By extending the concept of diffusion to the potential energy landscapes(PELs), we introduce the meansquared energy difference(MSED) as a novel quantity to investigate the intrinsic properties of supercooled liquids. ...By extending the concept of diffusion to the potential energy landscapes(PELs), we introduce the meansquared energy difference(MSED) as a novel quantity to investigate the intrinsic properties of supercooled liquids. MSED can provide a clear description of the “energy relaxation” process on a PEL. Through MSED analysis, we have obtained a characteristic time similar to that derived from structure analysis, namely τ_(α)^(*).Further, we establish a connection between MSED and the feature of PELs, providing a concise and quantitative description of PELs. The relaxation behavior of energy has been found to follow a stretched exponential form.As the temperature decreases, the roughness of the accessible PEL changes significantly around a characteristic temperature T_(x), which is 20% higher than the glass transition temperature T_(g) and is comparable to the critical temperature of the mode-coupling theory. More importantly, one of the PEL parameters is closely related to the Adam–Gibbs configurational entropy. The present research, which directly links the PEL to the relaxation process, provides avenues for further research of glasses.展开更多
BACKGROUND Depression and anxiety are prevalent psychological challenges among patients with adolescent idiopathic scoliosis(AIS),affecting individuals across both sex and age groups.AIM To explore the network structu...BACKGROUND Depression and anxiety are prevalent psychological challenges among patients with adolescent idiopathic scoliosis(AIS),affecting individuals across both sex and age groups.AIM To explore the network structure of depression and anxiety symptoms,with a focus on identifying differences at the symptom level between sex and age subgroups.METHODS A total of 1955 participants diagnosed with AIS aged 10-18 years were assessed using the Patient Health Questionnaire Depression Scale(PHO-9)and the Generalized Anxiety Disorder Scale(GAD-7),and 765 patients exhibiting PHQ-9 or GAD-7 scores ≥ 5 were enrolled in our study. Network analysis and network comparison tests were utilized toconstruct and compare the depression-anxiety symptoms networks among sex and age subgroups.RESULTSThe results revealed GAD3 “Excessive worry” and PHQ2 “Sad mood” were the most significant central symptomsin all subgroups, while “Sad mood” had higher strength than “Excessive worry” in the lower age group. In thenetwork comparisons, the female network exhibited tighter connectivity, especially on GAD6 “Irritability” andGAD2 “Uncontrollable worry”, while only PHQ3 “Sleep” and PHQ9 “Suicidal ideation” had differences at thelocal level in the lower age group.CONCLUSIONSeveral interventions targeting excessive worry and sad mood could reduce the risk of depression and anxietysymptoms in the AIS population. Furthermore, specific anxiety symptoms in females, along with sleep disturbancesand suicidal ideation in the lower age group, should be addressed at an early stage to prevent significantdisruptions in mental health trajectories.展开更多
The main purpose of this paper is to try to find all entire solutions of the Fermat type difference-differential equation[p1(z)f(z+c)]^(2)+[p2(z)f(z)+p3(z)f′(z)]^(2)=p(z);or[p1(z)f(z)]^(2)+[p2(z)f′(z)+p3(z)f(z+c)]^(...The main purpose of this paper is to try to find all entire solutions of the Fermat type difference-differential equation[p1(z)f(z+c)]^(2)+[p2(z)f(z)+p3(z)f′(z)]^(2)=p(z);or[p1(z)f(z)]^(2)+[p2(z)f′(z)+p3(z)f(z+c)]^(2)=p(z)or[p1(z)f′(z)]^(2)+[p2(z)f(z+c)+p3(z)f(z)]^(2)=p(z);where c is a nonzero complex number,p1;p2 and p3 are polynomials in C satisfying p1p3■0;and p is a nonzero irreducible polynomial in C.展开更多
Experimental mice play a critical role in biomedical research.The phenotype and application of different substrains vary due to genetic differentiation and variation.To ensure validity and reliability of results,it is...Experimental mice play a critical role in biomedical research.The phenotype and application of different substrains vary due to genetic differentiation and variation.To ensure validity and reliability of results,it is imperative to adhere to standardized experiments and controls.This paper objectively reviews the origin,differentiation,and phenotypic and genetic differences between the C57BL/6 and BALB/c mouse substrains.Furthermore,an optimal selection strategy is proposed based on the genetic quality control technology to facilitate the precise application of these two mouse substrains.展开更多
To investigate the applicability of four commonly used color difference formulas(CIELAB,CIE94,CMC(1:1),and CIEDE2000)in the printing field on 3D objects,as well as the impact of four standard light sources(D65,D50,A,a...To investigate the applicability of four commonly used color difference formulas(CIELAB,CIE94,CMC(1:1),and CIEDE2000)in the printing field on 3D objects,as well as the impact of four standard light sources(D65,D50,A,and TL84)on 3D color difference evaluations,50 glossy spheres with a diameter of 2cm based on the Sailner J4003D color printing device were created.These spheres were centered around the five recommended colors(gray,red,yellow,green,and blue)by CIE.Color difference was calculated according to the four formulas,and 111 pairs of experimental samples meeting the CIELAB gray scale color difference requirements(1.0-14.0)were selected.Ten observers,aged between 22 and 27 with normal color vision,were participated in this study,using the gray scale method from psychophysical experiments to conduct color difference evaluations under the four light sources,with repeated experiments for each observer.The results indicated that the overall effect of the D65 light source on 3D objects color difference was minimal.In contrast,D50 and A light sources had a significant impact within the small color difference range,while the TL84 light source influenced both large and small color difference considerably.Among the four color difference formulas,CIEDE2000 demonstrated the best predictive performance for color difference in 3D objects,followed by CMC(1:1),CIE94,and CIELAB.展开更多
To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical c...To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical computation of such models.This efficient solver employs algorithms based on discrete cosine transformations(DCT)or discrete sine transformations(DST)and is not restricted by any spatio-temporal schemes.Our proposed methodology is appropriate for a variety of phase-field models and is especially efficient when combined with flow field systems.Meanwhile,this study has conducted an extensive numerical comparison and found that employing DCT and DST techniques not only yields results comparable to those obtained via the Multigrid(MG)method,a conventional approach used in the resolution of the Poisson equations,but also enhances computational efficiency by over 90%.展开更多
The minimal clinically important difference(MCID)represents a pivotal metric in bridging the gap between statistical significance and clinical relevance,addressing the direct impact of medical interventions from the p...The minimal clinically important difference(MCID)represents a pivotal metric in bridging the gap between statistical significance and clinical relevance,addressing the direct impact of medical interventions from the patient's perspective.This comprehensive review analyzes the evolution,applications,and challenges of MCID across medical specialties,emphasizing its necessity in ensuring that clinical outcomes not only demonstrate statistical significance but also offer genuine clinical utility that aligns with patient expectations and needs.We discuss the evolution of MCID since its inception in the 1980s,its current applications across various medical specialties,and the methodologies used in its calculation,highlighting both anchor-based and distribution-based approaches.Furthermore,the paper delves into the challenges associated with the application of MCID,such as methodological variability and the interpretation difficulties that arise in clinical settings.Recommendations for the future include standardizing MCID calculation methods,enhancing patient involvement in setting MCID thresholds,and extending research to incorporate diverse global perspectives.These steps are critical to refining the role of MCID in patient-centered healthcare,addressing existing gaps in methodology and interpretation,and ensuring that medical interventions lead to significant,patient-perceived improvements.展开更多
Objective:Near vision loss(NVL)is one of the leading causes of visual impairment worldwide,exerting a profound impact on individual quality of life and socio-economic development.This study aims to analyze the burden ...Objective:Near vision loss(NVL)is one of the leading causes of visual impairment worldwide,exerting a profound impact on individual quality of life and socio-economic development.This study aims to analyze the burden of NVL in China by sex and age groups from 1990 to 2021 and to project trends over the next 15 years.Methods:Using data from the Global Burden of Disease(GBD)2021 database,we conducted descriptive analyses of NVL prevalence in China,calculated age-standardized prevalence rates(ASPR)and age-standardized disability-adjusted life years rates(ASDR)to compare burden differences between sexes and age groups,and applied an autoregressive integrated moving average(ARIMA)model to predict NVL trends for the next 15 years.The model selection was based on best-fit criteria to ensure reliable projections.Results:From 1990 to 2021,China’s ASPR of NVL rose from 10096.24/100000 to 15624.54/100000,and ASDR increased from 101.75/100000 to 158.75/100000.In 2021,ASPR(16551.70/100000)and ASDR(167.69/100000)were higher among females than males(14686.21/100000 and 149.76/100000,respectively).China ranked highest globally in both NVL cases and disability-adjusted life years(DALYs),with female burden significantly exceeding male burden.Projections indicated this trend and sex gap will persist until 2036.Compared with 1990,the prevalence cases and DALYs increased by 239.20%and 238.82%,respectively in 2021,with the highest burden among females and the 55−59 age group.The ARIMA model predicted continued increases in prevalence and DALYs by 2036,with females maintaining a higher burden than males.Conclusion:This study reveals a marked increase in the NVL burden in China and predicts continued growth in the coming years.Public health policies should prioritize NVL prevention and control,with special attention to women and middle-aged populations to mitigate long-term societal and health impacts.展开更多
This study investigates the complex heat transfer dynamics inmultilayer bifacial photovoltaic(bPV)solar modules under spectrally resolved solar irradiation.A novel numericalmodel is developed to incorporate internal h...This study investigates the complex heat transfer dynamics inmultilayer bifacial photovoltaic(bPV)solar modules under spectrally resolved solar irradiation.A novel numericalmodel is developed to incorporate internal heat generation resulting from optical absorption,grounded in the physical equations governing light-matter interactions within the module’smultilayer structure.The model accounts for reflection and transmission at each interface between adjacent layers,as well as absorption within individual layers,using the wavelength-dependent dielectric properties of constituent materials.These properties are used to calculate the spectral reflectance,transmittance,and absorption coefficients,enabling precise quantification of internal heat sources from irradiance incidents on both the front and rear surfaces of the module.The study further examines the influence of irradiance reflection on thermal behavior,evaluates the thermal impact of various supporting materials placed beneath the module,and analyzes the role of albedo in modifying heat distribution.By incorporating spectrally resolved heat generation across each layer often simplified or omitted in conventional models,the proposed approach enhances physical accuracy.The transient heat equation is solved using a one-dimensional finite difference(FD)method to produce detailed temperature profiles under multiple operating scenarios,including Standard Test Conditions(STC),Bifacial Standard Test Conditions(BSTC),Normal Operating Cell Temperature(NOCT),and Bifacial NOCT(BNOCT).The results offer valuable insights into the interplay between optical and thermal phenomena in bifacial systems,informing the design and optimization of more efficient photovoltaic technologies.展开更多
The pulsed single-longitudinal-mode(SLM)operation caused by the modal-gain difference in a repetitively passively Q-switched(PQS)laser is studied in detail.Firstly,the analytical expressions for the pulse buildup-time...The pulsed single-longitudinal-mode(SLM)operation caused by the modal-gain difference in a repetitively passively Q-switched(PQS)laser is studied in detail.Firstly,the analytical expressions for the pulse buildup-time difference of repetitively PQS four-level and quasi-three-level lasers have been developed respectively.Then,according to the temporal criterion,the required conditions for repetitively PQS four-level and quasi-three-level lasers to achieve SLM operation are analyzed.The analysis results show that in addition to the short cavity is conducive to obtaining the pulsed SLM laser,the use of a lower pump power(compared to the threshold power)will help to obtain a longer pulse buildup-time difference and thus enabling the SLM operation.Moreover,it is worth noting that for the quasi-three-level lasers,the pulse buildup-time difference also depends on the initial population inversion density.The results also reveal that setting resonator parameters that can obtain large initial population inversion density will be helpful to the SLM operation in both four-level and quasithree-level regimes.In addition,the use of saturable absorber with a low absorption cross-section ratio between the excited state and ground state also contributes to the realization of the SLM.Finally,the optimization model of passively Q-switched single-longitudinal-mode laser is established.In addition to predicting the output performance of the laser,this model can also be used to obtain the optimal resonator parameters and the upper limit of pump power for SLM operation.展开更多
The High Mountain Asia(HMA)is a prominent global mountain system characterized by an average altitude exceeding 4,000 m,intricate topography,and significant spatial variability in climatic conditions.Despite its impor...The High Mountain Asia(HMA)is a prominent global mountain system characterized by an average altitude exceeding 4,000 m,intricate topography,and significant spatial variability in climatic conditions.Despite its importance,there has been a relative paucity of research focusing on the spatiotemporal variations of snow cover,key controlling factors,and variability within HMA sub-basins.This study aims to address this gap by extracting snow cover percentage(SCP)and snow cover days(SCD)data from MOD10A2 snow products,integrating these with precipitation(P)and temperature(T)data from ERA5.Our objective is to analyze the spatiotemporal distribution characteristics of snow cover and to use path analysis to elucidate the key climatic factors and spatial differences influencing snow cover changes.The findings indicate that,on a temporal scale,the overall SCP in HMA exhibited a declining trend from 2001 to 2021.Interannual variations in SCP across HMA sub-basins revealed a decreasing trend in the Pamir(PAM),Western Tibetan Plateau(WTS),Eastern Tibetan Plateau(ETS),Western Kunlun(WKL),Qilian Shan(QLS),and Himalaya(HDS)regions,while an increasing trend was observed in other areas.Spatially,22.97%of the HMA regions experienced an increase in SCD,primarily in the Western Himalaya(WHL),Central Himalaya(CHL),and Southeastern Xizang(SET)regions.Conversely,28.08%of the HMA regions showed a decrease in SCD,predominantly in the Eastern Himalaya(EHL),HDS,and WTS regions.Temperature(T)emerged as the primary influencing factor of SCD change in most HMA sub-basins.However,in the Eastern Kunlun(EKL)and WHL sub-basins,precipitation(P)was identified as the main driver of SCD change,affecting all elevation zones in these regions.Additionally,other climatic conditions can also impact snow cover beyond the primary controlling factor.展开更多
Equations(2)and(6)and the corresponding discussion in the paper[Chin.Phys.Lett.42,056301(2025)]have been corrected.These modiffcations do not affect the results derived in the paper.
A method combining finite difference method(FDM)and k-means clustering algorithm which can determine the threshold of rock bridge generation is proposed.Jointed slope models with different joint coalescence coefficien...A method combining finite difference method(FDM)and k-means clustering algorithm which can determine the threshold of rock bridge generation is proposed.Jointed slope models with different joint coalescence coefficients(k)are constructed based on FDM.The rock bridge area was divided through k-means algorithm and the optimal number of clusters was determined by sum of squared errors(SSE)and elbow method.The influence of maximum principal stress and stress change rate as clustering indexes on the clustering results of rock bridges was compared by using Euclidean distance.The results show that using stress change rate as clustering index is more effective.When the joint coalescence coefficient is less than 0.6,there is no significant stress concentration in the middle area of adjacent joints,that is,no generation of rock bridge.In addition,the range of rock bridge is affected by the coalescence coefficient(k),the relative position of joints and the parameters of weak interlayer.展开更多
Background:Intratumoral flora and its metabolites play an important role in the occurrence,development and treatment of cancer,and are correlated with the genotype expression of breast cancer;However,the internal rela...Background:Intratumoral flora and its metabolites play an important role in the occurrence,development and treatment of cancer,and are correlated with the genotype expression of breast cancer;However,the internal relationship between intratumoral flora and triple negative breast cancer(TNBC)has not been elucidated.Methods:Fourteen patients with TNBC who met the criteria were included.The tumor tissues and adjacent tissues were respectively taken as the patient group and the control group.The 5R 16S sequencing technique was used to detect the abundance and distribution of the intratumoral flora between the two groups,and the differences between the groups were analyzed to find the bacteria with significant differences between groups(P<0.05).Results:The abundance of intratumoral microbiota in TNBC patients was significantly lower than that in adjacent tissues(P<0.05).The differential bacteria in TNBC tumors(P<0.05)included Acinetobacter,Renibacterium,Flavobacterium,Dechloromonas and others.The differential bacteria genera(P<0.05)in the adjacent tissues included Comamonas,Bacillus,Caulobacter,Afipia,Aerococcus,Roseomonas and so on.Conclusion:There is a significant difference in the flora structure between the tumor and normal tissues in TNBC patients.Proteobacteria plays an important role in the occurrence,development and treatment of TNBC.Among them,Acinetobacter may be the key reason for the metastasis of TNBC.展开更多
In this work, we first derive the one-point large deviations principle (LDP) for both the stochastic Cahn–Hilliard equation with small noise and its spatial finite difference method (FDM). Then, we focus on giving th...In this work, we first derive the one-point large deviations principle (LDP) for both the stochastic Cahn–Hilliard equation with small noise and its spatial finite difference method (FDM). Then, we focus on giving the convergence of the one-point large deviations rate function (LDRF) of the spatial FDM, which is about the asymptotical limit of a parametric variational problem. The main idea for proving the convergence of the LDRF of the spatial FDM is via the Γ-convergence of objective functions. This relies on the qualitative analysis of skeleton equations of the original equation and the numerical method. In order to overcome the difficulty that the drift coefficient is not one-sided Lipschitz continuous, we derive the equivalent characterization of the skeleton equation of the spatial FDM and the discrete interpolation inequality to obtain the uniform boundedness of the solution to the underlying skeleton equation. These play important roles in deriving the T-convergence of objective functions.展开更多
By using asymptotic method,we verify the existence on the slowly growing solutions to second order difference equations discussed by Ishizaki-Yanagihara’s Wiman-Valiron method and Ishizaki-Wen’s binomial series meth...By using asymptotic method,we verify the existence on the slowly growing solutions to second order difference equations discussed by Ishizaki-Yanagihara’s Wiman-Valiron method and Ishizaki-Wen’s binomial series method.The classical problem on finding conditions on the polynomial coefficients P_(j)(z)(j=0,1,2)and F(z)to guarantee that all nontrivial solutions of complex second order difference equation P_(2)(z)f(z+2)+P_(1)(z)f(z+1)+P_(0)(z)f(z)=F(z)has slowly growing solutions with order 1/2 is detected.展开更多
In response to the issue of fuzzy matching and association when optical observation data are matched with the orbital elements in a catalog database,this paper proposes a matching and association strategy based on the...In response to the issue of fuzzy matching and association when optical observation data are matched with the orbital elements in a catalog database,this paper proposes a matching and association strategy based on the arcsegment difference method.First,a matching error threshold is set to match the observation data with the known catalog database.Second,the matching results for the same day are sorted on the basis of target identity and observation residuals.Different matching error thresholds and arc-segment dynamic association thresholds are then applied to categorize the observation residuals of the same target across different arc-segments,yielding matching results under various thresholds.Finally,the orbital residual is computed through orbit determination(OD),and the positional error is derived by comparing the OD results with the orbit track from the catalog database.The appropriate matching error threshold is then selected on the basis of these results,leading to the final matching and association of the fuzzy correlation data.Experimental results showed that the correct matching rate for data arc-segments is 92.34% when the matching error threshold is set to 720″,with the arc-segment difference method processing the results of an average matching rate of 97.62% within 8 days.The remaining 5.28% of the fuzzy correlation data are correctly matched and associated,enabling identification of orbital maneuver targets through further processing and analysis.This method substantially enhances the efficiency and accuracy of space target cataloging,offering robust technical support for dynamic maintenance of the space target database.展开更多
Low ionic conductivity is a major obstacle for polymer solid-state electrolytes.In response to this issue,a design concept of enhanced regional electric potential difference(EREPD)is proposed to modulate the interacti...Low ionic conductivity is a major obstacle for polymer solid-state electrolytes.In response to this issue,a design concept of enhanced regional electric potential difference(EREPD)is proposed to modulate the interaction of nanofillers with other components in the composite polymer solid-state electrolytes(CPSEs).While ensuring the periodic structure of the graphdiyne(GDY)backbone,methoxysubstituted GDY(OGDY)is prepared by an asymmetric substitution strategy,which increases the electric potential differences within each repeating unit of GDY.The staggered distributed electron-rich regions and electron-deficient regions on the two-dimensional plane of OGDY increase the free Li^(+)concentration through Lewis acid-base pair interaction.The adjacent ERRs and EDRs form uniformly distributed EREPDs,creating a continuous potential gradient that synergistically facilitates the efficient migration of Li^(+).Impressively,the OGDY/poly(ethylene oxide)(PEO)exhibits a high ionic conductivity(1.1×10^(-3)S cm^(−1))and ion mobility number(0.71).In addition,the accelerated Li^(+)migration promotes the formation of uniform and dense SEI layers and inhibits the growth of lithium dendrites.As a proof of concept,Li||Li symmetric cell and Li||LiFePO_(4)full cell and pouch cell assembled with OGDY/PEO exhibit good performance,highlighting the effectiveness of our EREPD design strategy for improving CPSEs performance.展开更多
AIM:To propose a novel glaucoma surgery for rebalancing translaminar pressure difference.METHODS:Three non-human primates with normal eyes and two with laser-induced glaucoma underwent the novel surgical procedure.Can...AIM:To propose a novel glaucoma surgery for rebalancing translaminar pressure difference.METHODS:Three non-human primates with normal eyes and two with laser-induced glaucoma underwent the novel surgical procedure.Cannulation of the subarachnoid space was performed after completion of routine vitrectomy steps.An XEN 45 implant was inserted into the created puncture to communicate between the vitreous body and subarachnoid space.Intraocular pressure(IOP),fundus photography,and spectral-domain optical coherence tomography were assessed at baseline and regular intervals during follow-up.RESULTS:All operated eyes showed IOP reduction in the first postoperative month.Two(2/3)normal eyes and one(1/2)glaucomatous eye maintained lower IOP until 18mo after operation.The XEN 45 implant remained positioned through the lamina cribrosa in all normal eyes but was not detected in two glaucomatous eyes.Complications observed in this study included retinal vascular bleeding in 1/3 normal eyes and XEN implant dislocation in all 2 glaucomatous eyes.CONCLUSION:Subarachnoid space cannulation and mini-shunt implantation may contribute to IOP reduction,possibly by rebalancing translaminar pressure difference and enhancing aqueous humor drainage.The development of a suitable mini-shunt requires further investigation.展开更多
Laplace–Fourier(L-F)domain finite-difference(FD)forward modeling is an important foundation for L-F domain full-waveform inversion(FWI).An optimal modeling method can improve the efficiency and accuracy of FWI.A fl e...Laplace–Fourier(L-F)domain finite-difference(FD)forward modeling is an important foundation for L-F domain full-waveform inversion(FWI).An optimal modeling method can improve the efficiency and accuracy of FWI.A fl exible FD stencil,which requires pairing and centrosymmetricity of the involved gridpoints,is used on the basis of the 2D L-F domain acoustic wave equation.The L-F domain numerical dispersion analysis is then performed by minimizing the phase error of the normalized numerical phase and attenuation propagation velocities to obtain the optimization coefficients.An optimal FD forward modeling method is finally developed for the L-F domain acoustic wave equation and applied to the traditional standard 9-point scheme and 7-and 9-point schemes,where the latter two schemes are used in discontinuous-grid FD modeling.Numerical experiments show that the optimal L-F domain FD modeling method not only has high accuracy but can also be applied to equal and unequal directional sampling intervals and discontinuous-grid FD modeling to reduce computational cost.展开更多
基金supported by the National Key Research and Development Program of China (Grant No. 2022YFA1404603)by the National Natural Science Foundation of China (Grant Nos. 12274127 and 12188101)。
文摘By extending the concept of diffusion to the potential energy landscapes(PELs), we introduce the meansquared energy difference(MSED) as a novel quantity to investigate the intrinsic properties of supercooled liquids. MSED can provide a clear description of the “energy relaxation” process on a PEL. Through MSED analysis, we have obtained a characteristic time similar to that derived from structure analysis, namely τ_(α)^(*).Further, we establish a connection between MSED and the feature of PELs, providing a concise and quantitative description of PELs. The relaxation behavior of energy has been found to follow a stretched exponential form.As the temperature decreases, the roughness of the accessible PEL changes significantly around a characteristic temperature T_(x), which is 20% higher than the glass transition temperature T_(g) and is comparable to the critical temperature of the mode-coupling theory. More importantly, one of the PEL parameters is closely related to the Adam–Gibbs configurational entropy. The present research, which directly links the PEL to the relaxation process, provides avenues for further research of glasses.
基金Supported by The Sanming Project of Medicine in Shenzhen,No.SZSM202211003Shenzhen-Hong Kong Jointly Funded Project,Shenzhen Science and Technology Program,No.SGDX20230116093645007+1 种基金Shenzhen Second People's Hospital Clinical Project,No.20243357003Shenzhen Medical Research Fund,No.B2303005.
文摘BACKGROUND Depression and anxiety are prevalent psychological challenges among patients with adolescent idiopathic scoliosis(AIS),affecting individuals across both sex and age groups.AIM To explore the network structure of depression and anxiety symptoms,with a focus on identifying differences at the symptom level between sex and age subgroups.METHODS A total of 1955 participants diagnosed with AIS aged 10-18 years were assessed using the Patient Health Questionnaire Depression Scale(PHO-9)and the Generalized Anxiety Disorder Scale(GAD-7),and 765 patients exhibiting PHQ-9 or GAD-7 scores ≥ 5 were enrolled in our study. Network analysis and network comparison tests were utilized toconstruct and compare the depression-anxiety symptoms networks among sex and age subgroups.RESULTSThe results revealed GAD3 “Excessive worry” and PHQ2 “Sad mood” were the most significant central symptomsin all subgroups, while “Sad mood” had higher strength than “Excessive worry” in the lower age group. In thenetwork comparisons, the female network exhibited tighter connectivity, especially on GAD6 “Irritability” andGAD2 “Uncontrollable worry”, while only PHQ3 “Sleep” and PHQ9 “Suicidal ideation” had differences at thelocal level in the lower age group.CONCLUSIONSeveral interventions targeting excessive worry and sad mood could reduce the risk of depression and anxietysymptoms in the AIS population. Furthermore, specific anxiety symptoms in females, along with sleep disturbancesand suicidal ideation in the lower age group, should be addressed at an early stage to prevent significantdisruptions in mental health trajectories.
基金Supported by the National Natural Science Foundation of China(11871260,11761050)the Jiangxi Natural Science Foundation(#20232ACB201005)+1 种基金the Shandong Natural Science Foundation(#ZR2024MA024)Doctoral Startup Fund of Jiangxi Science and Technology Normal University(#2021BSQD30).
文摘The main purpose of this paper is to try to find all entire solutions of the Fermat type difference-differential equation[p1(z)f(z+c)]^(2)+[p2(z)f(z)+p3(z)f′(z)]^(2)=p(z);or[p1(z)f(z)]^(2)+[p2(z)f′(z)+p3(z)f(z+c)]^(2)=p(z)or[p1(z)f′(z)]^(2)+[p2(z)f(z+c)+p3(z)f(z)]^(2)=p(z);where c is a nonzero complex number,p1;p2 and p3 are polynomials in C satisfying p1p3■0;and p is a nonzero irreducible polynomial in C.
基金National Key R&D Program of China,Grant/Award Number:2021YFF0703200Key Technology Fund of the National Institutes for Food and Drug Control,Grant/Award Number:GJJS-2022-1-5。
文摘Experimental mice play a critical role in biomedical research.The phenotype and application of different substrains vary due to genetic differentiation and variation.To ensure validity and reliability of results,it is imperative to adhere to standardized experiments and controls.This paper objectively reviews the origin,differentiation,and phenotypic and genetic differences between the C57BL/6 and BALB/c mouse substrains.Furthermore,an optimal selection strategy is proposed based on the genetic quality control technology to facilitate the precise application of these two mouse substrains.
文摘To investigate the applicability of four commonly used color difference formulas(CIELAB,CIE94,CMC(1:1),and CIEDE2000)in the printing field on 3D objects,as well as the impact of four standard light sources(D65,D50,A,and TL84)on 3D color difference evaluations,50 glossy spheres with a diameter of 2cm based on the Sailner J4003D color printing device were created.These spheres were centered around the five recommended colors(gray,red,yellow,green,and blue)by CIE.Color difference was calculated according to the four formulas,and 111 pairs of experimental samples meeting the CIELAB gray scale color difference requirements(1.0-14.0)were selected.Ten observers,aged between 22 and 27 with normal color vision,were participated in this study,using the gray scale method from psychophysical experiments to conduct color difference evaluations under the four light sources,with repeated experiments for each observer.The results indicated that the overall effect of the D65 light source on 3D objects color difference was minimal.In contrast,D50 and A light sources had a significant impact within the small color difference range,while the TL84 light source influenced both large and small color difference considerably.Among the four color difference formulas,CIEDE2000 demonstrated the best predictive performance for color difference in 3D objects,followed by CMC(1:1),CIE94,and CIELAB.
基金Supported by Shanxi Province Natural Science Research(202203021212249)Special/Youth Foundation of Taiyuan University of Technology(2022QN101)+3 种基金National Natural Science Foundation of China(12301556)Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)Basic Research Plan of Shanxi Province(202203021211129)。
文摘To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical computation of such models.This efficient solver employs algorithms based on discrete cosine transformations(DCT)or discrete sine transformations(DST)and is not restricted by any spatio-temporal schemes.Our proposed methodology is appropriate for a variety of phase-field models and is especially efficient when combined with flow field systems.Meanwhile,this study has conducted an extensive numerical comparison and found that employing DCT and DST techniques not only yields results comparable to those obtained via the Multigrid(MG)method,a conventional approach used in the resolution of the Poisson equations,but also enhances computational efficiency by over 90%.
文摘The minimal clinically important difference(MCID)represents a pivotal metric in bridging the gap between statistical significance and clinical relevance,addressing the direct impact of medical interventions from the patient's perspective.This comprehensive review analyzes the evolution,applications,and challenges of MCID across medical specialties,emphasizing its necessity in ensuring that clinical outcomes not only demonstrate statistical significance but also offer genuine clinical utility that aligns with patient expectations and needs.We discuss the evolution of MCID since its inception in the 1980s,its current applications across various medical specialties,and the methodologies used in its calculation,highlighting both anchor-based and distribution-based approaches.Furthermore,the paper delves into the challenges associated with the application of MCID,such as methodological variability and the interpretation difficulties that arise in clinical settings.Recommendations for the future include standardizing MCID calculation methods,enhancing patient involvement in setting MCID thresholds,and extending research to incorporate diverse global perspectives.These steps are critical to refining the role of MCID in patient-centered healthcare,addressing existing gaps in methodology and interpretation,and ensuring that medical interventions lead to significant,patient-perceived improvements.
基金supported by the Natural Science Foundation of Hunan Province(2023JJ30817)Hunan Provincial Natural Science Foundation-Hengyang City Joint Fund Project(2025JJ70129)+1 种基金Changsha Natural Science Foundation(kq2403057)China。
文摘Objective:Near vision loss(NVL)is one of the leading causes of visual impairment worldwide,exerting a profound impact on individual quality of life and socio-economic development.This study aims to analyze the burden of NVL in China by sex and age groups from 1990 to 2021 and to project trends over the next 15 years.Methods:Using data from the Global Burden of Disease(GBD)2021 database,we conducted descriptive analyses of NVL prevalence in China,calculated age-standardized prevalence rates(ASPR)and age-standardized disability-adjusted life years rates(ASDR)to compare burden differences between sexes and age groups,and applied an autoregressive integrated moving average(ARIMA)model to predict NVL trends for the next 15 years.The model selection was based on best-fit criteria to ensure reliable projections.Results:From 1990 to 2021,China’s ASPR of NVL rose from 10096.24/100000 to 15624.54/100000,and ASDR increased from 101.75/100000 to 158.75/100000.In 2021,ASPR(16551.70/100000)and ASDR(167.69/100000)were higher among females than males(14686.21/100000 and 149.76/100000,respectively).China ranked highest globally in both NVL cases and disability-adjusted life years(DALYs),with female burden significantly exceeding male burden.Projections indicated this trend and sex gap will persist until 2036.Compared with 1990,the prevalence cases and DALYs increased by 239.20%and 238.82%,respectively in 2021,with the highest burden among females and the 55−59 age group.The ARIMA model predicted continued increases in prevalence and DALYs by 2036,with females maintaining a higher burden than males.Conclusion:This study reveals a marked increase in the NVL burden in China and predicts continued growth in the coming years.Public health policies should prioritize NVL prevention and control,with special attention to women and middle-aged populations to mitigate long-term societal and health impacts.
文摘This study investigates the complex heat transfer dynamics inmultilayer bifacial photovoltaic(bPV)solar modules under spectrally resolved solar irradiation.A novel numericalmodel is developed to incorporate internal heat generation resulting from optical absorption,grounded in the physical equations governing light-matter interactions within the module’smultilayer structure.The model accounts for reflection and transmission at each interface between adjacent layers,as well as absorption within individual layers,using the wavelength-dependent dielectric properties of constituent materials.These properties are used to calculate the spectral reflectance,transmittance,and absorption coefficients,enabling precise quantification of internal heat sources from irradiance incidents on both the front and rear surfaces of the module.The study further examines the influence of irradiance reflection on thermal behavior,evaluates the thermal impact of various supporting materials placed beneath the module,and analyzes the role of albedo in modifying heat distribution.By incorporating spectrally resolved heat generation across each layer often simplified or omitted in conventional models,the proposed approach enhances physical accuracy.The transient heat equation is solved using a one-dimensional finite difference(FD)method to produce detailed temperature profiles under multiple operating scenarios,including Standard Test Conditions(STC),Bifacial Standard Test Conditions(BSTC),Normal Operating Cell Temperature(NOCT),and Bifacial NOCT(BNOCT).The results offer valuable insights into the interplay between optical and thermal phenomena in bifacial systems,informing the design and optimization of more efficient photovoltaic technologies.
基金Project supported by National Natural Science Foundation of China(Grant No.62205102)。
文摘The pulsed single-longitudinal-mode(SLM)operation caused by the modal-gain difference in a repetitively passively Q-switched(PQS)laser is studied in detail.Firstly,the analytical expressions for the pulse buildup-time difference of repetitively PQS four-level and quasi-three-level lasers have been developed respectively.Then,according to the temporal criterion,the required conditions for repetitively PQS four-level and quasi-three-level lasers to achieve SLM operation are analyzed.The analysis results show that in addition to the short cavity is conducive to obtaining the pulsed SLM laser,the use of a lower pump power(compared to the threshold power)will help to obtain a longer pulse buildup-time difference and thus enabling the SLM operation.Moreover,it is worth noting that for the quasi-three-level lasers,the pulse buildup-time difference also depends on the initial population inversion density.The results also reveal that setting resonator parameters that can obtain large initial population inversion density will be helpful to the SLM operation in both four-level and quasithree-level regimes.In addition,the use of saturable absorber with a low absorption cross-section ratio between the excited state and ground state also contributes to the realization of the SLM.Finally,the optimization model of passively Q-switched single-longitudinal-mode laser is established.In addition to predicting the output performance of the laser,this model can also be used to obtain the optimal resonator parameters and the upper limit of pump power for SLM operation.
基金supported by Tianchi talent project(Granted No.51052401507)。
文摘The High Mountain Asia(HMA)is a prominent global mountain system characterized by an average altitude exceeding 4,000 m,intricate topography,and significant spatial variability in climatic conditions.Despite its importance,there has been a relative paucity of research focusing on the spatiotemporal variations of snow cover,key controlling factors,and variability within HMA sub-basins.This study aims to address this gap by extracting snow cover percentage(SCP)and snow cover days(SCD)data from MOD10A2 snow products,integrating these with precipitation(P)and temperature(T)data from ERA5.Our objective is to analyze the spatiotemporal distribution characteristics of snow cover and to use path analysis to elucidate the key climatic factors and spatial differences influencing snow cover changes.The findings indicate that,on a temporal scale,the overall SCP in HMA exhibited a declining trend from 2001 to 2021.Interannual variations in SCP across HMA sub-basins revealed a decreasing trend in the Pamir(PAM),Western Tibetan Plateau(WTS),Eastern Tibetan Plateau(ETS),Western Kunlun(WKL),Qilian Shan(QLS),and Himalaya(HDS)regions,while an increasing trend was observed in other areas.Spatially,22.97%of the HMA regions experienced an increase in SCD,primarily in the Western Himalaya(WHL),Central Himalaya(CHL),and Southeastern Xizang(SET)regions.Conversely,28.08%of the HMA regions showed a decrease in SCD,predominantly in the Eastern Himalaya(EHL),HDS,and WTS regions.Temperature(T)emerged as the primary influencing factor of SCD change in most HMA sub-basins.However,in the Eastern Kunlun(EKL)and WHL sub-basins,precipitation(P)was identified as the main driver of SCD change,affecting all elevation zones in these regions.Additionally,other climatic conditions can also impact snow cover beyond the primary controlling factor.
文摘Equations(2)and(6)and the corresponding discussion in the paper[Chin.Phys.Lett.42,056301(2025)]have been corrected.These modiffcations do not affect the results derived in the paper.
基金supported by the National Natural Science Foundation of China(No.42277175)Guangxi Emergency Management Department 2024 Innovation and Technology Research Project,China(No.2024GXYJ006)+2 种基金Hunan Provincial Department of Natural Resources Geological Exploration Project,China(No.2023ZRBSHZ056)The First National Natural Disaster Comprehensive Risk Survey in Hunan Province,China(No.2022-70)Guizhou Provincial Major Scientific and Technological Program,China(No.2023-425).
文摘A method combining finite difference method(FDM)and k-means clustering algorithm which can determine the threshold of rock bridge generation is proposed.Jointed slope models with different joint coalescence coefficients(k)are constructed based on FDM.The rock bridge area was divided through k-means algorithm and the optimal number of clusters was determined by sum of squared errors(SSE)and elbow method.The influence of maximum principal stress and stress change rate as clustering indexes on the clustering results of rock bridges was compared by using Euclidean distance.The results show that using stress change rate as clustering index is more effective.When the joint coalescence coefficient is less than 0.6,there is no significant stress concentration in the middle area of adjacent joints,that is,no generation of rock bridge.In addition,the range of rock bridge is affected by the coalescence coefficient(k),the relative position of joints and the parameters of weak interlayer.
基金Administration of Traditional Chinese Medicine of Zhejiang Province and Young Talents Fund Project of Zhejiang Province Traditional Chinese Medicine Scienese and Technology Project(2022ZQ015).
文摘Background:Intratumoral flora and its metabolites play an important role in the occurrence,development and treatment of cancer,and are correlated with the genotype expression of breast cancer;However,the internal relationship between intratumoral flora and triple negative breast cancer(TNBC)has not been elucidated.Methods:Fourteen patients with TNBC who met the criteria were included.The tumor tissues and adjacent tissues were respectively taken as the patient group and the control group.The 5R 16S sequencing technique was used to detect the abundance and distribution of the intratumoral flora between the two groups,and the differences between the groups were analyzed to find the bacteria with significant differences between groups(P<0.05).Results:The abundance of intratumoral microbiota in TNBC patients was significantly lower than that in adjacent tissues(P<0.05).The differential bacteria in TNBC tumors(P<0.05)included Acinetobacter,Renibacterium,Flavobacterium,Dechloromonas and others.The differential bacteria genera(P<0.05)in the adjacent tissues included Comamonas,Bacillus,Caulobacter,Afipia,Aerococcus,Roseomonas and so on.Conclusion:There is a significant difference in the flora structure between the tumor and normal tissues in TNBC patients.Proteobacteria plays an important role in the occurrence,development and treatment of TNBC.Among them,Acinetobacter may be the key reason for the metastasis of TNBC.
基金supported by the National Natural Science Foundation of China(12201228,12171047)the Fundamental Research Funds for the Central Universities(3034011102)supported by National Key R&D Program of China(2020YFA0713701).
文摘In this work, we first derive the one-point large deviations principle (LDP) for both the stochastic Cahn–Hilliard equation with small noise and its spatial finite difference method (FDM). Then, we focus on giving the convergence of the one-point large deviations rate function (LDRF) of the spatial FDM, which is about the asymptotical limit of a parametric variational problem. The main idea for proving the convergence of the LDRF of the spatial FDM is via the Γ-convergence of objective functions. This relies on the qualitative analysis of skeleton equations of the original equation and the numerical method. In order to overcome the difficulty that the drift coefficient is not one-sided Lipschitz continuous, we derive the equivalent characterization of the skeleton equation of the spatial FDM and the discrete interpolation inequality to obtain the uniform boundedness of the solution to the underlying skeleton equation. These play important roles in deriving the T-convergence of objective functions.
文摘By using asymptotic method,we verify the existence on the slowly growing solutions to second order difference equations discussed by Ishizaki-Yanagihara’s Wiman-Valiron method and Ishizaki-Wen’s binomial series method.The classical problem on finding conditions on the polynomial coefficients P_(j)(z)(j=0,1,2)and F(z)to guarantee that all nontrivial solutions of complex second order difference equation P_(2)(z)f(z+2)+P_(1)(z)f(z+1)+P_(0)(z)f(z)=F(z)has slowly growing solutions with order 1/2 is detected.
基金supported by National Natural Science Foundation of China(12273080).
文摘In response to the issue of fuzzy matching and association when optical observation data are matched with the orbital elements in a catalog database,this paper proposes a matching and association strategy based on the arcsegment difference method.First,a matching error threshold is set to match the observation data with the known catalog database.Second,the matching results for the same day are sorted on the basis of target identity and observation residuals.Different matching error thresholds and arc-segment dynamic association thresholds are then applied to categorize the observation residuals of the same target across different arc-segments,yielding matching results under various thresholds.Finally,the orbital residual is computed through orbit determination(OD),and the positional error is derived by comparing the OD results with the orbit track from the catalog database.The appropriate matching error threshold is then selected on the basis of these results,leading to the final matching and association of the fuzzy correlation data.Experimental results showed that the correct matching rate for data arc-segments is 92.34% when the matching error threshold is set to 720″,with the arc-segment difference method processing the results of an average matching rate of 97.62% within 8 days.The remaining 5.28% of the fuzzy correlation data are correctly matched and associated,enabling identification of orbital maneuver targets through further processing and analysis.This method substantially enhances the efficiency and accuracy of space target cataloging,offering robust technical support for dynamic maintenance of the space target database.
基金supported by the National Key Research and Development Project of China(2022YFA1204500,2022YFA1204503,2018YFA0703501)the National Natural Science Foundation of China(22275115,21875274,11704024)+4 种基金the Natural Science Foundation of Shandong Province(ZR2024ZD02)Natural Science Foundation of Hebei Province(B2020201006)Hebei Province Innovation Capability Enhancement Plan Project(22567620H)Young Scholarship Funding of Shandong University.Post-graduate Innovation Fund Project of Open Laboratory Project Fund of Hebei University(HBU2025SS010)Basic Research Project of Shandong University-Xin’an Group Silicon-Based High-End New Materials Institute.
文摘Low ionic conductivity is a major obstacle for polymer solid-state electrolytes.In response to this issue,a design concept of enhanced regional electric potential difference(EREPD)is proposed to modulate the interaction of nanofillers with other components in the composite polymer solid-state electrolytes(CPSEs).While ensuring the periodic structure of the graphdiyne(GDY)backbone,methoxysubstituted GDY(OGDY)is prepared by an asymmetric substitution strategy,which increases the electric potential differences within each repeating unit of GDY.The staggered distributed electron-rich regions and electron-deficient regions on the two-dimensional plane of OGDY increase the free Li^(+)concentration through Lewis acid-base pair interaction.The adjacent ERRs and EDRs form uniformly distributed EREPDs,creating a continuous potential gradient that synergistically facilitates the efficient migration of Li^(+).Impressively,the OGDY/poly(ethylene oxide)(PEO)exhibits a high ionic conductivity(1.1×10^(-3)S cm^(−1))and ion mobility number(0.71).In addition,the accelerated Li^(+)migration promotes the formation of uniform and dense SEI layers and inhibits the growth of lithium dendrites.As a proof of concept,Li||Li symmetric cell and Li||LiFePO_(4)full cell and pouch cell assembled with OGDY/PEO exhibit good performance,highlighting the effectiveness of our EREPD design strategy for improving CPSEs performance.
文摘AIM:To propose a novel glaucoma surgery for rebalancing translaminar pressure difference.METHODS:Three non-human primates with normal eyes and two with laser-induced glaucoma underwent the novel surgical procedure.Cannulation of the subarachnoid space was performed after completion of routine vitrectomy steps.An XEN 45 implant was inserted into the created puncture to communicate between the vitreous body and subarachnoid space.Intraocular pressure(IOP),fundus photography,and spectral-domain optical coherence tomography were assessed at baseline and regular intervals during follow-up.RESULTS:All operated eyes showed IOP reduction in the first postoperative month.Two(2/3)normal eyes and one(1/2)glaucomatous eye maintained lower IOP until 18mo after operation.The XEN 45 implant remained positioned through the lamina cribrosa in all normal eyes but was not detected in two glaucomatous eyes.Complications observed in this study included retinal vascular bleeding in 1/3 normal eyes and XEN implant dislocation in all 2 glaucomatous eyes.CONCLUSION:Subarachnoid space cannulation and mini-shunt implantation may contribute to IOP reduction,possibly by rebalancing translaminar pressure difference and enhancing aqueous humor drainage.The development of a suitable mini-shunt requires further investigation.
基金National Natural Science Foundation of China(no.41604037)Natural Science Foundation of Hubei Province(no.2022CFB125)+2 种基金Open Fund of Key Laboratory of Exploration Technologies for Oil and Gas Resources(Yangtze University)Ministry of Education(no.K2021-09)College Students'Innovation and Entrepreneurship Training Program(no.2019053)。
文摘Laplace–Fourier(L-F)domain finite-difference(FD)forward modeling is an important foundation for L-F domain full-waveform inversion(FWI).An optimal modeling method can improve the efficiency and accuracy of FWI.A fl exible FD stencil,which requires pairing and centrosymmetricity of the involved gridpoints,is used on the basis of the 2D L-F domain acoustic wave equation.The L-F domain numerical dispersion analysis is then performed by minimizing the phase error of the normalized numerical phase and attenuation propagation velocities to obtain the optimization coefficients.An optimal FD forward modeling method is finally developed for the L-F domain acoustic wave equation and applied to the traditional standard 9-point scheme and 7-and 9-point schemes,where the latter two schemes are used in discontinuous-grid FD modeling.Numerical experiments show that the optimal L-F domain FD modeling method not only has high accuracy but can also be applied to equal and unequal directional sampling intervals and discontinuous-grid FD modeling to reduce computational cost.