A new steganographic method by pixel-value differencing(PVD)using general quantization ranges of pixel pairs’difference values is proposed.The objective of this method is to provide a data embedding technique with a ...A new steganographic method by pixel-value differencing(PVD)using general quantization ranges of pixel pairs’difference values is proposed.The objective of this method is to provide a data embedding technique with a range table with range widths not limited to powers of 2,extending PVD-based methods to enhance their flexibility and data-embedding rates without changing their capabilities to resist security attacks.Specifically,the conventional PVD technique partitions a grayscale image into 1×2 non-overlapping blocks.The entire range[0,255]of all possible absolute values of the pixel pairs’grayscale differences in the blocks is divided into multiple quantization ranges.The width of each quantization range is a power of two to facilitate the direct embedding of the bit information with high embedding rates.Without using power-of-two range widths,the embedding rates can drop using conventional embedding techniques.In contrast,the proposed method uses general quantization range widths,and a multiple-based number conversion mechanism is employed skillfully to implement the use of nonpower-of-two range widths,with each pixel pair being employed to embed a digit in the multiple-based number.All the message bits are converted into a big multiple-based number whose digits can be embedded into the pixel pairs with a higher embedding rate.Good experimental results showed the feasibility of the proposed method and its resistance to security attacks.In addition,implementation examples are provided,where the proposed method adopts non-power-of-two range widths and employsmultiple-based number conversion to expand the data-hiding and steganalysis-resisting capabilities of other PVD methods.展开更多
To efficiently simulate and calculate the radar cross section(RCS) related electromagnetic problems by employing the finite-difference time-domain(FDTD) algorithm, an efficient stretched coordinate perfectly matched l...To efficiently simulate and calculate the radar cross section(RCS) related electromagnetic problems by employing the finite-difference time-domain(FDTD) algorithm, an efficient stretched coordinate perfectly matched layer(ESC-PML) based upon the exponential time differencing(ETD) method is proposed.The proposed implementation can not only reduce the number of auxiliary variables in the SC-PML regions but also maintain the ability of the original SC-PML in terms of the absorbing performance. Compared with the other existed algorithms, the ETDFDTD method shows the least memory consumption resulting in the computational efficiency. The effectiveness and efficiency of the proposed ESC-PML scheme is verified through the RCS relevant problems including the perfect E conductor(PEC) sphere model and the patch antenna model. The results indicate that the proposed scheme has the advantages of the ETD-FDTD method and ESC-PML scheme in terms of high computational efficiency and considerable computational accuracy.展开更多
Reaction-diffusion equations modeling Predator-Prey interaction are of current interest. Standard approaches such as first-order (in time) finite difference schemes for approximating the solution are widely spread. Th...Reaction-diffusion equations modeling Predator-Prey interaction are of current interest. Standard approaches such as first-order (in time) finite difference schemes for approximating the solution are widely spread. Though, this paper shows that recent advance methods can be more favored. In this work, we have incorporated, throughout numerical comparison experiments, spectral methods, for the space discretization, in conjunction with second and fourth-order time integrating methods for approximating the solution of the reaction-diffusion differential equations. The results have revealed that these methods have advantages over the conventional methods, some of which to mention are: the ease of implementation, accuracy and CPU time.展开更多
A new real-time algorithm is proposed in this paperfor detecting moving object in color image sequencestaken from stationary cameras.This algorithm combines a temporal difference with an adaptive background subtractio...A new real-time algorithm is proposed in this paperfor detecting moving object in color image sequencestaken from stationary cameras.This algorithm combines a temporal difference with an adaptive background subtraction where the combination is novel.Ⅷ1en changes OCCUr.the background is automatically adapted to suit the new conditions.Forthe background model,a new model is proposed with each frame decomposed into regions and the model is based not only upon single pixel but also on the characteristic of a region.The hybrid presentationincludes a model for single pixel information and a model for the pixel’s neighboring area information.This new model of background can both improve the accuracy of segmentation due to that spatialinformation is taken into account and salientl5r speed up the processing procedure because porlion of neighboring pixel call be selected into modeling.The algorithm was successfully used in a video surveillance systern and the experiment result showsit call obtain a clearer foreground than the singleframe difference or background subtraction method.展开更多
Autonomous orbit determination via integration of epoch-differenced gravity gradients and starlight refraction is proposed in this paper for low-Earth-orbiting satellites operating in GPSdenied environments. Starlight...Autonomous orbit determination via integration of epoch-differenced gravity gradients and starlight refraction is proposed in this paper for low-Earth-orbiting satellites operating in GPSdenied environments. Starlight refraction compensates for the significant along-track position error that occurs from only using gravity gradients and benefits from integration in terms of improved accuracy in radial and cross-track position estimates. The between-epoch differencing of gravity gradients is employed to eliminate slowly varying measurement biases and noise near the orbit revolution frequency. The refraction angle measurements are directly used and its Jacobian matrix derived from an implicit observation equation. An information fusion filter based on a sequential extended Kalman filter is developed for the orbit determination. Truth-model simulations are used to test the performance of the algorithm, and the effects of differencing intervals and orbital heights are analyzed. A semi-simulation study using actual gravity gradient data from the Gravity field and steady-state Ocean Circulation Explorer(GOCE) combined with simulated starlight refraction measurements is further conducted, and a three-dimensional position accuracy of better than 100 m is achieved.展开更多
The growth of American English (AE) was based on British English (BE), as we know, when we speak of their differences, however, they are not easily accepted, although they indeed exist. Here, I will illustrate this po...The growth of American English (AE) was based on British English (BE), as we know, when we speak of their differences, however, they are not easily accepted, although they indeed exist. Here, I will illustrate this point from three questions. First, how American English growed? Second, how British and American English came to be different;? Third, where the grammatical differences lie?展开更多
Although a various of existing techniques are able to improve the performance of detection of the weak interesting sig- nal, how to adaptively and efficiently attenuate the intricate noises especially in the case of n...Although a various of existing techniques are able to improve the performance of detection of the weak interesting sig- nal, how to adaptively and efficiently attenuate the intricate noises especially in the case of no available reference noise signal is still the bottleneck to be overcome. According to the characteristics of sonar arrays, a multi-channel differencing method is presented to provide the prerequisite reference noise. However, the ingre- dient of obtained reference noise is too complicated to be used to effectively reduce the interference noise only using the clas- sical linear cancellation methods. Hence, a novel adaptive noise cancellation method based on the multi-kernel normalized least- mean-square algorithm consisting of weighted linear and Gaussian kernel functions is proposed, which allows to simultaneously con- sider the cancellation of linear and nonlinear components in the reference noise. The simulation results demonstrate that the out- put signal-to-noise ratio (SNR) of the novel multi-kernel adaptive filtering method outperforms the conventional linear normalized least-mean-square method and the mono-kernel normalized least- mean-square method using the realistic noise data measured in the lake experiment.展开更多
A new multi function voltage-mode universal biquadratic filter using single Voltage Differencing Differential Input Buffered Amplifier (VD-DIBA), two capacitors and one resistor is proposed. The proposed configuration...A new multi function voltage-mode universal biquadratic filter using single Voltage Differencing Differential Input Buffered Amplifier (VD-DIBA), two capacitors and one resistor is proposed. The proposed configuration has four inputs and one output and can realize all the five standard filters from the same circuit configuration. The presented biquad filter offers low active and passive sensitivities. The validity of proposed universal biquadratic filter has been verified by SPICE simulation using 0.35 μm MIETEC technology.展开更多
We present the new predictor-corrector methods for systems of nonlinear differential equations, based on the method of exponential time differencing. We compare the present schemes with the explicit multistep exponent...We present the new predictor-corrector methods for systems of nonlinear differential equations, based on the method of exponential time differencing. We compare the present schemes with the explicit multistep exponential time differencing and Adams–Bashforth–Moulton method. The numerical results show that the schemes are more accurate and more efficient than Adams predictor-corrector method. The exponential time differencing method has been developed and perfected by the present studies.展开更多
The main purpose in developing the steganographic algorithms lies in achieving most of the steganographic objectives which comprise the embedding capacity, imperceptibility, security, robustness and complexity. In thi...The main purpose in developing the steganographic algorithms lies in achieving most of the steganographic objectives which comprise the embedding capacity, imperceptibility, security, robustness and complexity. In this paper, we propose a high quality steganographic algorithm using new block structure which makes a good use of both modulus function and pixel-value differencing, namely, MF-PVD. We have made many experiments with various test images from several galleries, such as USC-SIPI and UWATERLOO-LINK. The performance of our proposed algorithm is verified using three different performance metrics which include peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and embedding capacity (EC). Experimental results and comparisons with six pertinent state-of-art algorithms are given to prove the validation and efficiency of the proposed algorithm.展开更多
In order to recover unknown space-dependent function G(x)or unknown time-dependent function H(t)in the wave source F(x;t)=G(x)H(t),we develop a technique of homogenized function and differencing equations,which can si...In order to recover unknown space-dependent function G(x)or unknown time-dependent function H(t)in the wave source F(x;t)=G(x)H(t),we develop a technique of homogenized function and differencing equations,which can significantly reduce the difficulty in the inverse wave source recovery problem,only needing to solve a few equations in the problem domain,since the initial condition/boundary conditions and a supplementary final time condition are satisfied automatically.As a consequence,the eigenfunctions are used to expand the trial solutions,and then a small scale linear system is solved to determine the expansion coefficients from the differencing equations.Because the ill-posedness of the inverse wave source problem is greatly reduced,the present method is accurate and stable against a large noise up to 50%,of which the numerical tests confirm the observation.展开更多
The Filon-type quadrature is efficient for highly oscillatory functions - Fourier transforms. Based on Cox and Matthews' ETD schemes, the higher order single step exponential time differencing schemes are presente...The Filon-type quadrature is efficient for highly oscillatory functions - Fourier transforms. Based on Cox and Matthews' ETD schemes, the higher order single step exponential time differencing schemes are presented based on the Filon-type integration and the A-stability of the two-order Adams-Bashforth exponential time differencing scheme is considered. The effectiveness and accuracy of the schemes is tested.展开更多
The purpose of this paper is to introduce a new electronically controlled voltage mode sinusoidal oscillator (VMSO) using Voltage Differencing Transconductance Amplifiers (VDTA). The proposed circuit provides electron...The purpose of this paper is to introduce a new electronically controlled voltage mode sinusoidal oscillator (VMSO) using Voltage Differencing Transconductance Amplifiers (VDTA). The proposed circuit provides electronic control of ω0 and independent condition of oscillation (CO). It is found that the oscillator works very satisfactorily and pure sinusoidal waveforms are available at the outputs. The PSPICE simulation confirms the theoretical results. The proposed oscillator circuit employs only two VDTAs, along with two grounded capacitor and single grounded resistor. The circuit exhibits low active and passive sensitivities for ω0. Simulation results are obtained by using PSPICE software with TSMC CMOS 0.18 um process parameters.展开更多
This paper proposes a new filter biquad circuit, which utilizes three Current Differencing Buffered Amplifiers (CDBA), two capacitors and five resistors, and operates in the trans-resistance mode. This multi-input and...This paper proposes a new filter biquad circuit, which utilizes three Current Differencing Buffered Amplifiers (CDBA), two capacitors and five resistors, and operates in the trans-resistance mode. This multi-input and single-output multifunction filter uses only grounded capacitors. All the employed resistors are either grounded or virtually grounded, which is an important parameter for its implementation as an integrated circuit. The circuit enjoys independent tunability of angular frequency and bandwidth. The 0.5 μm technology process parameters have been utilized to test and verify the performance characteristics of the circuit using PSPICE. The non-ideal analysis and sensitivity analysis, transient response, Monte-Carlo analysis and calculations of total harmonic distortion have also been shown.展开更多
In this paper,we develop a general framework for constructing higher-order,unconditionally energydecreasing exponential time differencing Runge-Kutta(ETDRK)methods applicable to a range of gradient flows.Specifically,...In this paper,we develop a general framework for constructing higher-order,unconditionally energydecreasing exponential time differencing Runge-Kutta(ETDRK)methods applicable to a range of gradient flows.Specifically,we identify conditions sufficient for ETDRK schemes to maintain the original energy dissipation.Our analysis reveals that the widely-employed third-and fourth-order ETDRK schemes fail to meet these conditions.To address this,we introduce new third-order ETDRK schemes,designed with appropriate stabilization,which satisfy these conditions and thus guarantee the unconditional energy decay property.We conduct extensive numerical experiments with these new schemes to verify their accuracy,stability,behavior under large time steps,long-term evolution,and adaptive time-stepping strategy across various gradient flows.This study offers the first framework to examine the unconditional energy stability of high-order ETDRK methods,and we are optimistic that our framework will enable the development of ETDRK schemes beyond the third order that are unconditionally energy stable.展开更多
Depth completion is the task of recovering dense depth map from sparse ones,usually with the help of color images.Existing image guided methods perform well on daytime depth perception self-driving benchmarks,but stru...Depth completion is the task of recovering dense depth map from sparse ones,usually with the help of color images.Existing image guided methods perform well on daytime depth perception self-driving benchmarks,but struggle in nighttime scenarios with poor visibility and complex illumination.To address these challenges,we propose a simple yet effective learnable differencing center network(LDCNet).The key idea is to use recurrent inter-convolution differencing(RICD)and illumination affinitive intra-convolution differencing(IAICD)to enhance the nighttime color images and reduce the negative effects of the varying illumination,respectively.RICD explicitly estimates global illumination by differencing two convolutions with different kernels,treating the small-kernel-convolution feature as the center of the large-kernel-convolution feature in a new perspective.IAICD softly alleviates the local relative light intensity by differencing a single convolution,where the center is dynamically aggregated based on neighboring pixels and the estimated illumination map in the RICD.On both nighttime depth completion and depth estimation tasks,extensive experiments demonstrate the effectiveness of our LDCNet,reaching the state of the art.展开更多
In the paper,we propose a novel linearly implicit structure-preserving algorithm,which is derived by combing the invariant energy quadratization approach with the exponential time differencing method,to construct effi...In the paper,we propose a novel linearly implicit structure-preserving algorithm,which is derived by combing the invariant energy quadratization approach with the exponential time differencing method,to construct efficient and accurate time discretization scheme for a large class of Hamiltonian partial differential equations(PDEs).The proposed scheme is a linear system,and can be solved more efficient than the original energy-preserving ex-ponential integrator scheme which usually needs nonlinear iterations.Various experiments are performed to verify the conservation,efficiency and good performance at relatively large time step in long time computations.展开更多
针对全并联自耦变压器(auto-transformer,AT)牵引网故障点反射波波头微弱难辨识,且线路并联结构导致故障行波折反射复杂而造成定位困难的问题,提出基于变分模态分解(variational mode decomposition,VMD)和改进能量算子的牵引网故障行...针对全并联自耦变压器(auto-transformer,AT)牵引网故障点反射波波头微弱难辨识,且线路并联结构导致故障行波折反射复杂而造成定位困难的问题,提出基于变分模态分解(variational mode decomposition,VMD)和改进能量算子的牵引网故障行波单端定位方法。首先,深入分析牵引网故障行波的传输特性,研究全并联结构对行波折反射的影响,确定不同故障类型和潮流特征,以此为依据提取故障特征量,将波头辨识转化为能量突变值提取;随后,利用VMD去噪提取电压行波真实分量,再针对第二反射波波头微弱难标定问题,在滑动时间窗口(sliding time window,STW)下,结合对称差分能量算子(symmetrical differencing energy operator,SDEO)构造故障信号的二次瞬时能量谱,效果良好。仿真结果表明:所提方法抗过渡电阻能力强,能够反应不同工况下故障牵引网电磁能量的变化,具有较高的定位精度。展开更多
文摘A new steganographic method by pixel-value differencing(PVD)using general quantization ranges of pixel pairs’difference values is proposed.The objective of this method is to provide a data embedding technique with a range table with range widths not limited to powers of 2,extending PVD-based methods to enhance their flexibility and data-embedding rates without changing their capabilities to resist security attacks.Specifically,the conventional PVD technique partitions a grayscale image into 1×2 non-overlapping blocks.The entire range[0,255]of all possible absolute values of the pixel pairs’grayscale differences in the blocks is divided into multiple quantization ranges.The width of each quantization range is a power of two to facilitate the direct embedding of the bit information with high embedding rates.Without using power-of-two range widths,the embedding rates can drop using conventional embedding techniques.In contrast,the proposed method uses general quantization range widths,and a multiple-based number conversion mechanism is employed skillfully to implement the use of nonpower-of-two range widths,with each pixel pair being employed to embed a digit in the multiple-based number.All the message bits are converted into a big multiple-based number whose digits can be embedded into the pixel pairs with a higher embedding rate.Good experimental results showed the feasibility of the proposed method and its resistance to security attacks.In addition,implementation examples are provided,where the proposed method adopts non-power-of-two range widths and employsmultiple-based number conversion to expand the data-hiding and steganalysis-resisting capabilities of other PVD methods.
基金supported by the National Natural Science Foundation of China(61571022611971022)。
文摘To efficiently simulate and calculate the radar cross section(RCS) related electromagnetic problems by employing the finite-difference time-domain(FDTD) algorithm, an efficient stretched coordinate perfectly matched layer(ESC-PML) based upon the exponential time differencing(ETD) method is proposed.The proposed implementation can not only reduce the number of auxiliary variables in the SC-PML regions but also maintain the ability of the original SC-PML in terms of the absorbing performance. Compared with the other existed algorithms, the ETDFDTD method shows the least memory consumption resulting in the computational efficiency. The effectiveness and efficiency of the proposed ESC-PML scheme is verified through the RCS relevant problems including the perfect E conductor(PEC) sphere model and the patch antenna model. The results indicate that the proposed scheme has the advantages of the ETD-FDTD method and ESC-PML scheme in terms of high computational efficiency and considerable computational accuracy.
文摘Reaction-diffusion equations modeling Predator-Prey interaction are of current interest. Standard approaches such as first-order (in time) finite difference schemes for approximating the solution are widely spread. Though, this paper shows that recent advance methods can be more favored. In this work, we have incorporated, throughout numerical comparison experiments, spectral methods, for the space discretization, in conjunction with second and fourth-order time integrating methods for approximating the solution of the reaction-diffusion differential equations. The results have revealed that these methods have advantages over the conventional methods, some of which to mention are: the ease of implementation, accuracy and CPU time.
基金National Natural Science Foundation Grant No.60072029
文摘A new real-time algorithm is proposed in this paperfor detecting moving object in color image sequencestaken from stationary cameras.This algorithm combines a temporal difference with an adaptive background subtraction where the combination is novel.Ⅷ1en changes OCCUr.the background is automatically adapted to suit the new conditions.Forthe background model,a new model is proposed with each frame decomposed into regions and the model is based not only upon single pixel but also on the characteristic of a region.The hybrid presentationincludes a model for single pixel information and a model for the pixel’s neighboring area information.This new model of background can both improve the accuracy of segmentation due to that spatialinformation is taken into account and salientl5r speed up the processing procedure because porlion of neighboring pixel call be selected into modeling.The algorithm was successfully used in a video surveillance systern and the experiment result showsit call obtain a clearer foreground than the singleframe difference or background subtraction method.
基金supported by the National Natural Science Foundation of China (No.11002008)funded in part by Ministry of Science and Technology of China (No.2014CB845303)
文摘Autonomous orbit determination via integration of epoch-differenced gravity gradients and starlight refraction is proposed in this paper for low-Earth-orbiting satellites operating in GPSdenied environments. Starlight refraction compensates for the significant along-track position error that occurs from only using gravity gradients and benefits from integration in terms of improved accuracy in radial and cross-track position estimates. The between-epoch differencing of gravity gradients is employed to eliminate slowly varying measurement biases and noise near the orbit revolution frequency. The refraction angle measurements are directly used and its Jacobian matrix derived from an implicit observation equation. An information fusion filter based on a sequential extended Kalman filter is developed for the orbit determination. Truth-model simulations are used to test the performance of the algorithm, and the effects of differencing intervals and orbital heights are analyzed. A semi-simulation study using actual gravity gradient data from the Gravity field and steady-state Ocean Circulation Explorer(GOCE) combined with simulated starlight refraction measurements is further conducted, and a three-dimensional position accuracy of better than 100 m is achieved.
文摘The growth of American English (AE) was based on British English (BE), as we know, when we speak of their differences, however, they are not easily accepted, although they indeed exist. Here, I will illustrate this point from three questions. First, how American English growed? Second, how British and American English came to be different;? Third, where the grammatical differences lie?
基金supported by the National Natural Science Foundation of China(6100115361271415)+2 种基金the Opening Research Foundation of State Key Laboratory of Underwater Information Processing and Control(9140C231002130C23085)the Fundamental Research Funds for the Central Universities(3102014JCQ010103102014ZD0041)
文摘Although a various of existing techniques are able to improve the performance of detection of the weak interesting sig- nal, how to adaptively and efficiently attenuate the intricate noises especially in the case of no available reference noise signal is still the bottleneck to be overcome. According to the characteristics of sonar arrays, a multi-channel differencing method is presented to provide the prerequisite reference noise. However, the ingre- dient of obtained reference noise is too complicated to be used to effectively reduce the interference noise only using the clas- sical linear cancellation methods. Hence, a novel adaptive noise cancellation method based on the multi-kernel normalized least- mean-square algorithm consisting of weighted linear and Gaussian kernel functions is proposed, which allows to simultaneously con- sider the cancellation of linear and nonlinear components in the reference noise. The simulation results demonstrate that the out- put signal-to-noise ratio (SNR) of the novel multi-kernel adaptive filtering method outperforms the conventional linear normalized least-mean-square method and the mono-kernel normalized least- mean-square method using the realistic noise data measured in the lake experiment.
文摘A new multi function voltage-mode universal biquadratic filter using single Voltage Differencing Differential Input Buffered Amplifier (VD-DIBA), two capacitors and one resistor is proposed. The proposed configuration has four inputs and one output and can realize all the five standard filters from the same circuit configuration. The presented biquad filter offers low active and passive sensitivities. The validity of proposed universal biquadratic filter has been verified by SPICE simulation using 0.35 μm MIETEC technology.
基金The project supported by National Natural Science Foundation of China under Grant No.19902002
文摘We present the new predictor-corrector methods for systems of nonlinear differential equations, based on the method of exponential time differencing. We compare the present schemes with the explicit multistep exponential time differencing and Adams–Bashforth–Moulton method. The numerical results show that the schemes are more accurate and more efficient than Adams predictor-corrector method. The exponential time differencing method has been developed and perfected by the present studies.
文摘The main purpose in developing the steganographic algorithms lies in achieving most of the steganographic objectives which comprise the embedding capacity, imperceptibility, security, robustness and complexity. In this paper, we propose a high quality steganographic algorithm using new block structure which makes a good use of both modulus function and pixel-value differencing, namely, MF-PVD. We have made many experiments with various test images from several galleries, such as USC-SIPI and UWATERLOO-LINK. The performance of our proposed algorithm is verified using three different performance metrics which include peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and embedding capacity (EC). Experimental results and comparisons with six pertinent state-of-art algorithms are given to prove the validation and efficiency of the proposed algorithm.
文摘In order to recover unknown space-dependent function G(x)or unknown time-dependent function H(t)in the wave source F(x;t)=G(x)H(t),we develop a technique of homogenized function and differencing equations,which can significantly reduce the difficulty in the inverse wave source recovery problem,only needing to solve a few equations in the problem domain,since the initial condition/boundary conditions and a supplementary final time condition are satisfied automatically.As a consequence,the eigenfunctions are used to expand the trial solutions,and then a small scale linear system is solved to determine the expansion coefficients from the differencing equations.Because the ill-posedness of the inverse wave source problem is greatly reduced,the present method is accurate and stable against a large noise up to 50%,of which the numerical tests confirm the observation.
基金Projects(02JJY2006, 03JJY2001) supported by Natural Science Foundation of Hunan Province project supported by JSPS Fellowship Research Program
文摘The Filon-type quadrature is efficient for highly oscillatory functions - Fourier transforms. Based on Cox and Matthews' ETD schemes, the higher order single step exponential time differencing schemes are presented based on the Filon-type integration and the A-stability of the two-order Adams-Bashforth exponential time differencing scheme is considered. The effectiveness and accuracy of the schemes is tested.
文摘The purpose of this paper is to introduce a new electronically controlled voltage mode sinusoidal oscillator (VMSO) using Voltage Differencing Transconductance Amplifiers (VDTA). The proposed circuit provides electronic control of ω0 and independent condition of oscillation (CO). It is found that the oscillator works very satisfactorily and pure sinusoidal waveforms are available at the outputs. The PSPICE simulation confirms the theoretical results. The proposed oscillator circuit employs only two VDTAs, along with two grounded capacitor and single grounded resistor. The circuit exhibits low active and passive sensitivities for ω0. Simulation results are obtained by using PSPICE software with TSMC CMOS 0.18 um process parameters.
文摘This paper proposes a new filter biquad circuit, which utilizes three Current Differencing Buffered Amplifiers (CDBA), two capacitors and five resistors, and operates in the trans-resistance mode. This multi-input and single-output multifunction filter uses only grounded capacitors. All the employed resistors are either grounded or virtually grounded, which is an important parameter for its implementation as an integrated circuit. The circuit enjoys independent tunability of angular frequency and bandwidth. The 0.5 μm technology process parameters have been utilized to test and verify the performance characteristics of the circuit using PSPICE. The non-ideal analysis and sensitivity analysis, transient response, Monte-Carlo analysis and calculations of total harmonic distortion have also been shown.
基金supported by National Natural Science Foundation of China(Grant No.12371409)supported by National Natural Science Foundation of China(Grant No.12271240)+1 种基金National Natural Science Foundation of China/Hong Kong Research Grants Council Joint Research Scheme(Grant No.11961160718)the Shenzhen Natural Science Fund(Grant No.RCJC20210609103819018)。
文摘In this paper,we develop a general framework for constructing higher-order,unconditionally energydecreasing exponential time differencing Runge-Kutta(ETDRK)methods applicable to a range of gradient flows.Specifically,we identify conditions sufficient for ETDRK schemes to maintain the original energy dissipation.Our analysis reveals that the widely-employed third-and fourth-order ETDRK schemes fail to meet these conditions.To address this,we introduce new third-order ETDRK schemes,designed with appropriate stabilization,which satisfy these conditions and thus guarantee the unconditional energy decay property.We conduct extensive numerical experiments with these new schemes to verify their accuracy,stability,behavior under large time steps,long-term evolution,and adaptive time-stepping strategy across various gradient flows.This study offers the first framework to examine the unconditional energy stability of high-order ETDRK methods,and we are optimistic that our framework will enable the development of ETDRK schemes beyond the third order that are unconditionally energy stable.
基金supported by the National Science Fund of China(No.62072242 and No.62361166670)the Young Scientists Fund of the National Natural Science Foundation of China(No.62206134)+1 种基金the Fundamental Research Funds for the Central Universities(No.070-63233084)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX23_0471).
文摘Depth completion is the task of recovering dense depth map from sparse ones,usually with the help of color images.Existing image guided methods perform well on daytime depth perception self-driving benchmarks,but struggle in nighttime scenarios with poor visibility and complex illumination.To address these challenges,we propose a simple yet effective learnable differencing center network(LDCNet).The key idea is to use recurrent inter-convolution differencing(RICD)and illumination affinitive intra-convolution differencing(IAICD)to enhance the nighttime color images and reduce the negative effects of the varying illumination,respectively.RICD explicitly estimates global illumination by differencing two convolutions with different kernels,treating the small-kernel-convolution feature as the center of the large-kernel-convolution feature in a new perspective.IAICD softly alleviates the local relative light intensity by differencing a single convolution,where the center is dynamically aggregated based on neighboring pixels and the estimated illumination map in the RICD.On both nighttime depth completion and depth estimation tasks,extensive experiments demonstrate the effectiveness of our LDCNet,reaching the state of the art.
基金supported by the National Natural Science Foundation of China(Grant Nos.12171245,11971416,11971242,12301508)by the Natural Science Foundation of Henan Province(Grant No.222300420280)+1 种基金by the Natural Science Foundation of Hunan Province(Grant No.2023JJ40656)by the Scientific Research Fund of Xuchang University(Grant No.2024ZD010).
文摘In the paper,we propose a novel linearly implicit structure-preserving algorithm,which is derived by combing the invariant energy quadratization approach with the exponential time differencing method,to construct efficient and accurate time discretization scheme for a large class of Hamiltonian partial differential equations(PDEs).The proposed scheme is a linear system,and can be solved more efficient than the original energy-preserving ex-ponential integrator scheme which usually needs nonlinear iterations.Various experiments are performed to verify the conservation,efficiency and good performance at relatively large time step in long time computations.
文摘针对全并联自耦变压器(auto-transformer,AT)牵引网故障点反射波波头微弱难辨识,且线路并联结构导致故障行波折反射复杂而造成定位困难的问题,提出基于变分模态分解(variational mode decomposition,VMD)和改进能量算子的牵引网故障行波单端定位方法。首先,深入分析牵引网故障行波的传输特性,研究全并联结构对行波折反射的影响,确定不同故障类型和潮流特征,以此为依据提取故障特征量,将波头辨识转化为能量突变值提取;随后,利用VMD去噪提取电压行波真实分量,再针对第二反射波波头微弱难标定问题,在滑动时间窗口(sliding time window,STW)下,结合对称差分能量算子(symmetrical differencing energy operator,SDEO)构造故障信号的二次瞬时能量谱,效果良好。仿真结果表明:所提方法抗过渡电阻能力强,能够反应不同工况下故障牵引网电磁能量的变化,具有较高的定位精度。