Fundamental matrix operations and solving linear systems of equations are ubiquitous in scientific investigations.Using the‘sender-receiver’model,we propose quantum algorithms for matrix operations such as matrix-ve...Fundamental matrix operations and solving linear systems of equations are ubiquitous in scientific investigations.Using the‘sender-receiver’model,we propose quantum algorithms for matrix operations such as matrix-vector product,matrix-matrix product,the sum of two matrices,and the calculation of determinant and inverse matrix.We encode the matrix entries into the probability amplitudes of the pure initial states of senders.After applying proper unitary transformation to the complete quantum system,the desired result can be found in certain blocks of the receiver’s density matrix.These quantum protocols can be used as subroutines in other quantum schemes.Furthermore,we present an alternative quantum algorithm for solving linear systems of equations.展开更多
A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the s...A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the spatial spectrum and the directions of arrival(DOA)of interferences to overcome the drawbacks associated with conventional adaptive beamforming(ABF)methods.The mainlobe interferences are identified by calculating the correlation coefficients between direction steering vectors(SVs)and rejected by the BMP pretreatment.Then,IAA is subsequently employed to reconstruct a sidelobe interference-plus-noise covariance matrix for the preferable ABF and residual interference suppression.Simulation results demonstrate the excellence of the proposed method over normal methods based on BMP and eigen-projection matrix perprocessing(EMP)under both uncorrelated and coherent circumstances.展开更多
StrongH-tensors play a significant role in identifying the positive definiteness of an even-order real symmetric tensor.In this paper,first,an improved iterative algorithm is proposed to determine whether a given tens...StrongH-tensors play a significant role in identifying the positive definiteness of an even-order real symmetric tensor.In this paper,first,an improved iterative algorithm is proposed to determine whether a given tensor is a strong H-tensor,and the validity of the iterative algorithm is proved theoretically.Second,the iterative algorithm is employed to identify the positive definiteness of an even-order real symmetric tensor.Finally,numerical examples are presented to illustrate the advantages of the proposed algorithm.展开更多
Reduced Q-matrix (Qr matrix) plays an important role in the rule space model (RSM) and the attribute hierarchy method (AHM). Based on the attribute hierarchy, a valid/invalid item is defined. The judgment method...Reduced Q-matrix (Qr matrix) plays an important role in the rule space model (RSM) and the attribute hierarchy method (AHM). Based on the attribute hierarchy, a valid/invalid item is defined. The judgment method of the valid/invalid item is developed on the relation between reachability matrix and valid items. And valid items are explained from the perspective of graph theory. An incremental augment algorithm for constructing Qr matrix is proposed based on the idea of incremental forward regression, and its validity is theoretically considered. Results of empirical tests are given in order to compare the performance of the incremental augment algo-rithm and the Tatsuoka algorithm upon the running time. Empirical evidence shows that the algorithm outper-forms the Tatsuoka algorithm, and the analysis of the two algorithms also show linear growth with respect to the number of valid items. Mathematical models with 10 attributes are built for the two algorithms by the linear regression analysis.展开更多
With respect to the gamma spectrum, the energy resolution improves with increase in energy. The counts of full energy peak change with energy, and this approximately complies with the Gaussian distribution. This study...With respect to the gamma spectrum, the energy resolution improves with increase in energy. The counts of full energy peak change with energy, and this approximately complies with the Gaussian distribution. This study mainly examines a method to deconvolve the LaBr_3:Ce gamma spectrum with a detector response matrix constructing algorithm based on energy resolution calibration.In the algorithm, the full width at half maximum(FWHM)of full energy peak was calculated by the cubic spline interpolation algorithm and calibrated by a square root of a quadratic function that changes with the energy. Additionally, the detector response matrix was constructed to deconvolve the gamma spectrum. Furthermore, an improved SNIP algorithm was proposed to eliminate the background. In the experiment, several independent peaks of ^(152)Eu,^(137)Cs, and ^(60)Co sources were detected by a LaBr_3:Ce scintillator that were selected to calibrate the energy resolution. The Boosted Gold algorithm was applied to deconvolve the gamma spectrum. The results showed that the peak position difference between the experiment and the deconvolution was within ± 2 channels and the relative error of peak area was approximately within 0.96–6.74%. Finally, a ^(133) Ba spectrum was deconvolved to verify the efficiency and accuracy of the algorithm in unfolding the overlapped peaks.展开更多
To reduce the computational complexity of matrix inversion, which is the majority of processing in many practical applications, two numerically efficient recursive algorithms (called algorithms I and II, respectively...To reduce the computational complexity of matrix inversion, which is the majority of processing in many practical applications, two numerically efficient recursive algorithms (called algorithms I and II, respectively) are presented. Algorithm I is used to calculate the inverse of such a matrix, whose leading principal minors are all nonzero. Algorithm II, whereby, the inverse of an arbitrary nonsingular matrix can be evaluated is derived via improving the algorithm I. The implementation, for algorithm II or I, involves matrix-vector multiplications and vector outer products. These operations are computationally fast and highly parallelizable. MATLAB simulations show that both recursive algorithms are valid.展开更多
A novel sparse matrix technique for the numerical analysis of semiconductor devicesand its algorithms are presented.Storage scheme and calculation procedure of the sparse matrixare described in detail.The sparse matri...A novel sparse matrix technique for the numerical analysis of semiconductor devicesand its algorithms are presented.Storage scheme and calculation procedure of the sparse matrixare described in detail.The sparse matrix technique in the device simulation can decrease storagegreatly with less CPU time and its implementation is very easy.Some algorithms and calculationexamples to show the time and space characteristics of the sparse matrix are given.展开更多
A new method for the construction of bivariate matrix valued rational interpolants (BGIRI) on a rectangular grid is presented in [6]. The rational interpolants are of Thiele-type continued fraction form with scalar de...A new method for the construction of bivariate matrix valued rational interpolants (BGIRI) on a rectangular grid is presented in [6]. The rational interpolants are of Thiele-type continued fraction form with scalar denominator. The generalized inverse introduced by [3]is gen-eralized to rectangular matrix case in this paper. An exact error formula for interpolation is ob-tained, which is an extension in matrix form of bivariate scalar and vector valued rational interpola-tion discussed by Siemaszko[l2] and by Gu Chuangqing [7] respectively. By defining row and col-umn-transformation in the sense of the partial inverted differences for matrices, two type matrix algorithms are established to construct corresponding two different BGIRI, which hold for the vec-tor case and the scalar case.展开更多
Full matrix focusing method of ultrasonic phased array has been proved with advantages of good signal-to-noise ratio and imaging resolution in the field of Ultrasonic NDT.However,it is still suffering from the time-co...Full matrix focusing method of ultrasonic phased array has been proved with advantages of good signal-to-noise ratio and imaging resolution in the field of Ultrasonic NDT.However,it is still suffering from the time-consuming data acquisition and processing.In order to solve the problem,two simplified matrix focusing methods are provided in the paper.One provided method is a triangular matrix focusing algorithm based on the principle of reciprocity for the multi-channel ultrasonic system.The other provided method is a trapezoidal matrix focusing algorithm based on the energy weight of the different channel to the focusing area.Time of data acquisition and computational is decreased with the provided simplified matrix focusing methods.In order to prove the validity of two provided algorithms,both side-drilled holes and oblique cracks are used for imaging experiments.The experimental results show that the imaging quality of the triangular matrix focusing algorithm is basically consistent to that of the full matrix focusing method.And imaging quality of the trapezoidal matrix focusing algorithm is slightly reduced with the amount of multi-channel data decreasing.Both data acquisition and computational efficiency using the triangular matrix focusing algorithm and the trapezoidal matrix focusing algorithm have been improved significantly compared with original full matrix focusing method.展开更多
In this paper, an improved gradient iterative (GI) algorithm for solving the Lyapunov matrix equations is studied. Convergence of the improved method for any initial value is proved with some conditions. Compared wi...In this paper, an improved gradient iterative (GI) algorithm for solving the Lyapunov matrix equations is studied. Convergence of the improved method for any initial value is proved with some conditions. Compared with the GI algorithm, the improved algorithm reduces computational cost and storage. Finally, the algorithm is tested with GI several numerical examples.展开更多
In this paper, a practical Werner-type continued fraction method for solving matrix valued rational interpolation problem is provided by using a generalized inverse of matrices. In order to reduce the continued fracti...In this paper, a practical Werner-type continued fraction method for solving matrix valued rational interpolation problem is provided by using a generalized inverse of matrices. In order to reduce the continued fraction form to rational function form of the interpolants, an efficient forward recurrence algorithm is obtained.展开更多
In the process of eliminating variables in a symbolic polynomial system,the extraneous factors are referred to the unwanted parameters of resulting polynomial.This paper aims at reducing the number of these factors vi...In the process of eliminating variables in a symbolic polynomial system,the extraneous factors are referred to the unwanted parameters of resulting polynomial.This paper aims at reducing the number of these factors via optimizing the size of Dixon matrix.An optimal configuration of Dixon matrix would lead to the enhancement of the process of computing the resultant which uses for solving polynomial systems.To do so,an optimization algorithm along with a number of new polynomials is introduced to replace the polynomials and implement a complexity analysis.Moreover,the monomial multipliers are optimally positioned to multiply each of the polynomials.Furthermore,through practical implementation and considering standard and mechanical examples the efficiency of the method is evaluated.展开更多
Consistency test of the judgment matrix is an essential step in the aplication of Analytic Hierarchy Process (AHP). This thesis presents an algerithm concerning the adjustment of a judgment matrix when it failed to pa...Consistency test of the judgment matrix is an essential step in the aplication of Analytic Hierarchy Process (AHP). This thesis presents an algerithm concerning the adjustment of a judgment matrix when it failed to pass the consistency test.展开更多
A new algorithm of structure random response numerical characteristics, namedas matrix algebra algorithm of structure analysis is presented. Using the algorithm, structurerandom response numerical characteristics can ...A new algorithm of structure random response numerical characteristics, namedas matrix algebra algorithm of structure analysis is presented. Using the algorithm, structurerandom response numerical characteristics can easily be got by directly solving linear matrixequations rather than structure motion differential equations. Moreover, in order to solve thecorresponding linear matrix equations, the numerical integration fast algorithm is presented. Thenaccording to the results, dynamic design and life-span estimation can be done. Besides, the newalgorithm can solve non-proportion damp structure response.展开更多
An axiomatic definition for the generalized inverse matrix Pade approximation (GMPA) is introduced. The matrix rational approximants are of the form of the matrix valued numerator and the scalar denominator. By means...An axiomatic definition for the generalized inverse matrix Pade approximation (GMPA) is introduced. The matrix rational approximants are of the form of the matrix valued numerator and the scalar denominator. By means of generalized inverse for matrices, the ε algorithm for the computation of GMPA is established. The well known Wynn identity for GMPA is proved on the basis of ε algorithm. The η algorithm is defined in a similar way. The equivalence relation between ε algorithm and η algorithm is proposed. Some common examples and a numerical example are given to illustrate the methods in this paper.展开更多
An efficient and stable structure preserving algorithm, which is a variant of the QR like (SR) algorithm due to Bunse-Gerstner and Mehrmann, is presented for computing the eigenvalues and stable invariant subspaces of...An efficient and stable structure preserving algorithm, which is a variant of the QR like (SR) algorithm due to Bunse-Gerstner and Mehrmann, is presented for computing the eigenvalues and stable invariant subspaces of a Hamiltonian matrix. In the algorithm two strategies are employed, one of which is called dis-unstabilization technique and the other is preprocessing technique. Together with them, a so-called ratio-reduction equation and a backtrack technique are introduced to avoid the instability and breakdown in the original algorithm. It is shown that the new algorithm can overcome the instability and breakdown at low cost. Numerical results have demonstrated that the algorithm is stable and can compute the eigenvalues to very high accuracy.展开更多
In this paper, an iterative algorithm is presented to solve the Sylvester and Lyapunov matrix equations. By this iterative algorithm, for any initial matrix X1, a solution X* can be obtained within finite iteration s...In this paper, an iterative algorithm is presented to solve the Sylvester and Lyapunov matrix equations. By this iterative algorithm, for any initial matrix X1, a solution X* can be obtained within finite iteration steps in the absence of roundoff errors. Some examples illustrate that this algorithm is very efficient and better than that of [ 1 ] and [2].展开更多
Non-negative matrix factorization (NMF) is a technique for dimensionality reduction by placing non-negativity constraints on the matrix. Based on the PARAFAC model, NMF was extended for three-dimension data decompos...Non-negative matrix factorization (NMF) is a technique for dimensionality reduction by placing non-negativity constraints on the matrix. Based on the PARAFAC model, NMF was extended for three-dimension data decomposition. The three-dimension nonnegative matrix factorization (NMF3) algorithm, which was concise and easy to implement, was given in this paper. The NMF3 algorithm implementation was based on elements but not on vectors. It could decompose a data array directly without unfolding, which was not similar to that the traditional algorithms do, It has been applied to the simulated data array decomposition and obtained reasonable results. It showed that NMF3 could be introduced for curve resolution in chemometrics.展开更多
K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper propo...K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper proposes an improved K-means algorithm based on the similarity matrix. The im- proved algorithm can effectively avoid the random selection of initial center points, therefore it can provide effective initial points for clustering process, and reduce the fluctuation of clustering results which are resulted from initial points selections, thus a better clustering quality can be obtained. The experimental results also show that the F-measure of the improved K-means algorithm has been greatly improved and the clustering results are more stable.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12031004 and Grant No.12271474,61877054)the Fundamental Research Foundation for the Central Universities(Project No.K20210337)+1 种基金the Zhejiang University Global Partnership Fund,188170+194452119/003partially funded by a state task of Russian Fundamental Investigations(State Registration No.FFSG-2024-0002)。
文摘Fundamental matrix operations and solving linear systems of equations are ubiquitous in scientific investigations.Using the‘sender-receiver’model,we propose quantum algorithms for matrix operations such as matrix-vector product,matrix-matrix product,the sum of two matrices,and the calculation of determinant and inverse matrix.We encode the matrix entries into the probability amplitudes of the pure initial states of senders.After applying proper unitary transformation to the complete quantum system,the desired result can be found in certain blocks of the receiver’s density matrix.These quantum protocols can be used as subroutines in other quantum schemes.Furthermore,we present an alternative quantum algorithm for solving linear systems of equations.
基金The National Natural Science Foundation of China(No.U19B2031).
文摘A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the spatial spectrum and the directions of arrival(DOA)of interferences to overcome the drawbacks associated with conventional adaptive beamforming(ABF)methods.The mainlobe interferences are identified by calculating the correlation coefficients between direction steering vectors(SVs)and rejected by the BMP pretreatment.Then,IAA is subsequently employed to reconstruct a sidelobe interference-plus-noise covariance matrix for the preferable ABF and residual interference suppression.Simulation results demonstrate the excellence of the proposed method over normal methods based on BMP and eigen-projection matrix perprocessing(EMP)under both uncorrelated and coherent circumstances.
文摘StrongH-tensors play a significant role in identifying the positive definiteness of an even-order real symmetric tensor.In this paper,first,an improved iterative algorithm is proposed to determine whether a given tensor is a strong H-tensor,and the validity of the iterative algorithm is proved theoretically.Second,the iterative algorithm is employed to identify the positive definiteness of an even-order real symmetric tensor.Finally,numerical examples are presented to illustrate the advantages of the proposed algorithm.
基金Supported by the National Natural Science Foundation of China (30860084,60673014,60263005)the Backbone Young Teachers Foundation of Fujian Normal University(2008100244)the Department of Education Foundation of Fujian Province (ZA09047)~~
文摘Reduced Q-matrix (Qr matrix) plays an important role in the rule space model (RSM) and the attribute hierarchy method (AHM). Based on the attribute hierarchy, a valid/invalid item is defined. The judgment method of the valid/invalid item is developed on the relation between reachability matrix and valid items. And valid items are explained from the perspective of graph theory. An incremental augment algorithm for constructing Qr matrix is proposed based on the idea of incremental forward regression, and its validity is theoretically considered. Results of empirical tests are given in order to compare the performance of the incremental augment algo-rithm and the Tatsuoka algorithm upon the running time. Empirical evidence shows that the algorithm outper-forms the Tatsuoka algorithm, and the analysis of the two algorithms also show linear growth with respect to the number of valid items. Mathematical models with 10 attributes are built for the two algorithms by the linear regression analysis.
基金supported by the National Natural Science Foundation of China(Nos.41374130 and 41604154)
文摘With respect to the gamma spectrum, the energy resolution improves with increase in energy. The counts of full energy peak change with energy, and this approximately complies with the Gaussian distribution. This study mainly examines a method to deconvolve the LaBr_3:Ce gamma spectrum with a detector response matrix constructing algorithm based on energy resolution calibration.In the algorithm, the full width at half maximum(FWHM)of full energy peak was calculated by the cubic spline interpolation algorithm and calibrated by a square root of a quadratic function that changes with the energy. Additionally, the detector response matrix was constructed to deconvolve the gamma spectrum. Furthermore, an improved SNIP algorithm was proposed to eliminate the background. In the experiment, several independent peaks of ^(152)Eu,^(137)Cs, and ^(60)Co sources were detected by a LaBr_3:Ce scintillator that were selected to calibrate the energy resolution. The Boosted Gold algorithm was applied to deconvolve the gamma spectrum. The results showed that the peak position difference between the experiment and the deconvolution was within ± 2 channels and the relative error of peak area was approximately within 0.96–6.74%. Finally, a ^(133) Ba spectrum was deconvolved to verify the efficiency and accuracy of the algorithm in unfolding the overlapped peaks.
文摘To reduce the computational complexity of matrix inversion, which is the majority of processing in many practical applications, two numerically efficient recursive algorithms (called algorithms I and II, respectively) are presented. Algorithm I is used to calculate the inverse of such a matrix, whose leading principal minors are all nonzero. Algorithm II, whereby, the inverse of an arbitrary nonsingular matrix can be evaluated is derived via improving the algorithm I. The implementation, for algorithm II or I, involves matrix-vector multiplications and vector outer products. These operations are computationally fast and highly parallelizable. MATLAB simulations show that both recursive algorithms are valid.
文摘A novel sparse matrix technique for the numerical analysis of semiconductor devicesand its algorithms are presented.Storage scheme and calculation procedure of the sparse matrixare described in detail.The sparse matrix technique in the device simulation can decrease storagegreatly with less CPU time and its implementation is very easy.Some algorithms and calculationexamples to show the time and space characteristics of the sparse matrix are given.
文摘A new method for the construction of bivariate matrix valued rational interpolants (BGIRI) on a rectangular grid is presented in [6]. The rational interpolants are of Thiele-type continued fraction form with scalar denominator. The generalized inverse introduced by [3]is gen-eralized to rectangular matrix case in this paper. An exact error formula for interpolation is ob-tained, which is an extension in matrix form of bivariate scalar and vector valued rational interpola-tion discussed by Siemaszko[l2] and by Gu Chuangqing [7] respectively. By defining row and col-umn-transformation in the sense of the partial inverted differences for matrices, two type matrix algorithms are established to construct corresponding two different BGIRI, which hold for the vec-tor case and the scalar case.
基金Supported by the National Natural Science Foundation of China(Grant No.51905070).
文摘Full matrix focusing method of ultrasonic phased array has been proved with advantages of good signal-to-noise ratio and imaging resolution in the field of Ultrasonic NDT.However,it is still suffering from the time-consuming data acquisition and processing.In order to solve the problem,two simplified matrix focusing methods are provided in the paper.One provided method is a triangular matrix focusing algorithm based on the principle of reciprocity for the multi-channel ultrasonic system.The other provided method is a trapezoidal matrix focusing algorithm based on the energy weight of the different channel to the focusing area.Time of data acquisition and computational is decreased with the provided simplified matrix focusing methods.In order to prove the validity of two provided algorithms,both side-drilled holes and oblique cracks are used for imaging experiments.The experimental results show that the imaging quality of the triangular matrix focusing algorithm is basically consistent to that of the full matrix focusing method.And imaging quality of the trapezoidal matrix focusing algorithm is slightly reduced with the amount of multi-channel data decreasing.Both data acquisition and computational efficiency using the triangular matrix focusing algorithm and the trapezoidal matrix focusing algorithm have been improved significantly compared with original full matrix focusing method.
基金Project supported by the National Natural Science Foundation of China (Grant No.10271074), and the Special Funds for Major Specialities of Shanghai Education Commission (Grant No.J50101)
文摘In this paper, an improved gradient iterative (GI) algorithm for solving the Lyapunov matrix equations is studied. Convergence of the improved method for any initial value is proved with some conditions. Compared with the GI algorithm, the improved algorithm reduces computational cost and storage. Finally, the algorithm is tested with GI several numerical examples.
文摘In this paper, a practical Werner-type continued fraction method for solving matrix valued rational interpolation problem is provided by using a generalized inverse of matrices. In order to reduce the continued fraction form to rational function form of the interpolants, an efficient forward recurrence algorithm is obtained.
文摘In the process of eliminating variables in a symbolic polynomial system,the extraneous factors are referred to the unwanted parameters of resulting polynomial.This paper aims at reducing the number of these factors via optimizing the size of Dixon matrix.An optimal configuration of Dixon matrix would lead to the enhancement of the process of computing the resultant which uses for solving polynomial systems.To do so,an optimization algorithm along with a number of new polynomials is introduced to replace the polynomials and implement a complexity analysis.Moreover,the monomial multipliers are optimally positioned to multiply each of the polynomials.Furthermore,through practical implementation and considering standard and mechanical examples the efficiency of the method is evaluated.
文摘Consistency test of the judgment matrix is an essential step in the aplication of Analytic Hierarchy Process (AHP). This thesis presents an algerithm concerning the adjustment of a judgment matrix when it failed to pass the consistency test.
基金This project is supported by National Natural Science Foundation of China (No.59805001)
文摘A new algorithm of structure random response numerical characteristics, namedas matrix algebra algorithm of structure analysis is presented. Using the algorithm, structurerandom response numerical characteristics can easily be got by directly solving linear matrixequations rather than structure motion differential equations. Moreover, in order to solve thecorresponding linear matrix equations, the numerical integration fast algorithm is presented. Thenaccording to the results, dynamic design and life-span estimation can be done. Besides, the newalgorithm can solve non-proportion damp structure response.
文摘An axiomatic definition for the generalized inverse matrix Pade approximation (GMPA) is introduced. The matrix rational approximants are of the form of the matrix valued numerator and the scalar denominator. By means of generalized inverse for matrices, the ε algorithm for the computation of GMPA is established. The well known Wynn identity for GMPA is proved on the basis of ε algorithm. The η algorithm is defined in a similar way. The equivalence relation between ε algorithm and η algorithm is proposed. Some common examples and a numerical example are given to illustrate the methods in this paper.
文摘An efficient and stable structure preserving algorithm, which is a variant of the QR like (SR) algorithm due to Bunse-Gerstner and Mehrmann, is presented for computing the eigenvalues and stable invariant subspaces of a Hamiltonian matrix. In the algorithm two strategies are employed, one of which is called dis-unstabilization technique and the other is preprocessing technique. Together with them, a so-called ratio-reduction equation and a backtrack technique are introduced to avoid the instability and breakdown in the original algorithm. It is shown that the new algorithm can overcome the instability and breakdown at low cost. Numerical results have demonstrated that the algorithm is stable and can compute the eigenvalues to very high accuracy.
基金supported by the National Natural Science Foundation of China (No.10771073)
文摘In this paper, an iterative algorithm is presented to solve the Sylvester and Lyapunov matrix equations. By this iterative algorithm, for any initial matrix X1, a solution X* can be obtained within finite iteration steps in the absence of roundoff errors. Some examples illustrate that this algorithm is very efficient and better than that of [ 1 ] and [2].
文摘Non-negative matrix factorization (NMF) is a technique for dimensionality reduction by placing non-negativity constraints on the matrix. Based on the PARAFAC model, NMF was extended for three-dimension data decomposition. The three-dimension nonnegative matrix factorization (NMF3) algorithm, which was concise and easy to implement, was given in this paper. The NMF3 algorithm implementation was based on elements but not on vectors. It could decompose a data array directly without unfolding, which was not similar to that the traditional algorithms do, It has been applied to the simulated data array decomposition and obtained reasonable results. It showed that NMF3 could be introduced for curve resolution in chemometrics.
文摘K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper proposes an improved K-means algorithm based on the similarity matrix. The im- proved algorithm can effectively avoid the random selection of initial center points, therefore it can provide effective initial points for clustering process, and reduce the fluctuation of clustering results which are resulted from initial points selections, thus a better clustering quality can be obtained. The experimental results also show that the F-measure of the improved K-means algorithm has been greatly improved and the clustering results are more stable.