Kid, Hurry and Grab Mom's hand. It's too dark around here——the road To the heaven. I'm afraid Something mav hurt your head. Hurry and Grab my hand. Let's move on Side by side.
Unwarranted death of neurons is a major cause of neurodegenerative diseases.Since mature neurons are postmitotic and do not replicate,their death usually constitutes an irreversible step in pathology.A logical strateg...Unwarranted death of neurons is a major cause of neurodegenerative diseases.Since mature neurons are postmitotic and do not replicate,their death usually constitutes an irreversible step in pathology.A logical strategy to prevent neurodegeneration would then be to save all neurons that are still alive,i.e.protecting the ones that are still healthy as well as trying to rescue the ones that are damaged and in the process of dying.Regarding the latter,recent experiments have indicated that the possibility of reversing the cell death process and rescuing dying cells is more significant than previously anticipated.In many situations,the elimination of the cell death trigger alone enables dying cells to spontaneously repair their damage,recover,and survive.In this review,we explore the factors,which determine the fate of neurons engaged in the cell death process.A deeper insight into cell death mechanisms and the intrinsic capacity of cells to recover could pave the way for novel therapeutic approaches to neurodegenerative diseases.展开更多
The effects of the high pressure die casting(HPDC)processes on porosity,microstructure,and mechanical properties of heat-treatment-free aluminum silicon(Al-Si)alloys have long been a focal point in automotive die-cast...The effects of the high pressure die casting(HPDC)processes on porosity,microstructure,and mechanical properties of heat-treatment-free aluminum silicon(Al-Si)alloys have long been a focal point in automotive die-casting research.In this work,the combined effect of shot sleeve materials and slow shot speeds on porosity,microstructure and mechanical properties of a newly designed HPDC Al-Si alloy was investigated.Results show that employing a ceramic shot sleeve or increasing the slow shot speed significantly reduces both the average size and area fraction of externally solidified crystals(ESCs),as well as the average pore size and volume fraction.When the slow shot speed is increased from 0.05 m·s^(-1)to 0.1 m·s^(-1),the pore volume fraction decreases by 10.2%in steel-shot-sleeve samples,compared to a substantial 67.1%reduction in ceramic-shot-sleeve samples.At a slow shot speed of 0.1 m·s^(-1),castings produced with a ceramic shot sleeve exhibit superior mechanical properties:8.3%higher yield strength,17.4%greater tensile strength,and an 81.4%improvement in elongation,relative to those from a steel shot sleeve.These findings provide valuable insights for minimizing porosity and coarse ESCs in die castings,offering promising potential for broader industrial applications.展开更多
In order to investigate the effect of die wall thickness on morphologies of defect band,a stepped mold with a wall thickness of 5 mm,4 mm,3 mm,2 mm,and 1 mm was designed to carry out high pressure die casting experime...In order to investigate the effect of die wall thickness on morphologies of defect band,a stepped mold with a wall thickness of 5 mm,4 mm,3 mm,2 mm,and 1 mm was designed to carry out high pressure die casting experiments with AlSi10 MgMn alloy.For castings with wall thickness of 2-4 mm,the ratio of the mean defect band width(w)and mean grain size(d)in the defect band(w/d)ranges 7-18,while it increases to 24.47 for the 5 mm-thick casting.This difference is related with the filling speed and the distribution of externally solidified crystals(ESCs).The mold flow analysis indicates that the filling speed decreases from 25.41 m·s^(-1)to 11.07 m·s^(-1)when wall thickness increases from 2 mm to 5 mm.Due to the decreasing filling speed along the wall thickness,ESCs gradually diffuse from the center to the defect band,which keep the shear strength in the defect band at a high-level during filling.Meanwhile,the shear strength generated during the filling also decreases as the shear rate drops.Finally,the defect bands in the 5 mm-thick region become widen and indistinct,and the porosity is as high as 5.25%.展开更多
Die Walküre is the most frequently staged and most popular title of the Ring cycle among classical music enthusiasts.It tells a complex story that involves intertwined relationships between father and daughter,hu...Die Walküre is the most frequently staged and most popular title of the Ring cycle among classical music enthusiasts.It tells a complex story that involves intertwined relationships between father and daughter,husband and wife,brother and sister,and lovers in the epic context of the Nordic mythology.展开更多
1.Introduction Casting accounts for over 90%of magnesium-based alloy applications with die-cast and thixomolded parts dominating.The high strength-to-weight ratio coupled with excellent fluidity,low volumetric latent ...1.Introduction Casting accounts for over 90%of magnesium-based alloy applications with die-cast and thixomolded parts dominating.The high strength-to-weight ratio coupled with excellent fluidity,low volumetric latent heat and heat capacity,reduced cycle times,and low soldering tendencies,all make magnesium alloys excellent choices for die casting applications.Despite these advantages,in recent years,the use of magnesium in die casting applications has been declining.展开更多
This study presents the development of a Magnesium Alloy Seat Frame(MASF),supported by case studies from automotive original equipment manufacturers.The process covers integrated design,simulation,manufacturing,and te...This study presents the development of a Magnesium Alloy Seat Frame(MASF),supported by case studies from automotive original equipment manufacturers.The process covers integrated design,simulation,manufacturing,and testing,aiming to boost industry confidence in Mg alloy applications.A novel structural design is developed that integrates the headrest with the backrest,achieving a balance between lightweight performance and safety.Structural optimization is guided by stress–strain simulations under diverse conditions within a complete forward development process.Casting simulations are conducted to analyze process characteristics,resulting in a verified MASF yield rate exceeding 90%.The final 9.88 kg MASF represents a 24.6%(3.23 kg)weight reduction versus a steel seat.This research contributes to advancements in defect control technology for large die casting magnesium alloy parts and has broad implications for their application in automotive manufacturing.展开更多
This study investigates the formation feasibility of the integrated bottom car body components with dual die casting injection molding technology.During the production of a die-cast super-large one-piece body part wei...This study investigates the formation feasibility of the integrated bottom car body components with dual die casting injection molding technology.During the production of a die-cast super-large one-piece body part weighing over 10,000 t,a thorough comparison and investigation were conducted on the arising issues,using both single and double injection systems.Particular attention was given to meticulously discussing the die casting filling problems and microstructural defects that originated from the filling process.The research findings indicate that the implementation of a double injection system can significantly minimize cold shuts and reduce the solidification time.The effectiveness of this die casting technique was further confirmed by the production of high-quality castings using a scaled model that replicated real casting conditions at a 1:3 ratio,thereby maintaining a one-to-one correspondence in essential aspects.This successful study offers both theoretical insights and practical applications for the production of integrated bottom car bodies utilizing die casting in conjunction with a dual injection system.展开更多
A novel oxide-dispersion-strengthened(ODS)die steel was fabricated by mechanical alloying and hot consolidation.Annealing and quench-tempering treatments both obtained an ultra-fine grain structure(mean size:310-330 n...A novel oxide-dispersion-strengthened(ODS)die steel was fabricated by mechanical alloying and hot consolidation.Annealing and quench-tempering treatments both obtained an ultra-fine grain structure(mean size:310-330 nm)with an ultra-high density of ultra-fine Y-Al-O nano-oxides(number density:~(1-1.5)×10^(23)m^(−3),mean size:5.1-7.2 nm).Prolonged thermal exposure further induced the new,highly dense precipitation of ultra-fine Y-Zr-O nano-oxides.Both nano-oxides tended to be wrapped up with a B2-NiAl nano-shells.Although the quench-tempered sample showed much higher room-temperature strength(yield strength=1393±40 MPa and ultimate tensile strength=1774±11 MPa)and slightly lower elongation(elongation=13.6%±0.6%)than the annealed sample(YS=988±7 MPa,UTS=1490±12 MPa,and EL=15.2%±1.1%),both samples exhibited better strength-ductility synergy at room temperature and much higher thermal stabilities at high temperatures(600-700℃)than all those conventional hot-work die steels,which makes the new ODS steel highly promising for advanced hot-work mold and die applications at high temperatures above 600℃.展开更多
Dynamic recrystallization(DRX)in inhomogeneous deformation zones,such as grain boundaries,shear bands,and deformation bands,is critical for texture modification in magnesium alloys during deformation at elevated temper...Dynamic recrystallization(DRX)in inhomogeneous deformation zones,such as grain boundaries,shear bands,and deformation bands,is critical for texture modification in magnesium alloys during deformation at elevated temperatures.This study investigates the DRX mechanisms in AZWX3100 magnesium alloy under plane strain compression at 200℃.Microstructural analysis revealed necklace-type DRX accompanied by evidence of local grain boundary bulging.Additionally,ribbons of recrystallized grains were observed withinfine deformation bands,aligned with theoretical pyramidal I and II slip traces derived from the matrix.The distribution of local misorientation within the deformed microstructure demonstrated a clear association between deformation bands and localized strain.Dislocation analysis of lamellar specimens extracted from two pyramidal slip bands revealed<c+a>dislocations,indicating a connection between<c+a>slip activation and the formation of deformation bands.Crystal plasticity simulations suggest that the orientation of deformation bands is responsible for the unique recrystallization texture of the DRX grains within these bands.The texture characteristics imply a progressive,glide-induced DRX mechanism.A fundamental understanding of the role of deformation bands in texture modification can facilitate future alloy and process design.展开更多
Achieving optimal mechanical performance in high-pressure die-cast(HPDC)Mg-based alloys through experimental methods is both costly and time-intensive due to significant variations in composition.This study leverages ...Achieving optimal mechanical performance in high-pressure die-cast(HPDC)Mg-based alloys through experimental methods is both costly and time-intensive due to significant variations in composition.This study leverages machine learning(ML)techniques to accelerate the development of high-performance Mg-based alloys.Data on alloy composition and mechanical properties were collected from literature sources,focusing on HPDC Mg-based alloys.Six ML models—extra trees,CatBoost,k-nearest neighbors,random forest,gradient boosting,and decision tree—were trained to predict mechanical behavior.Cat Boost yielded the highest prediction accuracy with R^(2) scores of 0.95 for ultimate tensile strength(UTS)and 0.92 for yield strength(YS).Further validation using published datasets reaffirmed its reliability,demonstrating R^(2) values of 0.956(UTS)and 0.936(YS),MAE of 1%and 2.8%,and RMSE of 1%and 3.5%,respectively.Among these,the CatBoost model demonstrated the highest predictive accuracy,outperforming other ML techniques across multiple optimization metrics.展开更多
High-pressure die-cast(HPDC)magnesium(Mg)and aluminum alloys enable vehicle lightweighting while reducing manufacturing costs by simplifying part assembly.The increasing use of super-large castings in electric vehicle...High-pressure die-cast(HPDC)magnesium(Mg)and aluminum alloys enable vehicle lightweighting while reducing manufacturing costs by simplifying part assembly.The increasing use of super-large castings in electric vehicles enhances structural reliability and cost efficiency.However,HPDC Mg alloys face challenges related to casting defects such as porosity,cold shuts,and oxides.These defects influence tensile strength and ductility,depending on their location and size.This study employs finite element(FE)modeling to investigate how a dominant large pore,its position,and the sample size affect the ductility of thin-walled HPDC Mg.Motivated by the ductility variations reported in literature and the experimental findings on AM60 castings,synthetic microstructure-based models are used to assess the effects of different pore sizes and locations.The results indicate the presence of three different regions based on the large pore size and model size:1)a region dominated by the effects of the large pore,2)a plateau region dominated by pore interactions,and 3)a transient region between these two effects.A threshold distance from the sample edge (d≈0.9√D·L)is proposed,within which a large pore can significantly reduce ductility.Additionally,large pores near edges contribute to ductility variations in Mg castings.展开更多
This work managed the extrusion strain path by designing various extrusion die cavities,successfully realizing the texture modification for the ZK60 magnesium alloy.The mechanisms involving the texture dependence on t...This work managed the extrusion strain path by designing various extrusion die cavities,successfully realizing the texture modification for the ZK60 magnesium alloy.The mechanisms involving the texture dependence on the extrusion die cavity as well as their effects on the mechanical properties were emphatically investigated.Results showed that dynamic recrystallization refined the grain size and improved the microstructure homogeneity in the three extrusion specimens,but did not produce too large microstructure differences.By comparison,significant texture differences developed owing to the various extrusion die cavities,which here were mainly reflected in the strong or weak texture components for the c-axes//TD and the c-axes//ND.Such texture differences started from the deformation texture instead of the recrystallization texture whose roles only consisted in dispersing the texture component and reducing the texture intensity.The results from the finite element analysis and the visco-plastic self-consistent model indicated that,in order to accommodate the different strain components induced by the extrusion die cavities,slip systems or tension twinning were activated differently,and this was the critical reason causing the above texture differences.One modified Hall-Petch relationship was adopted to analyze the conjoint effects of grain refinement and texture variation on the yield stress.Additionally,the quantitative results about deformation mechanism activation fractions demonstrated that the texture variations influenced the competition relationships between the twinning induced deformation and the slip dominant deformation,and the former generally produced the lower yield stress and the increasing stage of strain hardening rate,while the latter produced the higher yield stress and the continuous decline of strain hardening rate.展开更多
“遥远的共鸣”,是卡普马吉他全国巡演的主题,同时作为新的指弹专辑名称。主人公亦有两位——Casper Esmann、Eddie van der Meer。二人平日里相距甚远,Casper生活在丹麦,Eddie定居于墨西哥。可即便如此,他们还是走向了同一方舞台,并将...“遥远的共鸣”,是卡普马吉他全国巡演的主题,同时作为新的指弹专辑名称。主人公亦有两位——Casper Esmann、Eddie van der Meer。二人平日里相距甚远,Casper生活在丹麦,Eddie定居于墨西哥。可即便如此,他们还是走向了同一方舞台,并将各自的音乐融合成了一副声音,在纵横交错的情绪流转间交织为彼此的同类。展开更多
国家大剧院制作歌剧《指环》之《女武神》即将登场NCPA’s Die Walküre to grace the stage继2024年8月国家大剧院制作《指环》系列的首部作品《莱茵的黄金》震撼亮相后,该系列第二部《女武神》将于4月29日、5月1日、5月3日登台国...国家大剧院制作歌剧《指环》之《女武神》即将登场NCPA’s Die Walküre to grace the stage继2024年8月国家大剧院制作《指环》系列的首部作品《莱茵的黄金》震撼亮相后,该系列第二部《女武神》将于4月29日、5月1日、5月3日登台国家大剧院歌剧节·2025。本轮演出将由对瓦格纳作品有着丰富诠释经验的国际知名指挥家皮塔里·因基宁执棒。瓦格纳的音乐是因基宁艺术生涯的重心,他曾在拜罗伊特音乐节上呈献瓦格纳的《指环》全剧,此次执棒《女武神》也将是因基宁继2008年之后再度登台国家大剧院,他将携手国家大剧院管弦乐团与一众国内外实力派歌唱家共同谱写这部情感澎湃的壮丽乐章。曾因执导德利布歌剧《拉克美》在国家大剧院舞台上大放异彩的重量级导演达维德·利维摩尔再度操刀,此次他将担任《女武神》的导演,并深度参与歌剧的舞美设计工作,率领主创团队运用更具创新性的多媒体舞台语汇,为观众呈献一个更加绚丽、充满奇幻色彩的“指环宇宙”。展开更多
修辞学结构论是一种专门研究语篇描写的理论,以篇章结构为研究重点,致力于通过分析语篇结构阐述作者的交际意图在语篇中是如何实现的。通过观察修辞结构关系的类别与分布状况,能够了解语篇的核心思想、连贯特性以及写作特色等基础信息...修辞学结构论是一种专门研究语篇描写的理论,以篇章结构为研究重点,致力于通过分析语篇结构阐述作者的交际意图在语篇中是如何实现的。通过观察修辞结构关系的类别与分布状况,能够了解语篇的核心思想、连贯特性以及写作特色等基础信息。本文将采用修辞结构理论的描述框架对Peter Bichsel的短篇小说Die Tochter的语篇结构进行描述和解释,思考修辞结构理论对于该小说的语篇结构分析能力。根据分析,修辞结构理论可以分析出结构段的中心思想,但是无法把握整篇小说的主旨;修辞结构较多且连接十分紧密,连贯性较强;作者多用背景关系和解释关系进行叙述,先交代背景,再塑造人物,风格细腻。Rhetorical Structure Theory (RST) is a comprehensive set of theories dedicated to describing natural discourse. It emphasizes the structure of texts and aims to elucidate how authors’ communicative intentions are realized through textual analysis. By examining the types and distribution of rhetorical structural relationships, one can gain insights into the central idea, coherence features, writing characteristics, and other fundamental aspects of a text. This paper employs the descriptive framework of Rhetorical Structure Theory to describe and explain the text structure of Peter Bichsel’s short story Die Tochter and reflects on the efficacy of RST in analyzing the textual structure of novels. The analysis reveals that RST can effectively dissect the central idea of individual structural paragraphs but struggles to encapsulate the overarching theme of the entire novel. Furthermore, the rhetorical structures are numerous and tightly interconnected, contributing to a strong sense of coherence. The author frequently utilizes background and explanation relationships in the narration, first establishing the context and then developing the characters, resulting in a nuanced and refined style.展开更多
The microstructure and mechanical properties of the Ti-5Al-5Mo-5V-1Cr-1Fe(Ti-55511)alloy under different strains were investigated through the design of step-shaped die forging.The results indicate that continuous dyn...The microstructure and mechanical properties of the Ti-5Al-5Mo-5V-1Cr-1Fe(Ti-55511)alloy under different strains were investigated through the design of step-shaped die forging.The results indicate that continuous dynamic recrystallization(CDRX)and discontinuous dynamic recrystallization(DDRX)occur in the high strain region.The orientation of the grains produced by CDRX is random and does not weaken the fiber texture.<100>-oriented grains expand gradually with increasing strain,thereby enhancing the strength of{100}texture.Significant anisotropic mechanical properties are observed in the large strain region and analyzed through in-situ tensile experiments.When the loading direction is parallel to the longitudinal(L)direction,strain concentration is observed near the dynamically recrystallized(DRXed)grains and inside grains oriented along<100>,leading to crack initiation.Furthermore,the small angle between the loading direction and the c-axis hinders the activation of prismatic and basal slip,thereby enhancing the strength.When the loading direction is parallel to the short transverse(ST)direction,cracks are initiated not only within grains oriented along<100>,but also at the grain boundaries.Regarding impact toughness,the elongatedβgrains in the L direction enhance the resistance to crack propagation.展开更多
文摘Kid, Hurry and Grab Mom's hand. It's too dark around here——the road To the heaven. I'm afraid Something mav hurt your head. Hurry and Grab my hand. Let's move on Side by side.
基金supported by the following foundations:“Stichting Oogfonds Nederland(No.2023-26)”the“Landelijke Stichting voor Blinden en Slechtzienden(No.2023-24)”that contributed through UitZicht,ZonMw grant(No.435005020)a grant of the Chinese Scholarship Council(No.201809110169)(to TGMFG,CPMR,and WY).
文摘Unwarranted death of neurons is a major cause of neurodegenerative diseases.Since mature neurons are postmitotic and do not replicate,their death usually constitutes an irreversible step in pathology.A logical strategy to prevent neurodegeneration would then be to save all neurons that are still alive,i.e.protecting the ones that are still healthy as well as trying to rescue the ones that are damaged and in the process of dying.Regarding the latter,recent experiments have indicated that the possibility of reversing the cell death process and rescuing dying cells is more significant than previously anticipated.In many situations,the elimination of the cell death trigger alone enables dying cells to spontaneously repair their damage,recover,and survive.In this review,we explore the factors,which determine the fate of neurons engaged in the cell death process.A deeper insight into cell death mechanisms and the intrinsic capacity of cells to recover could pave the way for novel therapeutic approaches to neurodegenerative diseases.
基金the National Key Research and Development Program of China(Grant No.2022YFB3404201)the National Natural Science Foundation of China(Grant Nos.52175335,52405342)+1 种基金the Natural Science Foundation Joint Foundation of Liaoning province(Grant No.2023-B SB A-108)the Fundamental Research Funds for the Central Universities(Grant No.N2402005)。
文摘The effects of the high pressure die casting(HPDC)processes on porosity,microstructure,and mechanical properties of heat-treatment-free aluminum silicon(Al-Si)alloys have long been a focal point in automotive die-casting research.In this work,the combined effect of shot sleeve materials and slow shot speeds on porosity,microstructure and mechanical properties of a newly designed HPDC Al-Si alloy was investigated.Results show that employing a ceramic shot sleeve or increasing the slow shot speed significantly reduces both the average size and area fraction of externally solidified crystals(ESCs),as well as the average pore size and volume fraction.When the slow shot speed is increased from 0.05 m·s^(-1)to 0.1 m·s^(-1),the pore volume fraction decreases by 10.2%in steel-shot-sleeve samples,compared to a substantial 67.1%reduction in ceramic-shot-sleeve samples.At a slow shot speed of 0.1 m·s^(-1),castings produced with a ceramic shot sleeve exhibit superior mechanical properties:8.3%higher yield strength,17.4%greater tensile strength,and an 81.4%improvement in elongation,relative to those from a steel shot sleeve.These findings provide valuable insights for minimizing porosity and coarse ESCs in die castings,offering promising potential for broader industrial applications.
基金supported by the National Natural Science Foundation of China(No.52474396 and 52175284)the National Key Research and Development Program of China(Grant No.2022YFB3404201)。
文摘In order to investigate the effect of die wall thickness on morphologies of defect band,a stepped mold with a wall thickness of 5 mm,4 mm,3 mm,2 mm,and 1 mm was designed to carry out high pressure die casting experiments with AlSi10 MgMn alloy.For castings with wall thickness of 2-4 mm,the ratio of the mean defect band width(w)and mean grain size(d)in the defect band(w/d)ranges 7-18,while it increases to 24.47 for the 5 mm-thick casting.This difference is related with the filling speed and the distribution of externally solidified crystals(ESCs).The mold flow analysis indicates that the filling speed decreases from 25.41 m·s^(-1)to 11.07 m·s^(-1)when wall thickness increases from 2 mm to 5 mm.Due to the decreasing filling speed along the wall thickness,ESCs gradually diffuse from the center to the defect band,which keep the shear strength in the defect band at a high-level during filling.Meanwhile,the shear strength generated during the filling also decreases as the shear rate drops.Finally,the defect bands in the 5 mm-thick region become widen and indistinct,and the porosity is as high as 5.25%.
文摘Die Walküre is the most frequently staged and most popular title of the Ring cycle among classical music enthusiasts.It tells a complex story that involves intertwined relationships between father and daughter,husband and wife,brother and sister,and lovers in the epic context of the Nordic mythology.
文摘1.Introduction Casting accounts for over 90%of magnesium-based alloy applications with die-cast and thixomolded parts dominating.The high strength-to-weight ratio coupled with excellent fluidity,low volumetric latent heat and heat capacity,reduced cycle times,and low soldering tendencies,all make magnesium alloys excellent choices for die casting applications.Despite these advantages,in recent years,the use of magnesium in die casting applications has been declining.
基金supported in part by the project is supported partly by National Key Research and Development Program of China(no.2022YFB2503504)Chongqing Technology Innovation and Application Development Project(no.CSTB2022TIAD-DEX0011)China Scholarship Council.
文摘This study presents the development of a Magnesium Alloy Seat Frame(MASF),supported by case studies from automotive original equipment manufacturers.The process covers integrated design,simulation,manufacturing,and testing,aiming to boost industry confidence in Mg alloy applications.A novel structural design is developed that integrates the headrest with the backrest,achieving a balance between lightweight performance and safety.Structural optimization is guided by stress–strain simulations under diverse conditions within a complete forward development process.Casting simulations are conducted to analyze process characteristics,resulting in a verified MASF yield rate exceeding 90%.The final 9.88 kg MASF represents a 24.6%(3.23 kg)weight reduction versus a steel seat.This research contributes to advancements in defect control technology for large die casting magnesium alloy parts and has broad implications for their application in automotive manufacturing.
基金supported by the National Natural Science Foundation of China(No.52175284)the National Key Research and Development Program of China(Grant No.2022YFB3404201).
文摘This study investigates the formation feasibility of the integrated bottom car body components with dual die casting injection molding technology.During the production of a die-cast super-large one-piece body part weighing over 10,000 t,a thorough comparison and investigation were conducted on the arising issues,using both single and double injection systems.Particular attention was given to meticulously discussing the die casting filling problems and microstructural defects that originated from the filling process.The research findings indicate that the implementation of a double injection system can significantly minimize cold shuts and reduce the solidification time.The effectiveness of this die casting technique was further confirmed by the production of high-quality castings using a scaled model that replicated real casting conditions at a 1:3 ratio,thereby maintaining a one-to-one correspondence in essential aspects.This successful study offers both theoretical insights and practical applications for the production of integrated bottom car bodies utilizing die casting in conjunction with a dual injection system.
基金support from the National MCF Energy R&D Program of China(No.2018YFE0306100).
文摘A novel oxide-dispersion-strengthened(ODS)die steel was fabricated by mechanical alloying and hot consolidation.Annealing and quench-tempering treatments both obtained an ultra-fine grain structure(mean size:310-330 nm)with an ultra-high density of ultra-fine Y-Al-O nano-oxides(number density:~(1-1.5)×10^(23)m^(−3),mean size:5.1-7.2 nm).Prolonged thermal exposure further induced the new,highly dense precipitation of ultra-fine Y-Zr-O nano-oxides.Both nano-oxides tended to be wrapped up with a B2-NiAl nano-shells.Although the quench-tempered sample showed much higher room-temperature strength(yield strength=1393±40 MPa and ultimate tensile strength=1774±11 MPa)and slightly lower elongation(elongation=13.6%±0.6%)than the annealed sample(YS=988±7 MPa,UTS=1490±12 MPa,and EL=15.2%±1.1%),both samples exhibited better strength-ductility synergy at room temperature and much higher thermal stabilities at high temperatures(600-700℃)than all those conventional hot-work die steels,which makes the new ODS steel highly promising for advanced hot-work mold and die applications at high temperatures above 600℃.
基金by the Deutsche Forschungsgemeinschaft(DFG)through projects 420149269,394480829as part of the CRC1394“Structural and Chemical Atomic Complexity-From Defect Phase Diagrams to Material Properties”(project 409476157).
文摘Dynamic recrystallization(DRX)in inhomogeneous deformation zones,such as grain boundaries,shear bands,and deformation bands,is critical for texture modification in magnesium alloys during deformation at elevated temperatures.This study investigates the DRX mechanisms in AZWX3100 magnesium alloy under plane strain compression at 200℃.Microstructural analysis revealed necklace-type DRX accompanied by evidence of local grain boundary bulging.Additionally,ribbons of recrystallized grains were observed withinfine deformation bands,aligned with theoretical pyramidal I and II slip traces derived from the matrix.The distribution of local misorientation within the deformed microstructure demonstrated a clear association between deformation bands and localized strain.Dislocation analysis of lamellar specimens extracted from two pyramidal slip bands revealed<c+a>dislocations,indicating a connection between<c+a>slip activation and the formation of deformation bands.Crystal plasticity simulations suggest that the orientation of deformation bands is responsible for the unique recrystallization texture of the DRX grains within these bands.The texture characteristics imply a progressive,glide-induced DRX mechanism.A fundamental understanding of the role of deformation bands in texture modification can facilitate future alloy and process design.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2021R1A6A1A10044950)。
文摘Achieving optimal mechanical performance in high-pressure die-cast(HPDC)Mg-based alloys through experimental methods is both costly and time-intensive due to significant variations in composition.This study leverages machine learning(ML)techniques to accelerate the development of high-performance Mg-based alloys.Data on alloy composition and mechanical properties were collected from literature sources,focusing on HPDC Mg-based alloys.Six ML models—extra trees,CatBoost,k-nearest neighbors,random forest,gradient boosting,and decision tree—were trained to predict mechanical behavior.Cat Boost yielded the highest prediction accuracy with R^(2) scores of 0.95 for ultimate tensile strength(UTS)and 0.92 for yield strength(YS).Further validation using published datasets reaffirmed its reliability,demonstrating R^(2) values of 0.956(UTS)and 0.936(YS),MAE of 1%and 2.8%,and RMSE of 1%and 3.5%,respectively.Among these,the CatBoost model demonstrated the highest predictive accuracy,outperforming other ML techniques across multiple optimization metrics.
基金funded by the Department of Energy Office of Vehicle Technologies under the Automotive Lightweighting Materials Program。
文摘High-pressure die-cast(HPDC)magnesium(Mg)and aluminum alloys enable vehicle lightweighting while reducing manufacturing costs by simplifying part assembly.The increasing use of super-large castings in electric vehicles enhances structural reliability and cost efficiency.However,HPDC Mg alloys face challenges related to casting defects such as porosity,cold shuts,and oxides.These defects influence tensile strength and ductility,depending on their location and size.This study employs finite element(FE)modeling to investigate how a dominant large pore,its position,and the sample size affect the ductility of thin-walled HPDC Mg.Motivated by the ductility variations reported in literature and the experimental findings on AM60 castings,synthetic microstructure-based models are used to assess the effects of different pore sizes and locations.The results indicate the presence of three different regions based on the large pore size and model size:1)a region dominated by the effects of the large pore,2)a plateau region dominated by pore interactions,and 3)a transient region between these two effects.A threshold distance from the sample edge (d≈0.9√D·L)is proposed,within which a large pore can significantly reduce ductility.Additionally,large pores near edges contribute to ductility variations in Mg castings.
基金supported by National Natural Science Foundation of China(Grant No.52205344,51925401)Postdoctoral Research Foundation of China(Grant No.2023M732398)+1 种基金National Key Laboratory Foundation of Science and Technology on Materials under Shock and Impact(Grant No.WDZC2023-1)Key Research and Development Program of Shandong Province(Grant No.2023CXPT066).
文摘This work managed the extrusion strain path by designing various extrusion die cavities,successfully realizing the texture modification for the ZK60 magnesium alloy.The mechanisms involving the texture dependence on the extrusion die cavity as well as their effects on the mechanical properties were emphatically investigated.Results showed that dynamic recrystallization refined the grain size and improved the microstructure homogeneity in the three extrusion specimens,but did not produce too large microstructure differences.By comparison,significant texture differences developed owing to the various extrusion die cavities,which here were mainly reflected in the strong or weak texture components for the c-axes//TD and the c-axes//ND.Such texture differences started from the deformation texture instead of the recrystallization texture whose roles only consisted in dispersing the texture component and reducing the texture intensity.The results from the finite element analysis and the visco-plastic self-consistent model indicated that,in order to accommodate the different strain components induced by the extrusion die cavities,slip systems or tension twinning were activated differently,and this was the critical reason causing the above texture differences.One modified Hall-Petch relationship was adopted to analyze the conjoint effects of grain refinement and texture variation on the yield stress.Additionally,the quantitative results about deformation mechanism activation fractions demonstrated that the texture variations influenced the competition relationships between the twinning induced deformation and the slip dominant deformation,and the former generally produced the lower yield stress and the increasing stage of strain hardening rate,while the latter produced the higher yield stress and the continuous decline of strain hardening rate.
文摘“遥远的共鸣”,是卡普马吉他全国巡演的主题,同时作为新的指弹专辑名称。主人公亦有两位——Casper Esmann、Eddie van der Meer。二人平日里相距甚远,Casper生活在丹麦,Eddie定居于墨西哥。可即便如此,他们还是走向了同一方舞台,并将各自的音乐融合成了一副声音,在纵横交错的情绪流转间交织为彼此的同类。
文摘国家大剧院制作歌剧《指环》之《女武神》即将登场NCPA’s Die Walküre to grace the stage继2024年8月国家大剧院制作《指环》系列的首部作品《莱茵的黄金》震撼亮相后,该系列第二部《女武神》将于4月29日、5月1日、5月3日登台国家大剧院歌剧节·2025。本轮演出将由对瓦格纳作品有着丰富诠释经验的国际知名指挥家皮塔里·因基宁执棒。瓦格纳的音乐是因基宁艺术生涯的重心,他曾在拜罗伊特音乐节上呈献瓦格纳的《指环》全剧,此次执棒《女武神》也将是因基宁继2008年之后再度登台国家大剧院,他将携手国家大剧院管弦乐团与一众国内外实力派歌唱家共同谱写这部情感澎湃的壮丽乐章。曾因执导德利布歌剧《拉克美》在国家大剧院舞台上大放异彩的重量级导演达维德·利维摩尔再度操刀,此次他将担任《女武神》的导演,并深度参与歌剧的舞美设计工作,率领主创团队运用更具创新性的多媒体舞台语汇,为观众呈献一个更加绚丽、充满奇幻色彩的“指环宇宙”。
文摘修辞学结构论是一种专门研究语篇描写的理论,以篇章结构为研究重点,致力于通过分析语篇结构阐述作者的交际意图在语篇中是如何实现的。通过观察修辞结构关系的类别与分布状况,能够了解语篇的核心思想、连贯特性以及写作特色等基础信息。本文将采用修辞结构理论的描述框架对Peter Bichsel的短篇小说Die Tochter的语篇结构进行描述和解释,思考修辞结构理论对于该小说的语篇结构分析能力。根据分析,修辞结构理论可以分析出结构段的中心思想,但是无法把握整篇小说的主旨;修辞结构较多且连接十分紧密,连贯性较强;作者多用背景关系和解释关系进行叙述,先交代背景,再塑造人物,风格细腻。Rhetorical Structure Theory (RST) is a comprehensive set of theories dedicated to describing natural discourse. It emphasizes the structure of texts and aims to elucidate how authors’ communicative intentions are realized through textual analysis. By examining the types and distribution of rhetorical structural relationships, one can gain insights into the central idea, coherence features, writing characteristics, and other fundamental aspects of a text. This paper employs the descriptive framework of Rhetorical Structure Theory to describe and explain the text structure of Peter Bichsel’s short story Die Tochter and reflects on the efficacy of RST in analyzing the textual structure of novels. The analysis reveals that RST can effectively dissect the central idea of individual structural paragraphs but struggles to encapsulate the overarching theme of the entire novel. Furthermore, the rhetorical structures are numerous and tightly interconnected, contributing to a strong sense of coherence. The author frequently utilizes background and explanation relationships in the narration, first establishing the context and then developing the characters, resulting in a nuanced and refined style.
基金funded by Department of Science and Technology of Sichuan Province,China(No.2022YFG0102)the China Postdoctoral Science Foundation(No.2023M733314).
文摘The microstructure and mechanical properties of the Ti-5Al-5Mo-5V-1Cr-1Fe(Ti-55511)alloy under different strains were investigated through the design of step-shaped die forging.The results indicate that continuous dynamic recrystallization(CDRX)and discontinuous dynamic recrystallization(DDRX)occur in the high strain region.The orientation of the grains produced by CDRX is random and does not weaken the fiber texture.<100>-oriented grains expand gradually with increasing strain,thereby enhancing the strength of{100}texture.Significant anisotropic mechanical properties are observed in the large strain region and analyzed through in-situ tensile experiments.When the loading direction is parallel to the longitudinal(L)direction,strain concentration is observed near the dynamically recrystallized(DRXed)grains and inside grains oriented along<100>,leading to crack initiation.Furthermore,the small angle between the loading direction and the c-axis hinders the activation of prismatic and basal slip,thereby enhancing the strength.When the loading direction is parallel to the short transverse(ST)direction,cracks are initiated not only within grains oriented along<100>,but also at the grain boundaries.Regarding impact toughness,the elongatedβgrains in the L direction enhance the resistance to crack propagation.