To address the issues of unknown target size,blurred edges,background interference and low contrast in infrared small target detection,this paper proposes a method based on density peaks searching and weighted multi-f...To address the issues of unknown target size,blurred edges,background interference and low contrast in infrared small target detection,this paper proposes a method based on density peaks searching and weighted multi-feature local difference.Firstly,an improved high-boost filter is used for preprocessing to eliminate background clutter and high-brightness interference,thereby increasing the probability of capturing real targets in the density peak search.Secondly,a triple-layer window is used to extract features from the area surrounding candidate targets,addressing the uncertainty of small target sizes.By calculating multi-feature local differences between the triple-layer windows,the problems of blurred target edges and low contrast are resolved.To balance the contribution of different features,intra-class distance is used to calculate weights,achieving weighted fusion of multi-feature local differences to obtain the weighted multi-feature local differences of candidate targets.The real targets are then extracted using the interquartile range.Experiments on datasets such as SIRST and IRSTD-IK show that the proposed method is suitable for various complex types and demonstrates good robustness and detection performance.展开更多
Video summarization aims at selecting valuable clips for browsing videos with high efficiency.Previous approaches typically focus on aggregating temporal features while ignoring the potential role of visual representa...Video summarization aims at selecting valuable clips for browsing videos with high efficiency.Previous approaches typically focus on aggregating temporal features while ignoring the potential role of visual representations in summarizing videos.In this paper,we present a global difference-aware network(GDANet)that exploits the feature difference across frame and video as guidance to enhance visual features.Initially,a difference optimization module(DOM)is devised to enhance the discriminability of visual features,bringing gains in accurately aggregating temporal cues.Subsequently,a dual-scale attention module(DSAM)is introduced to capture informative contextual information.Eventually,we design an adaptive feature fusion module(AFFM)to make the network adaptively learn context representations and perform feature fusion effectively.We have conducted experiments on benchmark datasets,and the empirical results demonstrate the effectiveness of the proposed framework.展开更多
Pancreatic diseases, including mass-forming chronic pancreatitis (MFCP) and pancreatic ductal adenocarcinoma(PDAC), present with similar imaging features, leading to diagnostic complexities. Deep Learning (DL) methods...Pancreatic diseases, including mass-forming chronic pancreatitis (MFCP) and pancreatic ductal adenocarcinoma(PDAC), present with similar imaging features, leading to diagnostic complexities. Deep Learning (DL) methodshave been shown to perform well on diagnostic tasks. Existing DL pancreatic lesion diagnosis studies basedon Magnetic Resonance Imaging (MRI) utilize the prior information to guide models to focus on the lesionregion. However, over-reliance on prior information may ignore the background information that is helpful fordiagnosis. This study verifies the diagnostic significance of the background information using a clinical dataset.Consequently, the Prior Difference Guidance Network (PDGNet) is proposed, merging decoupled lesion andbackground information via the Prior Normalization Fusion (PNF) strategy and the Feature Difference Guidance(FDG) module, to direct the model to concentrate on beneficial regions for diagnosis. Extensive experiments inthe clinical dataset demonstrate that the proposed method achieves promising diagnosis performance: PDGNetsbased on conventional networks record an ACC (Accuracy) and AUC (Area Under the Curve) of 87.50% and89.98%, marking improvements of 8.19% and 7.64% over the prior-free benchmark. Compared to lesion-focusedbenchmarks, the uplift is 6.14% and 6.02%. PDGNets based on advanced networks reach an ACC and AUC of89.77% and 92.80%. The study underscores the potential of harnessing background information in medical imagediagnosis, suggesting a more holistic view for future research.展开更多
Existing glass segmentation networks have high computational complexity and large memory occupation,leading to high hardware requirements and time overheads for model inference,which is not conducive to efficiency-see...Existing glass segmentation networks have high computational complexity and large memory occupation,leading to high hardware requirements and time overheads for model inference,which is not conducive to efficiency-seeking real-time tasks such as autonomous driving.The inefficiency of the models is mainly due to employing homogeneous modules to process features of different layers.These modules require computationally intensive convolutions and weight calculation branches with numerous parameters to accommodate the differences in information across layers.We propose an efficient glass segmentation network(EGSNet)based on multi-level heterogeneous architecture and boundary awareness to balance the model performance and efficiency.EGSNet divides the feature layers from different stages into low-level understanding,semantic-level understanding,and global understanding with boundary guidance.Based on the information differences among the different layers,we further propose the multi-angle collaborative enhancement(MCE)module,which extracts the detailed information from shallow features,and the large-scale contextual feature extraction(LCFE)module to understand semantic logic through deep features.The models are trained and evaluated on the glass segmentation datasets HSO(Home-Scene-Oriented)and Trans10k-stuff,respectively,and EGSNet achieves the best efficiency and performance compared to advanced methods.In the HSO test set results,the IoU,Fβ,MAE(Mean Absolute Error),and BER(Balance Error Rate)of EGSNet are 0.804,0.847,0.084,and 0.085,and the GFLOPs(Giga Floating Point Operations Per Second)are only 27.15.Experimental results show that EGSNet significantly improves the efficiency of the glass segmentation task with better performance.展开更多
Objective To summarize the clinical of different racial patients with celiac disease(CD)and analyze the disease prevalence,diagnosis and treatment in Chinese population.Methods All the patients were diagnosed as CD an...Objective To summarize the clinical of different racial patients with celiac disease(CD)and analyze the disease prevalence,diagnosis and treatment in Chinese population.Methods All the patients were diagnosed as CD and enrolled in Beijing United Family Hospital between January 2005 and July 2015.Clinical data including nationality,age,symptoms,endoscopic and patho-展开更多
基金supported by the National Natural Science Foundation of China (No.52205548)。
文摘To address the issues of unknown target size,blurred edges,background interference and low contrast in infrared small target detection,this paper proposes a method based on density peaks searching and weighted multi-feature local difference.Firstly,an improved high-boost filter is used for preprocessing to eliminate background clutter and high-brightness interference,thereby increasing the probability of capturing real targets in the density peak search.Secondly,a triple-layer window is used to extract features from the area surrounding candidate targets,addressing the uncertainty of small target sizes.By calculating multi-feature local differences between the triple-layer windows,the problems of blurred target edges and low contrast are resolved.To balance the contribution of different features,intra-class distance is used to calculate weights,achieving weighted fusion of multi-feature local differences to obtain the weighted multi-feature local differences of candidate targets.The real targets are then extracted using the interquartile range.Experiments on datasets such as SIRST and IRSTD-IK show that the proposed method is suitable for various complex types and demonstrates good robustness and detection performance.
基金the National Natural Science Foundation of China(Nos.61702347 and 62027801)the Natural Science Foundation of Hebei Province(Nos.F2022210007 and F2017210161)+1 种基金the Science and Technology Project of Hebei Education Department(Nos.ZD2022100 and QN2017132)the Central Guidance on Local Science and Technology Development Fund(No.226Z0501G)。
文摘Video summarization aims at selecting valuable clips for browsing videos with high efficiency.Previous approaches typically focus on aggregating temporal features while ignoring the potential role of visual representations in summarizing videos.In this paper,we present a global difference-aware network(GDANet)that exploits the feature difference across frame and video as guidance to enhance visual features.Initially,a difference optimization module(DOM)is devised to enhance the discriminability of visual features,bringing gains in accurately aggregating temporal cues.Subsequently,a dual-scale attention module(DSAM)is introduced to capture informative contextual information.Eventually,we design an adaptive feature fusion module(AFFM)to make the network adaptively learn context representations and perform feature fusion effectively.We have conducted experiments on benchmark datasets,and the empirical results demonstrate the effectiveness of the proposed framework.
基金the National Natural Science Foundation of China(No.82160347)Yunnan Key Laboratory of Smart City in Cyberspace Security(No.202105AG070010)Project of Medical Discipline Leader of Yunnan Province(D-2018012).
文摘Pancreatic diseases, including mass-forming chronic pancreatitis (MFCP) and pancreatic ductal adenocarcinoma(PDAC), present with similar imaging features, leading to diagnostic complexities. Deep Learning (DL) methodshave been shown to perform well on diagnostic tasks. Existing DL pancreatic lesion diagnosis studies basedon Magnetic Resonance Imaging (MRI) utilize the prior information to guide models to focus on the lesionregion. However, over-reliance on prior information may ignore the background information that is helpful fordiagnosis. This study verifies the diagnostic significance of the background information using a clinical dataset.Consequently, the Prior Difference Guidance Network (PDGNet) is proposed, merging decoupled lesion andbackground information via the Prior Normalization Fusion (PNF) strategy and the Feature Difference Guidance(FDG) module, to direct the model to concentrate on beneficial regions for diagnosis. Extensive experiments inthe clinical dataset demonstrate that the proposed method achieves promising diagnosis performance: PDGNetsbased on conventional networks record an ACC (Accuracy) and AUC (Area Under the Curve) of 87.50% and89.98%, marking improvements of 8.19% and 7.64% over the prior-free benchmark. Compared to lesion-focusedbenchmarks, the uplift is 6.14% and 6.02%. PDGNets based on advanced networks reach an ACC and AUC of89.77% and 92.80%. The study underscores the potential of harnessing background information in medical imagediagnosis, suggesting a more holistic view for future research.
文摘Existing glass segmentation networks have high computational complexity and large memory occupation,leading to high hardware requirements and time overheads for model inference,which is not conducive to efficiency-seeking real-time tasks such as autonomous driving.The inefficiency of the models is mainly due to employing homogeneous modules to process features of different layers.These modules require computationally intensive convolutions and weight calculation branches with numerous parameters to accommodate the differences in information across layers.We propose an efficient glass segmentation network(EGSNet)based on multi-level heterogeneous architecture and boundary awareness to balance the model performance and efficiency.EGSNet divides the feature layers from different stages into low-level understanding,semantic-level understanding,and global understanding with boundary guidance.Based on the information differences among the different layers,we further propose the multi-angle collaborative enhancement(MCE)module,which extracts the detailed information from shallow features,and the large-scale contextual feature extraction(LCFE)module to understand semantic logic through deep features.The models are trained and evaluated on the glass segmentation datasets HSO(Home-Scene-Oriented)and Trans10k-stuff,respectively,and EGSNet achieves the best efficiency and performance compared to advanced methods.In the HSO test set results,the IoU,Fβ,MAE(Mean Absolute Error),and BER(Balance Error Rate)of EGSNet are 0.804,0.847,0.084,and 0.085,and the GFLOPs(Giga Floating Point Operations Per Second)are only 27.15.Experimental results show that EGSNet significantly improves the efficiency of the glass segmentation task with better performance.
文摘Objective To summarize the clinical of different racial patients with celiac disease(CD)and analyze the disease prevalence,diagnosis and treatment in Chinese population.Methods All the patients were diagnosed as CD and enrolled in Beijing United Family Hospital between January 2005 and July 2015.Clinical data including nationality,age,symptoms,endoscopic and patho-