elliptical, semi-elliptical and rectangular) of micro heat pipes having same hydraulic diameter of 3 rnm placed at three different inclination angles (0°, 45°, 90°), where water is used as the working fluid. Evaporator section of the MHP is heated by an electric heater and the condenser section is cooled by circulation of water in an annular space between condenser section and the water jacket. Temperatures at different locations of the MHP are measured using five calibrated K type thermocouples. Heat supply is varied using a voltage regulator which is measured by a precision ammeter and a voltmeter. It is found that thermal performance tends to deteriorate as the MHP is flattened. Thus among all cross-sections of MHP, circular one exhibits the best thermal performance in terms of heat flux dissipation followed by semi-elliptical, semi-circular, elliptical and rectangular cross-sections. Moreover, its heat transfer capability also decreases with decreasing of its inclination angle. Finally, a correlation is developed which covers all the experimental data within +7%.
文摘Triple differential cross sections (TDCS) are estimated for the ionization of metastable 3d-state hydrogen atoms by electron at 250 eV for various kinematic conditions pursuing a multiple scattering theory. The present new results are compared with the theoretical results of hydrogenic different metastable states as well as the hydrogenic ground state experimental data. Obtained new finding results are in good qualitative agreement with those of compared theories. The present results give an immense opportunity for experimental trial in the field of ionization problems.