The marine risers are often subjected to parametric excitations from the fluctuation top tension. The top tension on the riser may fluctuate with multiple frequencies caused by irregular waves. In this paper, the infl...The marine risers are often subjected to parametric excitations from the fluctuation top tension. The top tension on the riser may fluctuate with multiple frequencies caused by irregular waves. In this paper, the influence between different frequency components in the top tension on the riser system is theoretically simulated and analyzed. With the Euler-Bernoulli beam theory, a dynamic model for the vibrations of the riser is established. The top tension is set as fluctuating with time and it has two different frequencies. The influences from the fluctuation amplitudes, circular frequencies and phase angles of these frequency components on the riser system are analyzed in detail. When these two frequencies are fluctuating in the stable regions, the riser system may become unstable because ω1+ω2≈2Ωn. The fluctuation amplitudes of these frequencies have little effect on the components of the vibration frequencies of the riser. For different phase angles, the stability and dynamic behaviors of the riser would be different.展开更多
The damage of two typical metal materials, Al alloy 3003 and steel alloy Q235 B, subjected to four representative lightning current components are investigated by laboratory and analytical studies to provide fundament...The damage of two typical metal materials, Al alloy 3003 and steel alloy Q235 B, subjected to four representative lightning current components are investigated by laboratory and analytical studies to provide fundamental data for lightning protection. The four lightning components simulating the natural lightning consist of the first return stroke, the continuing current of interval stroke, the long continuing current, and the subsequent stroke, with amplitudes 200 k A, 8 k A,400 A, and 100 k A, respectively. The damage depth and area suffered from different lightning components are measured by the ultrasonic scanning system. And the temperature rise is measured by the thermal imaging camera. The results show that, for both Al 3003 and steel Q235 B, the first return stroke component results in the largest damage area with damage depth0.02 mm uttermost. The long continuing current component leads to the deepest damage depth of 3.3 mm for Al 3003 and much higher temperature rise than other components. The correlation analysis between damage results and lightning parameters indicates that the damage depth has a positive correlation with charge transfer. The damage area is mainly determined by the current amplitude and the temperature rise increases linearly with the charge transfer larger.展开更多
A regional ocean atmosphere coupled model (ROAM) is developed through coupler OASIS3,and is composed of regional climate model RegCM3 and CREM (Climate version of Regional Eta Model) as its atmospheric component and o...A regional ocean atmosphere coupled model (ROAM) is developed through coupler OASIS3,and is composed of regional climate model RegCM3 and CREM (Climate version of Regional Eta Model) as its atmospheric component and of a revised Princeton ocean model (POM2000) as its oceanic component.The performance of the ROAM over the western North Pacific summer monsoon region is assessed by the case simulation of warm season in 1998.Impacts of different atmospheric model components on the performance of ROAM are investigated.Compared with stand-alone simulation,CREM (RegCM3) produces more (or less) rainfall over ocean area with inclusion of the air-sea coupling.Different biases of rainfall are caused by the different biases of SST derived from the coupled simulation.Warm (or cold) SST bias simulated by CREM_CPL (RegCM3_CPL) increases (or decreases) the evaporation at sea surface,then increases (or decreases) the rainfall over ocean.The analyses suggest that the biases of vertical profile of temperature and specific humidity in stand-alone simulations may be responsible for the SST biases in regional coupled simulations.Compared with reanalysis data,the warmer (or colder) and moister (or dryer) lower troposphere simulated in CREM (RegCM3) produces less (or more) sea surface latent heat flux.Meanwhile,the more unstable (or stable) lower troposphere produces less (or more) cloudiness at low-level,which increases (or decreases) the solar radiation reaching on the sea surface.CREM (RegCM3) forced by observed SST overestimates (or underestimates) the sea surface net heat flux,implying a potential warm (or cold) heat source.After coupling with POM2000,the warm (or cold) heat source would further increase (or decrease) the SST.The biases of vertical profile of temperature and specific humidity may be ascribed to the different representation of cumulus convection in atmospheric models.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.51679167 and 51979193)
文摘The marine risers are often subjected to parametric excitations from the fluctuation top tension. The top tension on the riser may fluctuate with multiple frequencies caused by irregular waves. In this paper, the influence between different frequency components in the top tension on the riser system is theoretically simulated and analyzed. With the Euler-Bernoulli beam theory, a dynamic model for the vibrations of the riser is established. The top tension is set as fluctuating with time and it has two different frequencies. The influences from the fluctuation amplitudes, circular frequencies and phase angles of these frequency components on the riser system are analyzed in detail. When these two frequencies are fluctuating in the stable regions, the riser system may become unstable because ω1+ω2≈2Ωn. The fluctuation amplitudes of these frequencies have little effect on the components of the vibration frequencies of the riser. For different phase angles, the stability and dynamic behaviors of the riser would be different.
基金supported by a grant from National Natural Science Foundation of China(No.51577117)
文摘The damage of two typical metal materials, Al alloy 3003 and steel alloy Q235 B, subjected to four representative lightning current components are investigated by laboratory and analytical studies to provide fundamental data for lightning protection. The four lightning components simulating the natural lightning consist of the first return stroke, the continuing current of interval stroke, the long continuing current, and the subsequent stroke, with amplitudes 200 k A, 8 k A,400 A, and 100 k A, respectively. The damage depth and area suffered from different lightning components are measured by the ultrasonic scanning system. And the temperature rise is measured by the thermal imaging camera. The results show that, for both Al 3003 and steel Q235 B, the first return stroke component results in the largest damage area with damage depth0.02 mm uttermost. The long continuing current component leads to the deepest damage depth of 3.3 mm for Al 3003 and much higher temperature rise than other components. The correlation analysis between damage results and lightning parameters indicates that the damage depth has a positive correlation with charge transfer. The damage area is mainly determined by the current amplitude and the temperature rise increases linearly with the charge transfer larger.
基金supported by the Ocean Projects of Public Science and Technology Research Funds (Grant No. 201105019-3)
文摘A regional ocean atmosphere coupled model (ROAM) is developed through coupler OASIS3,and is composed of regional climate model RegCM3 and CREM (Climate version of Regional Eta Model) as its atmospheric component and of a revised Princeton ocean model (POM2000) as its oceanic component.The performance of the ROAM over the western North Pacific summer monsoon region is assessed by the case simulation of warm season in 1998.Impacts of different atmospheric model components on the performance of ROAM are investigated.Compared with stand-alone simulation,CREM (RegCM3) produces more (or less) rainfall over ocean area with inclusion of the air-sea coupling.Different biases of rainfall are caused by the different biases of SST derived from the coupled simulation.Warm (or cold) SST bias simulated by CREM_CPL (RegCM3_CPL) increases (or decreases) the evaporation at sea surface,then increases (or decreases) the rainfall over ocean.The analyses suggest that the biases of vertical profile of temperature and specific humidity in stand-alone simulations may be responsible for the SST biases in regional coupled simulations.Compared with reanalysis data,the warmer (or colder) and moister (or dryer) lower troposphere simulated in CREM (RegCM3) produces less (or more) sea surface latent heat flux.Meanwhile,the more unstable (or stable) lower troposphere produces less (or more) cloudiness at low-level,which increases (or decreases) the solar radiation reaching on the sea surface.CREM (RegCM3) forced by observed SST overestimates (or underestimates) the sea surface net heat flux,implying a potential warm (or cold) heat source.After coupling with POM2000,the warm (or cold) heat source would further increase (or decrease) the SST.The biases of vertical profile of temperature and specific humidity may be ascribed to the different representation of cumulus convection in atmospheric models.