期刊文献+
共找到27,975篇文章
< 1 2 250 >
每页显示 20 50 100
Experimental Analysis and Modeling of Ethanol-Biodiesel-Diesel Blends Injection Behavior
1
作者 Hailong Chen Yu Zhang +2 位作者 Xin Luan Mingyu Zhang Guanzhen Tao 《Fluid Dynamics & Materials Processing》 2025年第7期1753-1770,共18页
Fuel injection properties,including the injection rate(temporal aspects)and spray behavior(spatial aspects),play a crucial role in the combustion efficiency and emissions of diesel engines.This study investigates the ... Fuel injection properties,including the injection rate(temporal aspects)and spray behavior(spatial aspects),play a crucial role in the combustion efficiency and emissions of diesel engines.This study investigates the effects of different ethanol-biodiesel-diesel(EBD)blends on the injection performance in diesel engines.Experimental tests are conducted to examine key injection parameters,such as spray penetration distance,spray cone angle,and droplet size,alongside an analysis of coupling leakage.The main findings are as follows:(1)The injection behavior of ethanol and diesel differs significantly.The addition of ethanol reduces the density,viscosity,and modulus of elasticity of the fuel mixture.While the injection advance angle,penetration distance,and Sauter mean diameter show minimal changes,the spray cone angle and coupling leakage increase notably.These alterations may disrupt the“fuelair-chamber”matching characteristics of the original engine,potentially affecting performance.(2)In contrast,the injection performance of biodiesel ismore similar to that of diesel.As biodiesel content increases,the density,viscosity,and modulus of elasticity of the blended fuel also grow.Though changes in injection timing,penetration distance,and spray cone angle remain minimal,the Sauter mean diameter experiences a slight increase.The“air-fuel chamber”compatibility of the original engine is largely unaffected,though fuel atomization slightly deteriorates.Blending up to 20%biodiesel and 30%ethanol with diesel effectively compensates for the shortcomings of using single fuels,maintaining favorable injection dynamics while enhancing lubrication and sealing performance of engine components. 展开更多
关键词 diesel engine BIOdiesel ETHANOL blended fuel injection characteristics
在线阅读 下载PDF
Development of a Reduced Chemical Reaction Kinetic Mechanism with Cross-Reactions of Diesel/Biodiesel Fuels
2
作者 Liping Yang Rui Wang +3 位作者 Ali Zare Jacek Hunicz Timothy A.Bodisco Richard J.Brown 《哈尔滨工程大学学报(英文版)》 2025年第3期619-633,共15页
Biodiesel is a clean and renewable energy,and it is an effective measure to optimize engine combustion fueled with biodiesel to meet the increasingly strict toxic and CO_(2) emission regulations of internal combustion... Biodiesel is a clean and renewable energy,and it is an effective measure to optimize engine combustion fueled with biodiesel to meet the increasingly strict toxic and CO_(2) emission regulations of internal combustion engines.A suitable-scale chemical kinetic mechanism is very crucial for the accurate and rapid prediction of engine combustion and emissions.However,most previous researchers developed the mechanism of blend fuels through the separate simplification and merging of the reduced mechanisms of diesel and biodiesel rather than considering their cross-reaction.In this study,a new reduced chemical reaction kinetics mechanism of diesel and biodiesel was constructed through the adoption of directed relationship graph (DRG),directed relationship graph with error propagation,and full-species sensitivity analysis (FSSA).N-heptane and methyl decanoate (MD) were selected as surrogates of traditional diesel and biodiesel,respectively.In this mechanism,the interactions between the intermediate products of both fuels were considered based on the cross-reaction theory.Reaction pathways were revealed,and the key species involved in the oxidation of n-heptane and MD were identified through sensitivity analyses.The reduced mechanism of n-heptane/MD consisting of 288 species and 800 reactions was developed and sufficiently verified by published experimental data.Prediction maps of ignition delay time were established at a wide range of parameter matrices (temperature from 600 to 1 700 K,pressure from 10 bar to 80 bar,equivalence ratio from 0.5 to 1.5) and different substitution ratios to identify the occurrence regions of the crossreaction.Concentration and sensitivity analyses were then conducted to further investigate the effects of cross-reactions.The results indicate temperature as the primary factor causing cross-reactivity.In addition,the reduced mechanism with cross-reactions was more accurate than that without cross-reactions.At 700–1 000 K,the cross-reactions inhibited the consumption of n-heptane/MD,which resulted in a prolonged ignition delay time.At this point,the elementary reaction,NC_(7)H_(16)+OH<=>C_(7)H_(15)-2+H_(2)O,played a dominant role in fuel consumption.Specifically,the contribution of the MD consumption reaction to ignition decreased,and the increased generation time of OH,HO_(2),and H_(2)O_(2) was directly responsible for the increased ignition delay. 展开更多
关键词 Marine engines and fuels Renewable energy BIOdiesel diesel Reduced mechanism CROSS-REACTIONS
在线阅读 下载PDF
Effect of Nanoparticles and Biodiesel Blended with Diesel on Combustion Parameters in Compression Ignition Engine:Numerical Analysis
3
作者 Ameer H.Hamzah Abdulrazzak Akroot Hasanain A.Abdul Wahhab 《Energy Engineering》 2025年第5期2059-2075,共17页
The current work includes a numerical investigation of the effect of biodiesel blends with different aluminum oxide nanoparticle concentrations on the combustion process in the cylinder of a diesel engine.IC Engine Fl... The current work includes a numerical investigation of the effect of biodiesel blends with different aluminum oxide nanoparticle concentrations on the combustion process in the cylinder of a diesel engine.IC Engine Fluent,a specialist computational tool in the ANSYS software,was used to simulate internal combustion engine dynamics and combustion processes.Numerical analysis was carried out using biodiesel blends with three Al_(2)O_(3) nanoparticles in 50,100,and 150 ppm concentrations.The tested samples are called D100,B20,B20A50,B20A100,and B20A150 accordingly.The modeling runs were carried out at various engine loads of 0,100,and 200 Nm at a rated speed of 1800 rpm.The combustion characteristics are improved due to the catalytic effect and higher surface area of nano additives.The results showed the improvements in the combustion process as the result of nanoparticle addition,which led to the higher peak cylinder pressure.The increases in the peak cylinder pressures for B20A50,B20A100,and B20A150 about B20 were 3%,5%,and 8%,respectively,at load 200 Nm.The simulation found that the maximum temperature for biodiesel blends diesel was higher than pure diesel;this was due to higher hydrocarbon values of B20.Also,nano-additives caused a decrease in temperatures in the combustion of biofuels. 展开更多
关键词 Aluminum oxide alsternative fuel biodiesel blend combustion engine combustion simulation diesel engine nanoadditives
在线阅读 下载PDF
Framework for Single Misfire Identification in a Marine Diesel Engine using Machine Learning
4
作者 Victor Nicodemos Guerra Brenno Moura Castro +2 位作者 Dionísio Henrique Carvalho de Sá Só Martins Ricardo Homero Ramírez Gutiérrez Ulisses Admar Barbosa Vicente Monteiro 《哈尔滨工程大学学报(英文版)》 2025年第5期1086-1102,共17页
Misfire is a common fault in compression ignition engines,characterized by the absence or flame loss due to insufficient fuel in the cylinders.This fault is difficult to diagnose and resolve due to its multiple potent... Misfire is a common fault in compression ignition engines,characterized by the absence or flame loss due to insufficient fuel in the cylinders.This fault is difficult to diagnose and resolve due to its multiple potential causes.This study focuses on identifying misfires in a 12-cylinder V-type marine diesel engine by analyzing vibration data collected from 15 accelerometers mounted on the engine block.Three machine learning algorithms—K-Nearest Neighbors(K-NNs),support vector machines(SVMs),and random forests(RFs)—were employed to classify engine conditions using 18 time-domain features.Results showed that the K-NN,SVM and RF algorithms achieved F1 scores of 99.87%,100%,and 99.87%,respectively,when using 18 time-domain features and all 15 accelerometers mounted on the engine block.Additionally,the study evaluated classification performance while reducing the number of accelerometers and features using two methods:Relief-F and general combinatory analysis(GCA).Although the GCA method yields better results when using only two accelerometers and nine features for misfire classification,its overall process required substantially more computational time compared to Relief-F.The best result obtained with Relief-F was achieved using 3 accelerometers and 18 features.Therefore,Relief-F proved to be more practical and take less overall computational time within the proposed framework. 展开更多
关键词 Misfire fault VIBRATION Marine diesel engine K-NN SVM Random forest
在线阅读 下载PDF
Improving the Combustion Process of Biofuels for Diesel Engines to Reduce Environmental Pollution
5
作者 Tuan Duc Ho Nghia Duc Mai Trung Dinh Pham 《Journal of Environmental & Earth Sciences》 2025年第7期227-239,共13页
Limiting environmental pollution from exhaust emissions from internal combustion engines includes many measures,including encouraging biofuel use because biofuel is environmentally friendly and renewable.A mixture of ... Limiting environmental pollution from exhaust emissions from internal combustion engines includes many measures,including encouraging biofuel use because biofuel is environmentally friendly and renewable.A mixture of diesel fuel and vegetable oil is a form of biofuel.However,some properties of the mixed fuel,such as viscosity and density,are higher than those of traditional diesel fuel,affecting the injection and combustion process and reducing power and non-optimal toxic emissions,especially soot emissions.This study uses Kiva-3V software to simulate the combustion process of a diesel-vegetable oil mixture in the combustion chamber of a fishing vessel diesel engine with changes in fuel injection timing.The results show that when increasing the fuel injection timing of a diesel-vegetable oil mixture about 1–2 degrees of crankshaft rotation angle before the top dead center compared to diesel fuel injection timing,the engine power increases,and soot emissions decrease compared to no adjustment.The above simulation research results will help orient the experiments conveniently and reduce costs in the future experimental research process to quantify the fuel system adjustment of fishing vessels’diesel engines when using biofuels,including diesel-vegetable oil mixtures.Thus,the engine’s economic indicators will improve,and emissions that pollute the environment will be limited. 展开更多
关键词 diesel Engine Injection Timing BIOFUEL SOOT KIVA-3V
在线阅读 下载PDF
Emission control status and future perspectives of diesel trucks in China
6
作者 Shihai Zhang Mingliang Fu +2 位作者 Hefeng Zhang Hang Yin Yan Ding 《Journal of Environmental Sciences》 2025年第2期702-713,共12页
Chinese diesel trucks are the main contributors to NOx and particulate matter(PM)vehicle emissions.An increase in diesel trucks could aggravate air pollution and damage human health.The Chinese government has recently... Chinese diesel trucks are the main contributors to NOx and particulate matter(PM)vehicle emissions.An increase in diesel trucks could aggravate air pollution and damage human health.The Chinese government has recently implemented a series of emission control technologies andmeasures for air quality improvement.This paper summarizes recent control technologies and measures for diesel truck emissions in China and introduces the comprehensive application of control technologies and measures in Beijing-Tianjin-Hebei and surrounding regions.Remote onlinemonitoring technology has been adopted according to the China VI standard for heavy-duty diesel trucks,and control measures such as transportation structure adjustment and heavy pollution enterprise classification control continue to support the battle action plan for pollution control.Perspectives and suggestions are provided for promoting pollution control and supervision of diesel truck emissions:adhere to the concept of overall management and control,vigorously promote the application of systematic and technological means in emission monitoring,continuously facilitate cargo transportation structure adjustment and promote new energy freight vehicles.This paper aims to accelerate the implementation of control technologies and measures throughout China.China is endeavouring to control diesel truck exhaust pollution.China is willing to cooperate with the world to protect the global ecological environment. 展开更多
关键词 Air quality diesel truck emissions Emission control technology Control measures
原文传递
Terpolymers of alkyl methacrylate-trans anethole-1,2,3,6-tetrahydrophthalic anhydride copolymers:A low dosage and high-efficiency cold flow improver for diesel fuel
7
作者 Bowen Xu Jiahao Chen +3 位作者 Lulu Cui Xinyue Li Yuan Xue Sheng Han 《Chinese Chemical Letters》 2025年第5期606-609,共4页
The addition of cold flow improvers(CFIs)is considered as the optimum strategy to improve the cold flow properties(CFPs)of diesel fuels,but this strategy is always limited by the required large dosage.To obtain low-do... The addition of cold flow improvers(CFIs)is considered as the optimum strategy to improve the cold flow properties(CFPs)of diesel fuels,but this strategy is always limited by the required large dosage.To obtain low-dosage and high-efficiency CFIs for diesel,1,2,3,6-tetrahydrophthalic anhydride(THPA)was introduced as a third and polar monomer to enhance the depressive effects of alkyl methacrylatetrans anethole copolymers(C_(14)MC-TA).The terpolymers of alkyl methacrylate-trans anethole-1,2,3,6-tetrahydrophthalic anhydride(C_(14)MC-TA-THPA)were synthesized and compared with the binary copolymers of C_(14)MC-TA and alkyl methacrylate-1,2,3,6-tetrahydrophthalic anhydride(C_(14)MC-THPA).Results showed that C_(14)MC-THPA achieved the best depressive effects on the cold filter plugging point(CFPP)and solid point(SP)by 11℃and 16℃at a dosage of 1250 mg/L and monomer ratio of 6:1,while 1500mg/L C_(14)MC-TA(1:1)reached the optimal depressive effects on the CFPP and SP by 12℃and 18℃.THPA introduction significantly improved the depressive effects of C_(14)MC-TA.Lower dosages of C_(14)MCTA-THPA in diesel exerted better improvement effects on the CFPP and SP than that of C_(14)MC-TA and C_(14)MC-THPA.When the monomer ratio and dosage were 6:0.6:0.4 and 1000 mg/L,the improvement effect of C_(14)MC-TA-THPA on diesel reached the optimum level,and the CFPP and SP were reduced by 13℃and 19℃,respectively.A 3D nonlinear surface diagram fitted by a mathematical model was also used for the first time to better understand the relationships of monomer ratios,dosages,and depressive effects of CFIs in diesel.Surface analysis results showed that C_(14)MC-TA-THPA achieved the optimum depressive effects at a monomer ratio of 6:0.66:0.34 and dosage of 1000 mg/L,and the CFPP and SP decreased by 14℃ and 19℃,respectively.The predicted results were consistent with the actual ones.Additionally,the improvement mechanism of these copolymers in diesel was also explored. 展开更多
关键词 diesel fuel High-efficiency Cold flow properties Cold flow improvers Mathematical model
原文传递
Enhancing hydrothermal stability in Cu/SSZ-13 catalyst for diesel SCR applications through a novel core-shell structure
8
作者 Jianning Zhang Yihuai Zhang +3 位作者 Guoxin Ma Jingchen Zhao Tao Zhang Jian Liu 《Chinese Chemical Letters》 2025年第7期282-287,共6页
This study introduces a novel core-shell structured composite,Cu/SSZ-13@CeO_(2),designed to boost the catalyst’s resistance to hydrothermal conditions.Characterization results reveal that encapsulating Cu/SSZ-13 with... This study introduces a novel core-shell structured composite,Cu/SSZ-13@CeO_(2),designed to boost the catalyst’s resistance to hydrothermal conditions.Characterization results reveal that encapsulating Cu/SSZ-13 with a ceria(CeO_(2))shell markedly enhances hydrothermal stability by maintaining the functionality of[Cu(OH)]+active sites and averting their deactivation.Furthermore,the CeO_(2) shell substantially prevents the loss of crucial Lewis and Bronsted acid sites,essential for effective SCR performance.A significant finding is the formation of a"Ce-O-Al"bond between the CeO_(2) shell and the Cu/SSZ-13 core,which plays a crucial role in reinforcing the structural stability of the zeolite framework.These insights contribute significantly to the development of robust anti-hydrothermal aging catalysts for mobile SCR applications,heralding the advancement of more efficient SCR catalyst technologies. 展开更多
关键词 diesel emission NO_(x) Hydrothermal aging Cu/SSZ-13 Core-shell catalysts
原文传递
Development of the two-stage SCR control strategy to satisfy ultra-low NO_(x) emission regulation for heavy-duty diesel engine
9
作者 Jincheng Li Gang Li +3 位作者 Haibo Sun Linpeng Li Zunqing Zheng Mingfa Yao 《Journal of Environmental Sciences》 2025年第10期360-370,共11页
The emission regulations for heavy-duty diesel engines regarding nitrogen oxide(NO_(x))are becoming increasingly stringent,particularly in relation to cold start cycles.While the twostage selective catalytic reduction... The emission regulations for heavy-duty diesel engines regarding nitrogen oxide(NO_(x))are becoming increasingly stringent,particularly in relation to cold start cycles.While the twostage selective catalytic reduction(SCR)has the potential to achieve ultra-low NO_(x) emissions,several challenges remain,including the accurate prediction of ammonia(NH_(3))storage mass and the co-control of the two-stage SCR.The first step in this study involved the establishment of a rapid control prototype platform to facilitate the development and validation of a two-stage SCR control strategy.Secondly,an initial method for predicting the NH_(3) storage based on the mass conservation law was proposed,which was subsequently improved by filling and emptying experiments.The third step involved the development of a two-stage SCR co-control strategy,including obtaining the steady-state NH_(3) storage target value,dynamic correction for NH_(3) storage target value,regulation of NH_(3) storage,and control of the close-coupled SCR urea injector state.Finally,the two-stage SCR urea injection control strategy was certified under the world harmonized transient cycle(WHTC).The results demonstrate that the composite value of engine outlet NO_(x) emissions under cold and hot start WHTC cycles is 13 g/(kW·h).Meanwhile,the composite value of tailpipe NO_(x) emissions under cold and hot start WHTC cycles is 0.065 g/(kW·h),representing only 14%of the EU VI limit value of 0.46 g/(kW·h).Thus,the findings demonstrate that integrating an accurate NH_(3) storage prediction method with the two-stage SCR co-control function is crucial for heavy-duty diesel engines to achieve ultra-low NO_(x) emissions. 展开更多
关键词 Heavy-duty diesel engine Ultra-low nitrogen oxide emission Close-coupled selective catalytic REDUCTION Ammonia storage mass Two-stage selective catalytic reduction control strategy
原文传递
Fault diagnosis of a marine power-generation diesel engine based on the Gramian angular field and a convolutional neural network 被引量:5
10
作者 Congyue LI Yihuai HU +1 位作者 Jiawei JIANG Dexin CUI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第6期470-482,共13页
Marine power-generation diesel engines operate in harsh environments.Their vibration signals are highly complex and the feature information exhibits a non-linear distribution.It is difficult to extract effective featu... Marine power-generation diesel engines operate in harsh environments.Their vibration signals are highly complex and the feature information exhibits a non-linear distribution.It is difficult to extract effective feature information from the network model,resulting in low fault-diagnosis accuracy.To address this problem,we propose a fault-diagnosis method that combines the Gramian angular field(GAF)with a convolutional neural network(CNN).Firstly,the vibration signals are transformed into 2D images by taking advantage of the GAF,which preserves the temporal correlation.The raw signals can be mapped to 2D image features such as texture and color.To integrate the feature information,the images of the Gramian angular summation field(GASF)and Gramian angular difference field(GADF)are fused by the weighted average fusion method.Secondly,the channel attention mechanism and temporal attention mechanism are introduced in the CNN model to optimize the CNN learning mechanism.Introducing the concept of residuals in the attention mechanism improves the feasibility of optimization.Finally,the weighted average fused images are fed into the CNN for feature extraction and fault diagnosis.The validity of the proposed method is verified by experiments with abnormal valve clearance.The average diagnostic accuracy is 98.40%.When−20 dB≤signal-to-noise ratio(SNR)≤20 dB,the diagnostic accuracy of the proposed method is higher than 94.00%.The proposed method has superior diagnostic performance.Moreover,it has a certain anti-noise capability and variable-load adaptive capability. 展开更多
关键词 Multi-attention mechanisms(MAM) Convolutional neural network(CNN) Gramian angular field(GAF) Image fusion Marine power-generation diesel engine Fault diagnosis
原文传递
A reduced combustion mechanism of ammonia/diesel optimized with multi-objective genetic algorithm 被引量:1
11
作者 Wanchen Sun Shaodian Lin +4 位作者 Hao Zhang Liang Guo Wenpeng Zeng Genan Zhu Mengqi Jiang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期187-200,共14页
For the deep understanding on combustion of ammonia/diesel,this study develops a reduced mechanism of ammonia/diesel with 227 species and 937 reactions.The sub-mechanism on ammonia/interactions of N-based and C-based ... For the deep understanding on combustion of ammonia/diesel,this study develops a reduced mechanism of ammonia/diesel with 227 species and 937 reactions.The sub-mechanism on ammonia/interactions of N-based and C-based species(N—C)/NOx is optimized using the Non-dominated Sorting Genetic Algorithm II(NSGA-II)with 200 generations.The optimized mechanism(named as 937b)is validated against combustion characteristics of ammonia/methane(which is used to examine the accuracy of N—C interactions)and ammonia/diesel blends.The ignition delay times(IDTs),the laminar flame speeds and most of key intermediate species during the combustion of ammonia/methane blends can be accurately simulated by 937b under a wide range of conditions.As for ammonia/diesel blends with various diesel energy fractions,reasonable predictions on the IDTs under pressures from 1.0 MPa to5.0 MPa as well as the laminar flame speeds are also achieved by 937b.In particular,with regard to the IDT simulations of ammonia/diesel blends,937b makes progress in both aspects of overall accuracy and computational efficiency,compared to a detailed ammonia/diesel mechanism.Further kinetic analysis reveals that the reaction pathway of ammonia during the combustion of ammonia/diesel blend mainly differs in the tendencies of oxygen additions to NH_2 and NH with different equivalence ratios. 展开更多
关键词 AMMONIA diesel COMBUSTION Kinetic mechanism Multi-objective optimization
在线阅读 下载PDF
Effect of catalyst diesel particulate filter aging and catalyst loadings on particulate emission characteristics from a diesel vehicle
12
作者 Yunhua Zhang Diming Lou +2 位作者 Piqiang Tan Zhiyuan Hu Liang Fang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第2期35-44,共10页
In this study,the effect of new and used catalyzed diesel particulate filter(CDPF)with different catalyst loadings on the particulate emissions including the particle mass(PM),particle number(PN),particle size distrib... In this study,the effect of new and used catalyzed diesel particulate filter(CDPF)with different catalyst loadings on the particulate emissions including the particle mass(PM),particle number(PN),particle size distribution(PSD)and geometric mean diameter(GMD)from a diesel vehicle were investigated based on a heavy chassis dynamometer.Results showed that more than 97.9%of the PN and 95.4%of the PM were reduced by the CDPF,and the reduction efficiency was enhanced by the catalyst loading.After using the CDPF,the PSD transformed from bimodal to trimodal with the peak shifting towards smaller particle size,more nucleation mode particles were reduced compared with accumulation mode ones,but the reduction effect on the accumulation mode particles was more significantly influenced by the catalyst loading.Notably,the CDPF increased the accumulation mode particles proportion,producing a larger GMD.For the used CDPF,its reduction effect on the particulate emissions enhanced,especially for the PM in accumulation mode.The PSD returned to bimodal,but the peak at accumulation mode began to be higher than that at nucleation mode,illustrating that more nucleation mode particles was removed.The aging of the CDPF resulted in greater effect on the PN-based PSD than that of PM-based PSD,but the effect of catalyst loading on the PN and PM emission factors was weakened.The used CDPF further increased the GMD,and the effect of catalyst loading on the GMD was strengthened,a higher catalyst loading led to a reduction in the GMD. 展开更多
关键词 Catalyzed diesel particulate filter (CDPF) Catalyst loading AGING PARTICLE Particle size distribution Geometric mean diameter
原文传递
Multi-lump Kinetic Parameter Estimation and Simulation of Trickle-bed Reactor for Ultra-deep Hydrodesulfurization of Diesel
13
作者 Huang Zhen Zhang Xun +4 位作者 Qiao Aijun Xue Nan Liu Kaixiang Xu Song Wang He 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第3期147-157,共11页
A three-lumping Langmuir-Hinshelwood kinetic model was established based on the structures and reactivities of sulfur compounds.This model described the ultra-deep hydrodesulfurization(UDHDS)performance of diesel,redu... A three-lumping Langmuir-Hinshelwood kinetic model was established based on the structures and reactivities of sulfur compounds.This model described the ultra-deep hydrodesulfurization(UDHDS)performance of diesel,reducing sulfur content from 10000μg/g to less than 10μg/g,with experimental and predicted data showing a discrepancy of less than 10%.The diesel UDHDS reaction was simulated by combining the mass transfer,reaction kinetics model,and physical properties of diesel.The results showed how the concentrations of H2S,hydrogen,and sulfur in the gas,liquid,and solid phases varied along the reactor length.Moreover,the study discussed the effects of each process parameter and impurity concentrations(H2S,basic nitrogen and,non-basic nitrogen)on diesel UDHDS. 展开更多
关键词 diesel TBR ultra-deep HDS kinetic model simulation
在线阅读 下载PDF
Evaluation of the Oxidation Reactivity and Behavior of Exhaust Soot Particles from Diesel Engines with Different Emission Levels
14
作者 Wang Yajun Lin Lei +3 位作者 Xing Jianqiang LüXu Yang He Song Haiqing 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期72-80,共9页
The aim of this study was to investigate the oxidation reactivity and behavior of exhaust particulate matter(PM)from diesel engines.PM samples from two diesel engines(1K,CY4102)with different emission levels were coll... The aim of this study was to investigate the oxidation reactivity and behavior of exhaust particulate matter(PM)from diesel engines.PM samples from two diesel engines(1K,CY4102)with different emission levels were collected by a thermophoretic system and a quartz filter.The oxidation reactivity,oxidation behaviors,and physicochemical properties of the PM samples were analyzed using thermogravimetric analysis(TGA),high-resolution transmission electron microscopy(HRTEM),Fourier-transform infrared spectrometry(FTIR),and Raman spectroscopy.The results showed that there was a great difference in the oxidation reactivity of soot particles emitted by the two different diesel engines.A qualitative analysis of the factors influencing oxidation reactivity showed that the nanostructure,degree of graphitization,and relative concentration of aliphatic C—H functional groups were the most important factors,whereas no significant correlation was found between the primary particle size and activation energy of the diesel soot.Based on the oxidation behavior analysis,the diesel soot particles exhibited both internal and surface oxidation modes during the oxidation process.Surface oxidation was dominant during the initial stage,and as oxidation progressed,the mode gradually changed to internal oxidation.Internal oxidation mode of soot particles from the 1K engine was significantly higher than that of CY4102. 展开更多
关键词 diesel engine soot particles oxidation reactivity oxidation behavior
在线阅读 下载PDF
A Study of the Effect of the Miller Cycle on the Combustion of a Supercharged Marine Diesel Engine
15
作者 Lingjie Zhao Cong Li 《Energy Engineering》 EI 2024年第5期1363-1380,共18页
The Miller cycle is a program that effectively reduces NOx emissions from marine diesel engines by lowering the maximum combustion temperature in the cylinder,thereby reducing NOx emissions.To effectively investigate ... The Miller cycle is a program that effectively reduces NOx emissions from marine diesel engines by lowering the maximum combustion temperature in the cylinder,thereby reducing NOx emissions.To effectively investigate the impact of Miller cycle optimum combustion performance and emission capability under high load conditions,this study will perform a one-dimensional simulation of the performance of a marine diesel engine,as well as a threedimensional simulation of the combustion in the cylinder.A 6-cylinder four-stroke single-stage supercharged diesel engine is taken as the research object.The chassis dynamometer and other related equipment are used to build the test system,carry out the diesel engine bench test,and collect experimental data.The simulation results are compared with the test results,and the error is less than 5%.In this study,the authors will use simulation software to simulate several Miller cycle scenarios designed for early inlet valve closure and analyze the impact of the Miller cycle on combustion and emissions at 100%load conditions.By comparing the flow field distribution of the engine at 1500 r/min condition,it was found that proper EIVC can prolong the ignition latency period and homogeneous fuel-air mixture combustion acceleration,but it can reduce pressure and temperature within the piston chamber and NOx emission.However,the Miller cycle reduces end-of-compression temperatures,which increases combustion duration and exhaust temperatures,making it difficult to improve fuel economy at the optimum fuel consumption point,and closing the intake valves prematurely leads to excessive fuel expenditure.Furthermore,temperature and heat release rate within the piston chamber,NOx,and SOOT generation were significantly enhanced. 展开更多
关键词 Miller cycle EIVC COMBUSTION NOx emissions marine diesel
在线阅读 下载PDF
Efficient simultaneous removal of diesel particulate matter and hydrocarbons from diesel exhaust gas at low temperatures over Cu–CeO_(2)/Al_(2)O_(3) coupling with dielectric barrier discharge plasma
16
作者 任保勇 方世玉 +7 位作者 张甜甜 孙燕 高尔豪 李晶 吴祖良 朱佳丽 王伟 姚水良 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第5期100-109,共10页
Diesel particulate matter(DPM)and hydrocarbons(HCs)emitted from diesel engines have a negative affect on air quality and human health.Catalysts for oxidative removal of DPM and HCs are currently used universally but t... Diesel particulate matter(DPM)and hydrocarbons(HCs)emitted from diesel engines have a negative affect on air quality and human health.Catalysts for oxidative removal of DPM and HCs are currently used universally but their low removal efficiency at low temperatures is a problem.In this study,Cu-doped CeO_(2) loaded on Al_(2)O_(3) coupled with plasma was used to enhance low-temperature oxidation of DPM and HCs.Removals of DPM and HCs at 200℃ using the catalyst were as high as 90%with plasma but below 30%without plasma.Operando plasma diffuse reflectance infrared Fourier transform spectroscopy coupled with mass spectrometry was conducted to reveal the functional mechanism of the oxygen species in the DPM oxidation process.It was found that Cu-CeO_(2) can promote the formation of adsorbed oxygen(M^(+)-O_(2)^(-))and terminal oxygen(M=O),which can react with DPM to form carbonates that are easily converted to gaseous CO_(2).Our results provide a practical plasma catalysis technology to obtain simultaneous removals of DPM and HCs at low temperatures.M+O-2Diesel particulate matter(DPM)and hydrocarbons(HCs)emitted from diesel engines have a negative affect on air quality and human health.Catalysts for oxidative removal of DPM and HCs are currently used universally but their low removal efficiency at low temperatures is a problem.In this study,Cu-doped CeO_(2) loaded on Al_(2)O_(3) coupled with plasma was used to enhance low-temperature oxidation of DPM and HCs.Removals of DPM and HCs at 200°C using the catalyst were as high as 90%with plasma but below 30%without plasma.Operando plasma diffuse reflectance infrared Fourier transform spectroscopy coupled with mass spectrometry was conducted to reveal the functional mechanism of the oxygen species in the DPM oxidation process.It was found that Cu–CeO_(2) can promote the formation of adsorbed oxygen(–)and terminal oxygen(M=O),which can react with DPM to form carbonates that are easily converted to gaseous CO_(2).Our results provide a practical plasma catalysis technology to obtain simultaneous removals of DPM and HCs at low temperatures. 展开更多
关键词 diesel PM plasma catalysis Cu-CeO_(2)/Al_(2)O_(3) DRIFTS-MS synergy effect
在线阅读 下载PDF
Project⁃based Pollutant Emission Control of Diesel Construction Equipment
17
作者 XIE Yixin FAN Hongqin 《施工技术(中英文)》 CAS 2024年第17期85-93,共9页
This paper examines project⁃based policies and regulations implemented globally to control and mitigate emissions from diesel⁃powered construction equipment.This study systematically reviews and analyzes various manag... This paper examines project⁃based policies and regulations implemented globally to control and mitigate emissions from diesel⁃powered construction equipment.This study systematically reviews and analyzes various managerial,regulatory,and technical measures adopted across countries and regions,mostly of advanced economy.Key strategies of control include setting emission thresholds,idling restrictions,perform remote online monitoring,operational time limits,setting low emission zones,and enforced registration systems.The review highlights the rationale,implementation details,and experiences gained from these localized approaches,reduces localized emission sources,improve urban air quality and environmental management efficiency. 展开更多
关键词 EQUIPMENT diesel emissions CONTROL policy analysis
在线阅读 下载PDF
Effect of Diesel Engine Lubricating Oil on Turbocharger Compressor Soot Deposits under Oil Dilution Conditions
18
作者 Xu Yan Yang He +3 位作者 Lu Wentong Lin Lei Xing Jianqiang Wang Yajun 《China Petroleum Processing & Petrochemical Technology》 CSCD 2024年第4期1-8,共8页
Due to increasingly stricter emissions on particulate matter(PM)emissions,diesel particulate filter(DPF)regeneration has become the most widely used and effective technology to reduce PM emissions.However,using incyli... Due to increasingly stricter emissions on particulate matter(PM)emissions,diesel particulate filter(DPF)regeneration has become the most widely used and effective technology to reduce PM emissions.However,using incylinder post-injection-based active DPF regeneration can increase engine oil dilution,thus affecting engine lubrication.Using a 4-cylinder turbocharged direct-injection diesel engine,this study analyzed the effect of lubricating oil on the formation and properties of turbocharger compressor soot deposits associated with engine oil dilution.Three diesel engine lubricating oils(CJ-4,CK-4,and CJ-4*)were selected,with each subjected to 200 hours of engine bench testing at 8%oil dilution.The composition of CJ-4*was the same as that of CJ-4 but with reduced amount of additives.Soot deposits were collected and analyzed.A merit calculation method was established to rate turbocharger deposits.Transmission electron microscopy,Raman spectroscopy,Fourier transform infrared spectroscopy,and thermogravimetric analysis(TGA)were used to characterize the morphology and composition of soot samples.The results showed that turbocharger deposits from CJ-4 and CK-4 were less than that from CJ-4*.The deposits from CJ-4*showed a more disordered morphology,whereas those from CJ-4 and CK-4 exhibited a higher degree of order.TGA results showed that the soluble organic fraction content in the deposit derived from CJ-4*was much higher than that obtained from CJ-4 and CK-4. 展开更多
关键词 diesel engine lubricating oil oil dilution soot deposit turbocharger compressor
在线阅读 下载PDF
Assessing the hazard of diesel particulate matter (DPM) in the mining industry: A review of the current state of knowledge
19
作者 Sikandar Azam Shimin Liu +1 位作者 Sekhar Bhattacharyya Siyang Zheng 《International Journal of Coal Science & Technology》 CSCD 2024年第4期320-366,共47页
In the confined spaces of underground mines,the exposure of over 10,000 miners in the U.S.to diesel exhaust and diesel particulate matter(DPM)is an occupational inevitability,particularly in metal and nonmetal mineral... In the confined spaces of underground mines,the exposure of over 10,000 miners in the U.S.to diesel exhaust and diesel particulate matter(DPM)is an occupational inevitability,particularly in metal and nonmetal mineral extraction.These workers routinely operate amidst diesel-powered equipment,often outdated and highly polluting,extracting resources such as limestone,gold,and salt.The acute health effects of such exposure are significant,leading to symptoms like headaches and flu-like conditions,with the impact being more pronounced in these closed work environments.This review scrutinizes DPM's hazard in the mining sector,consolidating the extant knowledge and exploring ongoing research.It encapsulates our understanding of DPM's physicochemical properties,existing sampling methods,health ramifications,and mitigation technologies.Moreover,it underscores the necessity for further study in areas such as the evolution of DPM's physicochemical attributes,from its genesis at high-pressure,high-temperature conditions within diesel engines to its emission into the mine atmosphere.A key research gap is the intricate interaction of DPM with specific characteristics of the mine environment-such as relative humidity,ambient temperature,the presence of other mineral dust,and the dynamics of ventilation air.These factors can significantly alter the physicochemical profile of DPM,infuencing both its in-mine transport and its deposition behavior.Consequently,this can affect the respiratory health of miners,modifying the toxicity and the respiratory deposition of DPM particles.Identified research imperatives include(1)the advancement of instrumentation for accurate number measurement of DPM to replace or supplement traditional gravimetric methods;(2)the development of long-lasting,cost-effective control technologies tailored for the mining industry;(3)an in-depth investigation of DPM interactions within the unique mine microclimate,considering the critical components like humidity and other aerosols;and(4)understanding the differential impact of DPM in mining compared to other industries,informing the creation of mining-specific health and safety protocols.This review's findings underscore the urgency to enhance emission control and exposure prevention strategies,paving the way for a healthier underground mining work environment. 展开更多
关键词 diesel particulate matter(DPM) Underground mine Environment Miner's health
在线阅读 下载PDF
Optimization of Diesel and Crude Oil Degradation in a Ghanaian Soil Using Organic Wastes as Amendment
20
作者 Adama Sawadogo Innocent Yao Dotse Lawson +2 位作者 Hama Cissé Cheikna Zongo Aly Savadogo 《Journal of Agricultural Chemistry and Environment》 2024年第1期1-12,共12页
Soil contamination by hydrocarbons poses numerous environmental, health and agricultural problems. The degradation of these pollutants can occur naturally but very slowly. It is therefore generally necessary to stimul... Soil contamination by hydrocarbons poses numerous environmental, health and agricultural problems. The degradation of these pollutants can occur naturally but very slowly. It is therefore generally necessary to stimulate this degradation by different means. Thus, this study aimed to improve the bio-degradation of diesel and crude oil in a Ghanaian soil by biostimulation. For this, the sampled soil was characterized by standard methods and contaminated with diesel and crude oil at a proportion of 1% (w/w). Then, contaminated soil samples were supplemented with biochar-compost, poultry manure or cow dung at the proportion of 10% (w/w). Periodically, fractions of these samples were taken to evaluate the density of hydrocarbon utilizing bacteria (HUB) and the residual quantities of diesel or crude oil. The characteristics of the soil used show the need for supplementation for better degradation of hydrocarbons. The results of the study show that supplementing the soil with organic substrates increases HUB loads in soils contaminated by diesel and crude oil. They also show that the residual quantities of diesel and crude oil are generally significantly lower in supplemented soils (p = 0.048 and p < 0.0001 respectively). In addition, the study shows that degradation was generally greater in soils contaminated by diesel compared to those contaminated by crude oil, especially at the end of the study. 展开更多
关键词 BIODEGRADATION BIOSTIMULATION SOIL diesel Crude Oil Organic Amendment Ghana
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部