To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical c...To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical computation of such models.This efficient solver employs algorithms based on discrete cosine transformations(DCT)or discrete sine transformations(DST)and is not restricted by any spatio-temporal schemes.Our proposed methodology is appropriate for a variety of phase-field models and is especially efficient when combined with flow field systems.Meanwhile,this study has conducted an extensive numerical comparison and found that employing DCT and DST techniques not only yields results comparable to those obtained via the Multigrid(MG)method,a conventional approach used in the resolution of the Poisson equations,but also enhances computational efficiency by over 90%.展开更多
A method combining finite difference method(FDM)and k-means clustering algorithm which can determine the threshold of rock bridge generation is proposed.Jointed slope models with different joint coalescence coefficien...A method combining finite difference method(FDM)and k-means clustering algorithm which can determine the threshold of rock bridge generation is proposed.Jointed slope models with different joint coalescence coefficients(k)are constructed based on FDM.The rock bridge area was divided through k-means algorithm and the optimal number of clusters was determined by sum of squared errors(SSE)and elbow method.The influence of maximum principal stress and stress change rate as clustering indexes on the clustering results of rock bridges was compared by using Euclidean distance.The results show that using stress change rate as clustering index is more effective.When the joint coalescence coefficient is less than 0.6,there is no significant stress concentration in the middle area of adjacent joints,that is,no generation of rock bridge.In addition,the range of rock bridge is affected by the coalescence coefficient(k),the relative position of joints and the parameters of weak interlayer.展开更多
In this work, we first derive the one-point large deviations principle (LDP) for both the stochastic Cahn–Hilliard equation with small noise and its spatial finite difference method (FDM). Then, we focus on giving th...In this work, we first derive the one-point large deviations principle (LDP) for both the stochastic Cahn–Hilliard equation with small noise and its spatial finite difference method (FDM). Then, we focus on giving the convergence of the one-point large deviations rate function (LDRF) of the spatial FDM, which is about the asymptotical limit of a parametric variational problem. The main idea for proving the convergence of the LDRF of the spatial FDM is via the Γ-convergence of objective functions. This relies on the qualitative analysis of skeleton equations of the original equation and the numerical method. In order to overcome the difficulty that the drift coefficient is not one-sided Lipschitz continuous, we derive the equivalent characterization of the skeleton equation of the spatial FDM and the discrete interpolation inequality to obtain the uniform boundedness of the solution to the underlying skeleton equation. These play important roles in deriving the T-convergence of objective functions.展开更多
In response to the issue of fuzzy matching and association when optical observation data are matched with the orbital elements in a catalog database,this paper proposes a matching and association strategy based on the...In response to the issue of fuzzy matching and association when optical observation data are matched with the orbital elements in a catalog database,this paper proposes a matching and association strategy based on the arcsegment difference method.First,a matching error threshold is set to match the observation data with the known catalog database.Second,the matching results for the same day are sorted on the basis of target identity and observation residuals.Different matching error thresholds and arc-segment dynamic association thresholds are then applied to categorize the observation residuals of the same target across different arc-segments,yielding matching results under various thresholds.Finally,the orbital residual is computed through orbit determination(OD),and the positional error is derived by comparing the OD results with the orbit track from the catalog database.The appropriate matching error threshold is then selected on the basis of these results,leading to the final matching and association of the fuzzy correlation data.Experimental results showed that the correct matching rate for data arc-segments is 92.34% when the matching error threshold is set to 720″,with the arc-segment difference method processing the results of an average matching rate of 97.62% within 8 days.The remaining 5.28% of the fuzzy correlation data are correctly matched and associated,enabling identification of orbital maneuver targets through further processing and analysis.This method substantially enhances the efficiency and accuracy of space target cataloging,offering robust technical support for dynamic maintenance of the space target database.展开更多
This study investigates the complex heat transfer dynamics inmultilayer bifacial photovoltaic(bPV)solar modules under spectrally resolved solar irradiation.A novel numericalmodel is developed to incorporate internal h...This study investigates the complex heat transfer dynamics inmultilayer bifacial photovoltaic(bPV)solar modules under spectrally resolved solar irradiation.A novel numericalmodel is developed to incorporate internal heat generation resulting from optical absorption,grounded in the physical equations governing light-matter interactions within the module’smultilayer structure.The model accounts for reflection and transmission at each interface between adjacent layers,as well as absorption within individual layers,using the wavelength-dependent dielectric properties of constituent materials.These properties are used to calculate the spectral reflectance,transmittance,and absorption coefficients,enabling precise quantification of internal heat sources from irradiance incidents on both the front and rear surfaces of the module.The study further examines the influence of irradiance reflection on thermal behavior,evaluates the thermal impact of various supporting materials placed beneath the module,and analyzes the role of albedo in modifying heat distribution.By incorporating spectrally resolved heat generation across each layer often simplified or omitted in conventional models,the proposed approach enhances physical accuracy.The transient heat equation is solved using a one-dimensional finite difference(FD)method to produce detailed temperature profiles under multiple operating scenarios,including Standard Test Conditions(STC),Bifacial Standard Test Conditions(BSTC),Normal Operating Cell Temperature(NOCT),and Bifacial NOCT(BNOCT).The results offer valuable insights into the interplay between optical and thermal phenomena in bifacial systems,informing the design and optimization of more efficient photovoltaic technologies.展开更多
In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolso...In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem.展开更多
For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study prop...For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study proposes to investigate the stability and accuracy of the central difference method(CDM)for RTDST considering the specimen mass participation coefficient.First,the theory of the CDM for RTDST is presented.Next,the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated.Finally,numerical simulations and experimental tests are conducted for verifying the effectiveness of the method.The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen,and the stability limit first increases and then decreases as the mass participation coefficient increases.In most cases,the mass participation coefficient will increase the stability limit of the algorithm,but in specific circumstances,the algorithm may lose its stability.The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper.展开更多
In this paper,we give improved error estimates for linearized and nonlinear CrankNicolson type finite difference schemes of Ginzburg-Landau equation in two dimensions.For linearized Crank-Nicolson scheme,we use mathem...In this paper,we give improved error estimates for linearized and nonlinear CrankNicolson type finite difference schemes of Ginzburg-Landau equation in two dimensions.For linearized Crank-Nicolson scheme,we use mathematical induction to get unconditional error estimates in discrete L^(2)and H^(1)norm.However,it is not applicable for the nonlinear scheme.Thus,based on a‘cut-off’function and energy analysis method,we get unconditional L^(2)and H^(1)error estimates for the nonlinear scheme,as well as boundedness of numerical solutions.In addition,if the assumption for exact solutions is improved compared to before,unconditional and optimal pointwise error estimates can be obtained by energy analysis method and several Sobolev inequalities.Finally,some numerical examples are given to verify our theoretical analysis.展开更多
By using asymptotic method,we verify the existence on the slowly growing solutions to second order difference equations discussed by Ishizaki-Yanagihara’s Wiman-Valiron method and Ishizaki-Wen’s binomial series meth...By using asymptotic method,we verify the existence on the slowly growing solutions to second order difference equations discussed by Ishizaki-Yanagihara’s Wiman-Valiron method and Ishizaki-Wen’s binomial series method.The classical problem on finding conditions on the polynomial coefficients P_(j)(z)(j=0,1,2)and F(z)to guarantee that all nontrivial solutions of complex second order difference equation P_(2)(z)f(z+2)+P_(1)(z)f(z+1)+P_(0)(z)f(z)=F(z)has slowly growing solutions with order 1/2 is detected.展开更多
Accurately simulating water flow movement in vadose zone is crucial for effective water resources assessment.Richards'equation,which describes the movement of water flow in the vadose zone,is highly nonlinear and ...Accurately simulating water flow movement in vadose zone is crucial for effective water resources assessment.Richards'equation,which describes the movement of water flow in the vadose zone,is highly nonlinear and challenging to solve.Existing numerical methods often face issues such as numerical dispersion,oscillation,and mass non-conservation when spatial and temporal discretization conditions are not appropriately configured.To address these problems and achieve accurate and stable numerical solutions,a finite analytic method based on water content-based Richards'equation(FAM-W)is proposed.The performance of the FAM-W is compared with analytical solutions,Finite Difference Method(FDM),and Finite Analytic Method based on the pressure Head-based Richards'equation(FAM-H).Compared to analytical solution and other numerical methods(FDM and FAM-H),FAM-W demonstrates superior accuracy and efficiency in controlling mass balance errors,regardless of spatial step sizes.This study introduces a novel approach for modelling water flow in the vadose zone,offering significant benefits for water resources management.展开更多
In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error...In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error between the numerical solution and the exact solution is obtained,and then compared with the error formed by the difference method,it is concluded that the Lagrange interpolation method is more effective in solving the variable coefficient ordinary differential equation.展开更多
The in-plane optical anisotropy(IPOA) of c-plane In Ga N/Ga N quantum disks(Qdisks) in nanowires grown on MoS_(2)/Mo and Ti/Mo substrates is investigated using reflectance difference spectroscopy(RDS) at room temperat...The in-plane optical anisotropy(IPOA) of c-plane In Ga N/Ga N quantum disks(Qdisks) in nanowires grown on MoS_(2)/Mo and Ti/Mo substrates is investigated using reflectance difference spectroscopy(RDS) at room temperature. A large IPOA related to defect or impurity states is observed. The IPOA of samples grown on MoS_(2)/Mo is approximately one order of magnitude larger than that of samples grown on Ti/Mo substrates. Numerical calculations based on the envelope function approximation have been performed to analyze the origin of the IPOA. It is found that the IPOA primarily results from the segregation of indium atoms in the In Ga N/Ga N Qdisks. This work highlights the significant influence of substrate materials on the IPOA of semiconductor heterostructures.展开更多
In this study,we design and numerically investigate a novel all optical D flip-flop(AODFF)based on linear photonic crystal(LPhC)structure that is composed of optical waveguides using the finite difference time domain(...In this study,we design and numerically investigate a novel all optical D flip-flop(AODFF)based on linear photonic crystal(LPhC)structure that is composed of optical waveguides using the finite difference time domain(FDTD)method.The proposed structure has the hexagonal close packed of 16×20 circular rods that are suspended in the air substrate with a lattice constant of 606 nm.The plane wave expansion(PWE)method is used to obtain the band diagram for AODFF at an operating wavelength of 1550 nm.The proposed optical flip-flop achieves a low delay time of 0.2 ps and a high contrast ratio(CR)of 10.33 dB.The main advantage of this design is that the input power as low as 1 mW/μm^(2) is sufficient for its operation,since no nonlinear rods are included.In addition,the footprint of the proposed AODFF is 100μm^(2),which is smaller compared to the structures reported in the literature,and it has a fast switching frequency of 5 Tbit/s.展开更多
We propose a hierarchical multi-scale attention mechanism-based model in response to the low accuracy and inefficient manual classification of existing oceanic biological image classification methods. Firstly, the hie...We propose a hierarchical multi-scale attention mechanism-based model in response to the low accuracy and inefficient manual classification of existing oceanic biological image classification methods. Firstly, the hierarchical efficient multi-scale attention(H-EMA) module is designed for lightweight feature extraction, achieving outstanding performance at a relatively low cost. Secondly, an improved EfficientNetV2 block is used to integrate information from different scales better and enhance inter-layer message passing. Furthermore, introducing the convolutional block attention module(CBAM) enhances the model's perception of critical features, optimizing its generalization ability. Lastly, Focal Loss is introduced to adjust the weights of complex samples to address the issue of imbalanced categories in the dataset, further improving the model's performance. The model achieved 96.11% accuracy on the intertidal marine organism dataset of Nanji Islands and 84.78% accuracy on the CIFAR-100 dataset, demonstrating its strong generalization ability to meet the demands of oceanic biological image classification.展开更多
The possibility of using a nodal method allowing irregular distribution of nodes in a natural way is one of the main advantages of the generalized finite difference method (GFDM) with regard to the classical finite di...The possibility of using a nodal method allowing irregular distribution of nodes in a natural way is one of the main advantages of the generalized finite difference method (GFDM) with regard to the classical finite difference method. Moreover, this feature has made it one of the most-promising meshless methods because it also allows us to reduce the time-consuming task of mesh generation and the numerical solution of integrals. This characteristic allows us to shape geological features easily whilst maintaining accuracy in the results, which can be a source of great interest when dealing with this kind of problems. Two widespread geophysical investigation methods in civil engineering are the cross-hole method and the seismic refraction method. This paper shows the use of the GFDM to model the aforementioned geophysical investigation tests showing precision in the obtained results when comparing them with experimental data.展开更多
Contact bounce of relay, which is the main cause of electric abrasion and material erosion, is inevitable. By using the mode expansion form, the dynamic behavior of two different reed systems for aerospace relays is a...Contact bounce of relay, which is the main cause of electric abrasion and material erosion, is inevitable. By using the mode expansion form, the dynamic behavior of two different reed systems for aerospace relays is analyzed. The dynamic model uses Euler-Bernoulli beam theory for cantilever beam, in which the driving force (or driving moment) of the electromagnetic system is taken into account, and the contact force between moving contact and stationary contact is simulated by the Kelvin-Voigt vis-coelastic...展开更多
基金Supported by Shanxi Province Natural Science Research(202203021212249)Special/Youth Foundation of Taiyuan University of Technology(2022QN101)+3 种基金National Natural Science Foundation of China(12301556)Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)Basic Research Plan of Shanxi Province(202203021211129)。
文摘To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical computation of such models.This efficient solver employs algorithms based on discrete cosine transformations(DCT)or discrete sine transformations(DST)and is not restricted by any spatio-temporal schemes.Our proposed methodology is appropriate for a variety of phase-field models and is especially efficient when combined with flow field systems.Meanwhile,this study has conducted an extensive numerical comparison and found that employing DCT and DST techniques not only yields results comparable to those obtained via the Multigrid(MG)method,a conventional approach used in the resolution of the Poisson equations,but also enhances computational efficiency by over 90%.
基金supported by the National Natural Science Foundation of China(No.42277175)Guangxi Emergency Management Department 2024 Innovation and Technology Research Project,China(No.2024GXYJ006)+2 种基金Hunan Provincial Department of Natural Resources Geological Exploration Project,China(No.2023ZRBSHZ056)The First National Natural Disaster Comprehensive Risk Survey in Hunan Province,China(No.2022-70)Guizhou Provincial Major Scientific and Technological Program,China(No.2023-425).
文摘A method combining finite difference method(FDM)and k-means clustering algorithm which can determine the threshold of rock bridge generation is proposed.Jointed slope models with different joint coalescence coefficients(k)are constructed based on FDM.The rock bridge area was divided through k-means algorithm and the optimal number of clusters was determined by sum of squared errors(SSE)and elbow method.The influence of maximum principal stress and stress change rate as clustering indexes on the clustering results of rock bridges was compared by using Euclidean distance.The results show that using stress change rate as clustering index is more effective.When the joint coalescence coefficient is less than 0.6,there is no significant stress concentration in the middle area of adjacent joints,that is,no generation of rock bridge.In addition,the range of rock bridge is affected by the coalescence coefficient(k),the relative position of joints and the parameters of weak interlayer.
基金supported by the National Natural Science Foundation of China(12201228,12171047)the Fundamental Research Funds for the Central Universities(3034011102)supported by National Key R&D Program of China(2020YFA0713701).
文摘In this work, we first derive the one-point large deviations principle (LDP) for both the stochastic Cahn–Hilliard equation with small noise and its spatial finite difference method (FDM). Then, we focus on giving the convergence of the one-point large deviations rate function (LDRF) of the spatial FDM, which is about the asymptotical limit of a parametric variational problem. The main idea for proving the convergence of the LDRF of the spatial FDM is via the Γ-convergence of objective functions. This relies on the qualitative analysis of skeleton equations of the original equation and the numerical method. In order to overcome the difficulty that the drift coefficient is not one-sided Lipschitz continuous, we derive the equivalent characterization of the skeleton equation of the spatial FDM and the discrete interpolation inequality to obtain the uniform boundedness of the solution to the underlying skeleton equation. These play important roles in deriving the T-convergence of objective functions.
基金supported by National Natural Science Foundation of China(12273080).
文摘In response to the issue of fuzzy matching and association when optical observation data are matched with the orbital elements in a catalog database,this paper proposes a matching and association strategy based on the arcsegment difference method.First,a matching error threshold is set to match the observation data with the known catalog database.Second,the matching results for the same day are sorted on the basis of target identity and observation residuals.Different matching error thresholds and arc-segment dynamic association thresholds are then applied to categorize the observation residuals of the same target across different arc-segments,yielding matching results under various thresholds.Finally,the orbital residual is computed through orbit determination(OD),and the positional error is derived by comparing the OD results with the orbit track from the catalog database.The appropriate matching error threshold is then selected on the basis of these results,leading to the final matching and association of the fuzzy correlation data.Experimental results showed that the correct matching rate for data arc-segments is 92.34% when the matching error threshold is set to 720″,with the arc-segment difference method processing the results of an average matching rate of 97.62% within 8 days.The remaining 5.28% of the fuzzy correlation data are correctly matched and associated,enabling identification of orbital maneuver targets through further processing and analysis.This method substantially enhances the efficiency and accuracy of space target cataloging,offering robust technical support for dynamic maintenance of the space target database.
文摘This study investigates the complex heat transfer dynamics inmultilayer bifacial photovoltaic(bPV)solar modules under spectrally resolved solar irradiation.A novel numericalmodel is developed to incorporate internal heat generation resulting from optical absorption,grounded in the physical equations governing light-matter interactions within the module’smultilayer structure.The model accounts for reflection and transmission at each interface between adjacent layers,as well as absorption within individual layers,using the wavelength-dependent dielectric properties of constituent materials.These properties are used to calculate the spectral reflectance,transmittance,and absorption coefficients,enabling precise quantification of internal heat sources from irradiance incidents on both the front and rear surfaces of the module.The study further examines the influence of irradiance reflection on thermal behavior,evaluates the thermal impact of various supporting materials placed beneath the module,and analyzes the role of albedo in modifying heat distribution.By incorporating spectrally resolved heat generation across each layer often simplified or omitted in conventional models,the proposed approach enhances physical accuracy.The transient heat equation is solved using a one-dimensional finite difference(FD)method to produce detailed temperature profiles under multiple operating scenarios,including Standard Test Conditions(STC),Bifacial Standard Test Conditions(BSTC),Normal Operating Cell Temperature(NOCT),and Bifacial NOCT(BNOCT).The results offer valuable insights into the interplay between optical and thermal phenomena in bifacial systems,informing the design and optimization of more efficient photovoltaic technologies.
基金supported by the Key Laboratory of Road Construction Technology and Equipment(Chang’an University,No.300102253502)the Natural Science Foundation of Shandong Province of China(GrantNo.ZR2022YQ06)the Development Plan of Youth Innovation Team in Colleges and Universities of Shandong Province(Grant No.2022KJ140).
文摘In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem.
基金National Natural Science Foundation of China under Grant Nos.51978213 and 51778190the National Key Research and Development Program of China under Grant Nos.2017YFC0703605 and 2016YFC0701106。
文摘For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study proposes to investigate the stability and accuracy of the central difference method(CDM)for RTDST considering the specimen mass participation coefficient.First,the theory of the CDM for RTDST is presented.Next,the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated.Finally,numerical simulations and experimental tests are conducted for verifying the effectiveness of the method.The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen,and the stability limit first increases and then decreases as the mass participation coefficient increases.In most cases,the mass participation coefficient will increase the stability limit of the algorithm,but in specific circumstances,the algorithm may lose its stability.The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper.
基金Supported by the National Natural Science Foundation of China(Grant No.11571181)the Research Start-Up Foundation of Nantong University(Grant No.135423602051).
文摘In this paper,we give improved error estimates for linearized and nonlinear CrankNicolson type finite difference schemes of Ginzburg-Landau equation in two dimensions.For linearized Crank-Nicolson scheme,we use mathematical induction to get unconditional error estimates in discrete L^(2)and H^(1)norm.However,it is not applicable for the nonlinear scheme.Thus,based on a‘cut-off’function and energy analysis method,we get unconditional L^(2)and H^(1)error estimates for the nonlinear scheme,as well as boundedness of numerical solutions.In addition,if the assumption for exact solutions is improved compared to before,unconditional and optimal pointwise error estimates can be obtained by energy analysis method and several Sobolev inequalities.Finally,some numerical examples are given to verify our theoretical analysis.
文摘By using asymptotic method,we verify the existence on the slowly growing solutions to second order difference equations discussed by Ishizaki-Yanagihara’s Wiman-Valiron method and Ishizaki-Wen’s binomial series method.The classical problem on finding conditions on the polynomial coefficients P_(j)(z)(j=0,1,2)and F(z)to guarantee that all nontrivial solutions of complex second order difference equation P_(2)(z)f(z+2)+P_(1)(z)f(z+1)+P_(0)(z)f(z)=F(z)has slowly growing solutions with order 1/2 is detected.
基金supported by the National Natural Science Foundation of China(No.42372287 and No.U24A20178)the Fundamental Research Funds for the Central Universities CHD(No.2024SHEEAR002)+3 种基金the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shaanxi Province(No.2020024)the China Postdoctoral Science Foundation(GZC20232955,2024M753472,and 2024MD763937)the Science-Technology Foundation for Young Scientists of Gansu Province,China(No.24JRRA097)the Study of biodiversity survey and limiting factor analysis of Yinkentala(2023ZL01).
文摘Accurately simulating water flow movement in vadose zone is crucial for effective water resources assessment.Richards'equation,which describes the movement of water flow in the vadose zone,is highly nonlinear and challenging to solve.Existing numerical methods often face issues such as numerical dispersion,oscillation,and mass non-conservation when spatial and temporal discretization conditions are not appropriately configured.To address these problems and achieve accurate and stable numerical solutions,a finite analytic method based on water content-based Richards'equation(FAM-W)is proposed.The performance of the FAM-W is compared with analytical solutions,Finite Difference Method(FDM),and Finite Analytic Method based on the pressure Head-based Richards'equation(FAM-H).Compared to analytical solution and other numerical methods(FDM and FAM-H),FAM-W demonstrates superior accuracy and efficiency in controlling mass balance errors,regardless of spatial step sizes.This study introduces a novel approach for modelling water flow in the vadose zone,offering significant benefits for water resources management.
文摘In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error between the numerical solution and the exact solution is obtained,and then compared with the error formed by the difference method,it is concluded that the Lagrange interpolation method is more effective in solving the variable coefficient ordinary differential equation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62074036, 61674038, and 11574302)Foreign Cooperation Project of Fujian Province (Grant No. 2023I0005)+2 种基金Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (Grant No. KF202108)the National Key Research and Development Program (Grant No. 2016YFB0402303)the Foundation of Fujian Provincial Department of Industry and Information Technology of China (Grant No. 82318075)。
文摘The in-plane optical anisotropy(IPOA) of c-plane In Ga N/Ga N quantum disks(Qdisks) in nanowires grown on MoS_(2)/Mo and Ti/Mo substrates is investigated using reflectance difference spectroscopy(RDS) at room temperature. A large IPOA related to defect or impurity states is observed. The IPOA of samples grown on MoS_(2)/Mo is approximately one order of magnitude larger than that of samples grown on Ti/Mo substrates. Numerical calculations based on the envelope function approximation have been performed to analyze the origin of the IPOA. It is found that the IPOA primarily results from the segregation of indium atoms in the In Ga N/Ga N Qdisks. This work highlights the significant influence of substrate materials on the IPOA of semiconductor heterostructures.
文摘In this study,we design and numerically investigate a novel all optical D flip-flop(AODFF)based on linear photonic crystal(LPhC)structure that is composed of optical waveguides using the finite difference time domain(FDTD)method.The proposed structure has the hexagonal close packed of 16×20 circular rods that are suspended in the air substrate with a lattice constant of 606 nm.The plane wave expansion(PWE)method is used to obtain the band diagram for AODFF at an operating wavelength of 1550 nm.The proposed optical flip-flop achieves a low delay time of 0.2 ps and a high contrast ratio(CR)of 10.33 dB.The main advantage of this design is that the input power as low as 1 mW/μm^(2) is sufficient for its operation,since no nonlinear rods are included.In addition,the footprint of the proposed AODFF is 100μm^(2),which is smaller compared to the structures reported in the literature,and it has a fast switching frequency of 5 Tbit/s.
基金supported by the National Natural Science Foundation of China (Nos.61806107 and 61702135)。
文摘We propose a hierarchical multi-scale attention mechanism-based model in response to the low accuracy and inefficient manual classification of existing oceanic biological image classification methods. Firstly, the hierarchical efficient multi-scale attention(H-EMA) module is designed for lightweight feature extraction, achieving outstanding performance at a relatively low cost. Secondly, an improved EfficientNetV2 block is used to integrate information from different scales better and enhance inter-layer message passing. Furthermore, introducing the convolutional block attention module(CBAM) enhances the model's perception of critical features, optimizing its generalization ability. Lastly, Focal Loss is introduced to adjust the weights of complex samples to address the issue of imbalanced categories in the dataset, further improving the model's performance. The model achieved 96.11% accuracy on the intertidal marine organism dataset of Nanji Islands and 84.78% accuracy on the CIFAR-100 dataset, demonstrating its strong generalization ability to meet the demands of oceanic biological image classification.
基金The authors acknowledge the support of the Escuela Tecnica Superior de Ingenieros Industriales(UNED)of Spain,project 2019-IFC02of the Universidad Politecnica de Madrid(UPM)(Research groups 2019).
文摘The possibility of using a nodal method allowing irregular distribution of nodes in a natural way is one of the main advantages of the generalized finite difference method (GFDM) with regard to the classical finite difference method. Moreover, this feature has made it one of the most-promising meshless methods because it also allows us to reduce the time-consuming task of mesh generation and the numerical solution of integrals. This characteristic allows us to shape geological features easily whilst maintaining accuracy in the results, which can be a source of great interest when dealing with this kind of problems. Two widespread geophysical investigation methods in civil engineering are the cross-hole method and the seismic refraction method. This paper shows the use of the GFDM to model the aforementioned geophysical investigation tests showing precision in the obtained results when comparing them with experimental data.
文摘Contact bounce of relay, which is the main cause of electric abrasion and material erosion, is inevitable. By using the mode expansion form, the dynamic behavior of two different reed systems for aerospace relays is analyzed. The dynamic model uses Euler-Bernoulli beam theory for cantilever beam, in which the driving force (or driving moment) of the electromagnetic system is taken into account, and the contact force between moving contact and stationary contact is simulated by the Kelvin-Voigt vis-coelastic...