In this paper, frequencies of electromagnetic wave in a conductive wire are investigated theoretically. The conductive wire has specific variable material properties along the length of itself. Furthermore, material p...In this paper, frequencies of electromagnetic wave in a conductive wire are investigated theoretically. The conductive wire has specific variable material properties along the length of itself. Furthermore, material properties varying along the length of the wire are determined according to a specific mathematical function. In addition, the central finite difference method is applied to the Maxwell equations. The accuracy of the mode 1 frequency parameter is obtained to be 0.06%. This result can be obtained by assuming the number of conductive wire nodes 20. The obtained results show a very good agreement with the exact solution results.展开更多
To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical c...To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical computation of such models.This efficient solver employs algorithms based on discrete cosine transformations(DCT)or discrete sine transformations(DST)and is not restricted by any spatio-temporal schemes.Our proposed methodology is appropriate for a variety of phase-field models and is especially efficient when combined with flow field systems.Meanwhile,this study has conducted an extensive numerical comparison and found that employing DCT and DST techniques not only yields results comparable to those obtained via the Multigrid(MG)method,a conventional approach used in the resolution of the Poisson equations,but also enhances computational efficiency by over 90%.展开更多
This study investigates the complex heat transfer dynamics inmultilayer bifacial photovoltaic(bPV)solar modules under spectrally resolved solar irradiation.A novel numericalmodel is developed to incorporate internal h...This study investigates the complex heat transfer dynamics inmultilayer bifacial photovoltaic(bPV)solar modules under spectrally resolved solar irradiation.A novel numericalmodel is developed to incorporate internal heat generation resulting from optical absorption,grounded in the physical equations governing light-matter interactions within the module’smultilayer structure.The model accounts for reflection and transmission at each interface between adjacent layers,as well as absorption within individual layers,using the wavelength-dependent dielectric properties of constituent materials.These properties are used to calculate the spectral reflectance,transmittance,and absorption coefficients,enabling precise quantification of internal heat sources from irradiance incidents on both the front and rear surfaces of the module.The study further examines the influence of irradiance reflection on thermal behavior,evaluates the thermal impact of various supporting materials placed beneath the module,and analyzes the role of albedo in modifying heat distribution.By incorporating spectrally resolved heat generation across each layer often simplified or omitted in conventional models,the proposed approach enhances physical accuracy.The transient heat equation is solved using a one-dimensional finite difference(FD)method to produce detailed temperature profiles under multiple operating scenarios,including Standard Test Conditions(STC),Bifacial Standard Test Conditions(BSTC),Normal Operating Cell Temperature(NOCT),and Bifacial NOCT(BNOCT).The results offer valuable insights into the interplay between optical and thermal phenomena in bifacial systems,informing the design and optimization of more efficient photovoltaic technologies.展开更多
Accurately simulating water flow movement in vadose zone is crucial for effective water resources assessment.Richards'equation,which describes the movement of water flow in the vadose zone,is highly nonlinear and ...Accurately simulating water flow movement in vadose zone is crucial for effective water resources assessment.Richards'equation,which describes the movement of water flow in the vadose zone,is highly nonlinear and challenging to solve.Existing numerical methods often face issues such as numerical dispersion,oscillation,and mass non-conservation when spatial and temporal discretization conditions are not appropriately configured.To address these problems and achieve accurate and stable numerical solutions,a finite analytic method based on water content-based Richards'equation(FAM-W)is proposed.The performance of the FAM-W is compared with analytical solutions,Finite Difference Method(FDM),and Finite Analytic Method based on the pressure Head-based Richards'equation(FAM-H).Compared to analytical solution and other numerical methods(FDM and FAM-H),FAM-W demonstrates superior accuracy and efficiency in controlling mass balance errors,regardless of spatial step sizes.This study introduces a novel approach for modelling water flow in the vadose zone,offering significant benefits for water resources management.展开更多
In this work, we first derive the one-point large deviations principle (LDP) for both the stochastic Cahn–Hilliard equation with small noise and its spatial finite difference method (FDM). Then, we focus on giving th...In this work, we first derive the one-point large deviations principle (LDP) for both the stochastic Cahn–Hilliard equation with small noise and its spatial finite difference method (FDM). Then, we focus on giving the convergence of the one-point large deviations rate function (LDRF) of the spatial FDM, which is about the asymptotical limit of a parametric variational problem. The main idea for proving the convergence of the LDRF of the spatial FDM is via the Γ-convergence of objective functions. This relies on the qualitative analysis of skeleton equations of the original equation and the numerical method. In order to overcome the difficulty that the drift coefficient is not one-sided Lipschitz continuous, we derive the equivalent characterization of the skeleton equation of the spatial FDM and the discrete interpolation inequality to obtain the uniform boundedness of the solution to the underlying skeleton equation. These play important roles in deriving the T-convergence of objective functions.展开更多
In response to the issue of fuzzy matching and association when optical observation data are matched with the orbital elements in a catalog database,this paper proposes a matching and association strategy based on the...In response to the issue of fuzzy matching and association when optical observation data are matched with the orbital elements in a catalog database,this paper proposes a matching and association strategy based on the arcsegment difference method.First,a matching error threshold is set to match the observation data with the known catalog database.Second,the matching results for the same day are sorted on the basis of target identity and observation residuals.Different matching error thresholds and arc-segment dynamic association thresholds are then applied to categorize the observation residuals of the same target across different arc-segments,yielding matching results under various thresholds.Finally,the orbital residual is computed through orbit determination(OD),and the positional error is derived by comparing the OD results with the orbit track from the catalog database.The appropriate matching error threshold is then selected on the basis of these results,leading to the final matching and association of the fuzzy correlation data.Experimental results showed that the correct matching rate for data arc-segments is 92.34% when the matching error threshold is set to 720″,with the arc-segment difference method processing the results of an average matching rate of 97.62% within 8 days.The remaining 5.28% of the fuzzy correlation data are correctly matched and associated,enabling identification of orbital maneuver targets through further processing and analysis.This method substantially enhances the efficiency and accuracy of space target cataloging,offering robust technical support for dynamic maintenance of the space target database.展开更多
A method combining finite difference method(FDM)and k-means clustering algorithm which can determine the threshold of rock bridge generation is proposed.Jointed slope models with different joint coalescence coefficien...A method combining finite difference method(FDM)and k-means clustering algorithm which can determine the threshold of rock bridge generation is proposed.Jointed slope models with different joint coalescence coefficients(k)are constructed based on FDM.The rock bridge area was divided through k-means algorithm and the optimal number of clusters was determined by sum of squared errors(SSE)and elbow method.The influence of maximum principal stress and stress change rate as clustering indexes on the clustering results of rock bridges was compared by using Euclidean distance.The results show that using stress change rate as clustering index is more effective.When the joint coalescence coefficient is less than 0.6,there is no significant stress concentration in the middle area of adjacent joints,that is,no generation of rock bridge.In addition,the range of rock bridge is affected by the coalescence coefficient(k),the relative position of joints and the parameters of weak interlayer.展开更多
In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error...In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error between the numerical solution and the exact solution is obtained,and then compared with the error formed by the difference method,it is concluded that the Lagrange interpolation method is more effective in solving the variable coefficient ordinary differential equation.展开更多
The electrical performance of radomes on high-speed aircraft can be influenced by the thermal and mechanical loads produced during high-speed flight,which can affect the detection dis-tance and accuracy of the guidanc...The electrical performance of radomes on high-speed aircraft can be influenced by the thermal and mechanical loads produced during high-speed flight,which can affect the detection dis-tance and accuracy of the guidance system.This paper presents a new method that uses the Finite Difference Time Domain(FDTD)method to calculate the electrical performance of radomes under Thermo-Mechanical-Electrical(TME)coupling.This method can accurately characterize the effects of material dielectric temperature drift and structural deformation on the electrical performance of the radome under flight conditions,enabling high-precision full-wave calculations of the broadband electrical performance of the radome.The method initiates by utilizing a Finite Element Grid Model(FE-GM)of the radome to sequentially acquire the radome's response temperature field and structural deformation field through thermal and mechanical simulations.Subsequently,spatial mapping techniques are developed to accurately incorporate the dielectric temperature drift and structural deformation of the radome into its Yee grid Electromagnetic(EM)simulation model.A verification case was designed to test the proposed method,and the results confirmed its high computational accuracy.Additionally,the effectiveness and necessity of the method were further demonstrated by analyzing the electrical performance of a fused silica ceramic radome used on a high-speed aircraft.展开更多
For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study prop...For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study proposes to investigate the stability and accuracy of the central difference method(CDM)for RTDST considering the specimen mass participation coefficient.First,the theory of the CDM for RTDST is presented.Next,the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated.Finally,numerical simulations and experimental tests are conducted for verifying the effectiveness of the method.The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen,and the stability limit first increases and then decreases as the mass participation coefficient increases.In most cases,the mass participation coefficient will increase the stability limit of the algorithm,but in specific circumstances,the algorithm may lose its stability.The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper.展开更多
In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolso...In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem.展开更多
In this paper,we give improved error estimates for linearized and nonlinear CrankNicolson type finite difference schemes of Ginzburg-Landau equation in two dimensions.For linearized Crank-Nicolson scheme,we use mathem...In this paper,we give improved error estimates for linearized and nonlinear CrankNicolson type finite difference schemes of Ginzburg-Landau equation in two dimensions.For linearized Crank-Nicolson scheme,we use mathematical induction to get unconditional error estimates in discrete L^(2)and H^(1)norm.However,it is not applicable for the nonlinear scheme.Thus,based on a‘cut-off’function and energy analysis method,we get unconditional L^(2)and H^(1)error estimates for the nonlinear scheme,as well as boundedness of numerical solutions.In addition,if the assumption for exact solutions is improved compared to before,unconditional and optimal pointwise error estimates can be obtained by energy analysis method and several Sobolev inequalities.Finally,some numerical examples are given to verify our theoretical analysis.展开更多
This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either...This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.展开更多
In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order a...In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order accuracy, while the exponential-sum-approximation (ESA) is used to approximate the variable-order Caputo fractional derivative in the temporal direction, and a novel spatial sixth-order hybrid ESA-CCD method is implemented successfully. Finally, the accuracy of the proposed method is verified by numerical experiments.展开更多
To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondar...To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondary potential field with mixed boundary conditions by using a seven-point finite-difference method to obtain a large sparse system of linear equations. Then, we introduce the theory behind the pairwise aggregation algorithms for AGMG and use the conjugate-gradient method with the V-cycle AGMG preconditioner (AGMG-CG) to solve the linear equations. We use typical geoelectrical models to test the proposed AGMG-CG method and compare the results with analytical solutions and the 3DDCXH algorithm for 3D DC modeling (3DDCXH). In addition, we apply the AGMG-CG method to different grid sizes and geoelectrical models and compare it to different iterative methods, such as ILU-BICGSTAB, ILU-GCR, and SSOR-CG. The AGMG-CG method yields nearly linearly decreasing errors, whereas the number of iterations increases slowly with increasing grid size. The AGMG-CG method is precise and converges fast, and thus can improve the computational efficiency in forward modeling of three-dimensional DC resistivity.展开更多
A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions a...A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions according to Reynolds number.In the far-wall region,the thermal melt flow was calculated as Newtonian flow.In the near-wall region,the thermal melt flow was calculated as non-Newtonian flow.It was proved that the new algorithm based on the projection method with the implicit technique was correct through nonparametric statistics method and experiment.The simulation results show that the new algorithm based on the projection method with the implicit technique calculates more quickly than the solution algorithm-volume of fluid method using the explicit difference method.展开更多
In conventional fi nite diff erence numerical simulation of seismic waves,regular grids in Cartesian coordinates are used to divide the calculated region.When simulating seismic wave fi elds under an irregular surface...In conventional fi nite diff erence numerical simulation of seismic waves,regular grids in Cartesian coordinates are used to divide the calculated region.When simulating seismic wave fi elds under an irregular surface,such grids are unsuitable to realize the free boundary condition.They also easily generate false scattered waves at the corners of the grids owing to the approximation of the stepped grids.These issues affect the simulation accuracy.This study introduces an orthogonal body-fitted grid generation technique in computational fl uid dynamics for generating grids in transversely isotropic(TI)media under an irregular surface.The fi rst-order velocity-stress equation in curvilinear coordinates is calculated using the optimized nonstaggered grids finite difference method.The point oscillation generated by the nonstaggered grids difference is eliminated by selective filtering.The orthogonal body-fitted grids can accurately describe the irregular surface.Further,the orthogonality of the grids allows the implementation of free boundary conditions without complicated coordinate transformation and interpolation operations.Numerical examples show that the numerical solutions obtained by this method agree well with the analytical solutions.By comparing the simulation results of the proposed method with those of the regular grid difference method,the proposed method can eff ectively eliminate the false scattered waves caused by the stepped grids under the condition of the same grid spacing.Thus,the accuracy of the numerical simulation is improved.In addition,the simulation results of the three-layer TI media model on an irregular surface show that the proposed method is also suitable for complex models.展开更多
This study presents a numerical analysis of the steady-state solution for transient magnetohydrodynamic(MHD)dissipative and radiative fluid flow,incorporating an inducedmagnetic field(IMF)and considering a relatively ...This study presents a numerical analysis of the steady-state solution for transient magnetohydrodynamic(MHD)dissipative and radiative fluid flow,incorporating an inducedmagnetic field(IMF)and considering a relatively high concentration of foreign mass(accounting for Soret and Dufour effects)over a vertically oriented semi-infinite plate.The governing equations were normalized using boundary layer(BL)approximations.The resulting nonlinear system of partial differential equations(PDEs)was discretized and solved using an efficient explicit finite difference method(FDM).Numerical simulations were conducted using MATLAB R2015a,and the developed numerical code was verified through comparison with another code written in FORTRAN 6.6a.To ensure the reliability of the results,both mesh refinement and steady-state time validation tests were performed.Furthermore,a comparison with existing published studies was made to confirm the accuracy of the findings.The dimensionless equations revealed the impacts of several key parameters.The IMF initially intensifies near the plate before gradually diminishing as the magnetic parameter increases.For the range 0≤y≤1.8(where y is the horizontal direction),the IMF decreases with a rise in the magnetic Prandtl number;however,for 1.8≤y≤7(approximately),the magnetic field begins to increase.Beyond this,the profile of the magnetic field becomes somewhat irregular through the remaining part of the BL.展开更多
Contact bounce of relay, which is the main cause of electric abrasion and material erosion, is inevitable. By using the mode expansion form, the dynamic behavior of two different reed systems for aerospace relays is a...Contact bounce of relay, which is the main cause of electric abrasion and material erosion, is inevitable. By using the mode expansion form, the dynamic behavior of two different reed systems for aerospace relays is analyzed. The dynamic model uses Euler-Bernoulli beam theory for cantilever beam, in which the driving force (or driving moment) of the electromagnetic system is taken into account, and the contact force between moving contact and stationary contact is simulated by the Kelvin-Voigt vis-coelastic...展开更多
An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aero...An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aerostatic bearings. A detailed theoretical analysis of the pressure distribution of the orifice-compensated aerostatic journal bearing is presented. The nonlinear dimensionless Reynolds equation of the aerostatic journal bearing is solved by the finite difference method. Based on the principle of flow equilibrium, a new iterative algorithm named the variable step size successive approximation method is presented to adjust the pressure at the orifice in the iterative process and enhance the efficiency and convergence performance of the algorithm. A general program is developed to analyze the pressure distribution of the aerostatic journal bearing by Matlab tool. The results show that the improved finite difference method is highly effective, reliable, stable, and convergent. Even when very thin gas film thicknesses (less than 2 Win)are considered, the improved calculation method still yields a result and converges fast.展开更多
文摘In this paper, frequencies of electromagnetic wave in a conductive wire are investigated theoretically. The conductive wire has specific variable material properties along the length of itself. Furthermore, material properties varying along the length of the wire are determined according to a specific mathematical function. In addition, the central finite difference method is applied to the Maxwell equations. The accuracy of the mode 1 frequency parameter is obtained to be 0.06%. This result can be obtained by assuming the number of conductive wire nodes 20. The obtained results show a very good agreement with the exact solution results.
基金Supported by Shanxi Province Natural Science Research(202203021212249)Special/Youth Foundation of Taiyuan University of Technology(2022QN101)+3 种基金National Natural Science Foundation of China(12301556)Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)Basic Research Plan of Shanxi Province(202203021211129)。
文摘To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical computation of such models.This efficient solver employs algorithms based on discrete cosine transformations(DCT)or discrete sine transformations(DST)and is not restricted by any spatio-temporal schemes.Our proposed methodology is appropriate for a variety of phase-field models and is especially efficient when combined with flow field systems.Meanwhile,this study has conducted an extensive numerical comparison and found that employing DCT and DST techniques not only yields results comparable to those obtained via the Multigrid(MG)method,a conventional approach used in the resolution of the Poisson equations,but also enhances computational efficiency by over 90%.
文摘This study investigates the complex heat transfer dynamics inmultilayer bifacial photovoltaic(bPV)solar modules under spectrally resolved solar irradiation.A novel numericalmodel is developed to incorporate internal heat generation resulting from optical absorption,grounded in the physical equations governing light-matter interactions within the module’smultilayer structure.The model accounts for reflection and transmission at each interface between adjacent layers,as well as absorption within individual layers,using the wavelength-dependent dielectric properties of constituent materials.These properties are used to calculate the spectral reflectance,transmittance,and absorption coefficients,enabling precise quantification of internal heat sources from irradiance incidents on both the front and rear surfaces of the module.The study further examines the influence of irradiance reflection on thermal behavior,evaluates the thermal impact of various supporting materials placed beneath the module,and analyzes the role of albedo in modifying heat distribution.By incorporating spectrally resolved heat generation across each layer often simplified or omitted in conventional models,the proposed approach enhances physical accuracy.The transient heat equation is solved using a one-dimensional finite difference(FD)method to produce detailed temperature profiles under multiple operating scenarios,including Standard Test Conditions(STC),Bifacial Standard Test Conditions(BSTC),Normal Operating Cell Temperature(NOCT),and Bifacial NOCT(BNOCT).The results offer valuable insights into the interplay between optical and thermal phenomena in bifacial systems,informing the design and optimization of more efficient photovoltaic technologies.
基金supported by the National Natural Science Foundation of China(No.42372287 and No.U24A20178)the Fundamental Research Funds for the Central Universities CHD(No.2024SHEEAR002)+3 种基金the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shaanxi Province(No.2020024)the China Postdoctoral Science Foundation(GZC20232955,2024M753472,and 2024MD763937)the Science-Technology Foundation for Young Scientists of Gansu Province,China(No.24JRRA097)the Study of biodiversity survey and limiting factor analysis of Yinkentala(2023ZL01).
文摘Accurately simulating water flow movement in vadose zone is crucial for effective water resources assessment.Richards'equation,which describes the movement of water flow in the vadose zone,is highly nonlinear and challenging to solve.Existing numerical methods often face issues such as numerical dispersion,oscillation,and mass non-conservation when spatial and temporal discretization conditions are not appropriately configured.To address these problems and achieve accurate and stable numerical solutions,a finite analytic method based on water content-based Richards'equation(FAM-W)is proposed.The performance of the FAM-W is compared with analytical solutions,Finite Difference Method(FDM),and Finite Analytic Method based on the pressure Head-based Richards'equation(FAM-H).Compared to analytical solution and other numerical methods(FDM and FAM-H),FAM-W demonstrates superior accuracy and efficiency in controlling mass balance errors,regardless of spatial step sizes.This study introduces a novel approach for modelling water flow in the vadose zone,offering significant benefits for water resources management.
基金supported by the National Natural Science Foundation of China(12201228,12171047)the Fundamental Research Funds for the Central Universities(3034011102)supported by National Key R&D Program of China(2020YFA0713701).
文摘In this work, we first derive the one-point large deviations principle (LDP) for both the stochastic Cahn–Hilliard equation with small noise and its spatial finite difference method (FDM). Then, we focus on giving the convergence of the one-point large deviations rate function (LDRF) of the spatial FDM, which is about the asymptotical limit of a parametric variational problem. The main idea for proving the convergence of the LDRF of the spatial FDM is via the Γ-convergence of objective functions. This relies on the qualitative analysis of skeleton equations of the original equation and the numerical method. In order to overcome the difficulty that the drift coefficient is not one-sided Lipschitz continuous, we derive the equivalent characterization of the skeleton equation of the spatial FDM and the discrete interpolation inequality to obtain the uniform boundedness of the solution to the underlying skeleton equation. These play important roles in deriving the T-convergence of objective functions.
基金supported by National Natural Science Foundation of China(12273080).
文摘In response to the issue of fuzzy matching and association when optical observation data are matched with the orbital elements in a catalog database,this paper proposes a matching and association strategy based on the arcsegment difference method.First,a matching error threshold is set to match the observation data with the known catalog database.Second,the matching results for the same day are sorted on the basis of target identity and observation residuals.Different matching error thresholds and arc-segment dynamic association thresholds are then applied to categorize the observation residuals of the same target across different arc-segments,yielding matching results under various thresholds.Finally,the orbital residual is computed through orbit determination(OD),and the positional error is derived by comparing the OD results with the orbit track from the catalog database.The appropriate matching error threshold is then selected on the basis of these results,leading to the final matching and association of the fuzzy correlation data.Experimental results showed that the correct matching rate for data arc-segments is 92.34% when the matching error threshold is set to 720″,with the arc-segment difference method processing the results of an average matching rate of 97.62% within 8 days.The remaining 5.28% of the fuzzy correlation data are correctly matched and associated,enabling identification of orbital maneuver targets through further processing and analysis.This method substantially enhances the efficiency and accuracy of space target cataloging,offering robust technical support for dynamic maintenance of the space target database.
基金supported by the National Natural Science Foundation of China(No.42277175)Guangxi Emergency Management Department 2024 Innovation and Technology Research Project,China(No.2024GXYJ006)+2 种基金Hunan Provincial Department of Natural Resources Geological Exploration Project,China(No.2023ZRBSHZ056)The First National Natural Disaster Comprehensive Risk Survey in Hunan Province,China(No.2022-70)Guizhou Provincial Major Scientific and Technological Program,China(No.2023-425).
文摘A method combining finite difference method(FDM)and k-means clustering algorithm which can determine the threshold of rock bridge generation is proposed.Jointed slope models with different joint coalescence coefficients(k)are constructed based on FDM.The rock bridge area was divided through k-means algorithm and the optimal number of clusters was determined by sum of squared errors(SSE)and elbow method.The influence of maximum principal stress and stress change rate as clustering indexes on the clustering results of rock bridges was compared by using Euclidean distance.The results show that using stress change rate as clustering index is more effective.When the joint coalescence coefficient is less than 0.6,there is no significant stress concentration in the middle area of adjacent joints,that is,no generation of rock bridge.In addition,the range of rock bridge is affected by the coalescence coefficient(k),the relative position of joints and the parameters of weak interlayer.
文摘In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error between the numerical solution and the exact solution is obtained,and then compared with the error formed by the difference method,it is concluded that the Lagrange interpolation method is more effective in solving the variable coefficient ordinary differential equation.
文摘The electrical performance of radomes on high-speed aircraft can be influenced by the thermal and mechanical loads produced during high-speed flight,which can affect the detection dis-tance and accuracy of the guidance system.This paper presents a new method that uses the Finite Difference Time Domain(FDTD)method to calculate the electrical performance of radomes under Thermo-Mechanical-Electrical(TME)coupling.This method can accurately characterize the effects of material dielectric temperature drift and structural deformation on the electrical performance of the radome under flight conditions,enabling high-precision full-wave calculations of the broadband electrical performance of the radome.The method initiates by utilizing a Finite Element Grid Model(FE-GM)of the radome to sequentially acquire the radome's response temperature field and structural deformation field through thermal and mechanical simulations.Subsequently,spatial mapping techniques are developed to accurately incorporate the dielectric temperature drift and structural deformation of the radome into its Yee grid Electromagnetic(EM)simulation model.A verification case was designed to test the proposed method,and the results confirmed its high computational accuracy.Additionally,the effectiveness and necessity of the method were further demonstrated by analyzing the electrical performance of a fused silica ceramic radome used on a high-speed aircraft.
基金National Natural Science Foundation of China under Grant Nos.51978213 and 51778190the National Key Research and Development Program of China under Grant Nos.2017YFC0703605 and 2016YFC0701106。
文摘For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study proposes to investigate the stability and accuracy of the central difference method(CDM)for RTDST considering the specimen mass participation coefficient.First,the theory of the CDM for RTDST is presented.Next,the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated.Finally,numerical simulations and experimental tests are conducted for verifying the effectiveness of the method.The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen,and the stability limit first increases and then decreases as the mass participation coefficient increases.In most cases,the mass participation coefficient will increase the stability limit of the algorithm,but in specific circumstances,the algorithm may lose its stability.The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper.
基金supported by the Key Laboratory of Road Construction Technology and Equipment(Chang’an University,No.300102253502)the Natural Science Foundation of Shandong Province of China(GrantNo.ZR2022YQ06)the Development Plan of Youth Innovation Team in Colleges and Universities of Shandong Province(Grant No.2022KJ140).
文摘In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem.
基金Supported by the National Natural Science Foundation of China(Grant No.11571181)the Research Start-Up Foundation of Nantong University(Grant No.135423602051).
文摘In this paper,we give improved error estimates for linearized and nonlinear CrankNicolson type finite difference schemes of Ginzburg-Landau equation in two dimensions.For linearized Crank-Nicolson scheme,we use mathematical induction to get unconditional error estimates in discrete L^(2)and H^(1)norm.However,it is not applicable for the nonlinear scheme.Thus,based on a‘cut-off’function and energy analysis method,we get unconditional L^(2)and H^(1)error estimates for the nonlinear scheme,as well as boundedness of numerical solutions.In addition,if the assumption for exact solutions is improved compared to before,unconditional and optimal pointwise error estimates can be obtained by energy analysis method and several Sobolev inequalities.Finally,some numerical examples are given to verify our theoretical analysis.
基金supported by the NSF under Grant DMS-2208391sponsored by the NSF under Grant DMS-1753581.
文摘This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.
文摘In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order accuracy, while the exponential-sum-approximation (ESA) is used to approximate the variable-order Caputo fractional derivative in the temporal direction, and a novel spatial sixth-order hybrid ESA-CCD method is implemented successfully. Finally, the accuracy of the proposed method is verified by numerical experiments.
基金supported by the Natural Science Foundation of China(Nos.41404057,41674077 and 411640034)the Nuclear Energy Development Project of China,and the‘555’Project of Gan Po Excellent People
文摘To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondary potential field with mixed boundary conditions by using a seven-point finite-difference method to obtain a large sparse system of linear equations. Then, we introduce the theory behind the pairwise aggregation algorithms for AGMG and use the conjugate-gradient method with the V-cycle AGMG preconditioner (AGMG-CG) to solve the linear equations. We use typical geoelectrical models to test the proposed AGMG-CG method and compare the results with analytical solutions and the 3DDCXH algorithm for 3D DC modeling (3DDCXH). In addition, we apply the AGMG-CG method to different grid sizes and geoelectrical models and compare it to different iterative methods, such as ILU-BICGSTAB, ILU-GCR, and SSOR-CG. The AGMG-CG method yields nearly linearly decreasing errors, whereas the number of iterations increases slowly with increasing grid size. The AGMG-CG method is precise and converges fast, and thus can improve the computational efficiency in forward modeling of three-dimensional DC resistivity.
基金Project (50975263) supported by the National Natural Science Foundation of ChinaProject (2010081015) supported by International Cooperation Project of Shanxi Province, China+1 种基金 Project (2010-78) supported by the Scholarship Council in Shanxi province, ChinaProject (2010420120005) supported by Doctoral Fund of Ministry of Education of China
文摘A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions according to Reynolds number.In the far-wall region,the thermal melt flow was calculated as Newtonian flow.In the near-wall region,the thermal melt flow was calculated as non-Newtonian flow.It was proved that the new algorithm based on the projection method with the implicit technique was correct through nonparametric statistics method and experiment.The simulation results show that the new algorithm based on the projection method with the implicit technique calculates more quickly than the solution algorithm-volume of fluid method using the explicit difference method.
基金supported by the National Key Research and Development Program of China (Grant No.2023YFC3206501 and 2022YFFO802600)the National Natural Science Foundation of China (Grant No.52369003,42262010 and 42374166)+6 种基金the Natural Science Foundation of Inner Mongolia Autonomous Region of China (Grant No.2023LHMS04011 and2022MS04009)the Application Technology Research and Development Project of Jungar Banner (Grant No.2023YY-18 and 2023YY-19)the First-class Academic Subjects Special Research Project of the Education Department of Inner Mongolia Autonomous Region (Grant No.YLXKZX-NND-010)the Inner Mongolia Autonomous Region Science and Technology Leading Talent Team (Grant No.2022LJRC0007)the Inner Mongolia Agricultural University Basic Research Project(BR22-12-04)the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (Grant No.NMGIRT2313)the Basic Scientific Research Project of Institutions of Higher(Grant No.JY20230090)。
文摘In conventional fi nite diff erence numerical simulation of seismic waves,regular grids in Cartesian coordinates are used to divide the calculated region.When simulating seismic wave fi elds under an irregular surface,such grids are unsuitable to realize the free boundary condition.They also easily generate false scattered waves at the corners of the grids owing to the approximation of the stepped grids.These issues affect the simulation accuracy.This study introduces an orthogonal body-fitted grid generation technique in computational fl uid dynamics for generating grids in transversely isotropic(TI)media under an irregular surface.The fi rst-order velocity-stress equation in curvilinear coordinates is calculated using the optimized nonstaggered grids finite difference method.The point oscillation generated by the nonstaggered grids difference is eliminated by selective filtering.The orthogonal body-fitted grids can accurately describe the irregular surface.Further,the orthogonality of the grids allows the implementation of free boundary conditions without complicated coordinate transformation and interpolation operations.Numerical examples show that the numerical solutions obtained by this method agree well with the analytical solutions.By comparing the simulation results of the proposed method with those of the regular grid difference method,the proposed method can eff ectively eliminate the false scattered waves caused by the stepped grids under the condition of the same grid spacing.Thus,the accuracy of the numerical simulation is improved.In addition,the simulation results of the three-layer TI media model on an irregular surface show that the proposed method is also suitable for complex models.
基金supported by the NST Fellowship under the Ministry of Science and Technology,Government of the People’s Republic of Bangladesh(Session:2019–2020,merit number:334,serial number:714,physical science).
文摘This study presents a numerical analysis of the steady-state solution for transient magnetohydrodynamic(MHD)dissipative and radiative fluid flow,incorporating an inducedmagnetic field(IMF)and considering a relatively high concentration of foreign mass(accounting for Soret and Dufour effects)over a vertically oriented semi-infinite plate.The governing equations were normalized using boundary layer(BL)approximations.The resulting nonlinear system of partial differential equations(PDEs)was discretized and solved using an efficient explicit finite difference method(FDM).Numerical simulations were conducted using MATLAB R2015a,and the developed numerical code was verified through comparison with another code written in FORTRAN 6.6a.To ensure the reliability of the results,both mesh refinement and steady-state time validation tests were performed.Furthermore,a comparison with existing published studies was made to confirm the accuracy of the findings.The dimensionless equations revealed the impacts of several key parameters.The IMF initially intensifies near the plate before gradually diminishing as the magnetic parameter increases.For the range 0≤y≤1.8(where y is the horizontal direction),the IMF decreases with a rise in the magnetic Prandtl number;however,for 1.8≤y≤7(approximately),the magnetic field begins to increase.Beyond this,the profile of the magnetic field becomes somewhat irregular through the remaining part of the BL.
文摘Contact bounce of relay, which is the main cause of electric abrasion and material erosion, is inevitable. By using the mode expansion form, the dynamic behavior of two different reed systems for aerospace relays is analyzed. The dynamic model uses Euler-Bernoulli beam theory for cantilever beam, in which the driving force (or driving moment) of the electromagnetic system is taken into account, and the contact force between moving contact and stationary contact is simulated by the Kelvin-Voigt vis-coelastic...
基金The National Natural Science Foundation of China(No50475073,50775036)the High Technology Research Program of Jiangsu Province(NoBG2006035)
文摘An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aerostatic bearings. A detailed theoretical analysis of the pressure distribution of the orifice-compensated aerostatic journal bearing is presented. The nonlinear dimensionless Reynolds equation of the aerostatic journal bearing is solved by the finite difference method. Based on the principle of flow equilibrium, a new iterative algorithm named the variable step size successive approximation method is presented to adjust the pressure at the orifice in the iterative process and enhance the efficiency and convergence performance of the algorithm. A general program is developed to analyze the pressure distribution of the aerostatic journal bearing by Matlab tool. The results show that the improved finite difference method is highly effective, reliable, stable, and convergent. Even when very thin gas film thicknesses (less than 2 Win)are considered, the improved calculation method still yields a result and converges fast.