The niche discipline of Indo-European Studies has proven itself to be prevailingly au courant by launching several projects in the field of online etymological dictionaries.My paper will offer an overview of these pro...The niche discipline of Indo-European Studies has proven itself to be prevailingly au courant by launching several projects in the field of online etymological dictionaries.My paper will offer an overview of these projects(including the Lexicon Etymologicum Digitale Indoeuropaeum(LEDI)directed by me)and analyse their approaches,features,and peculiarities(e.g.,commercial vs.open access).Special attention will paid to the projects’inclusions of phonetic rules and affixes,which makes derivation transparent and is helpful for didactic purposes.展开更多
Denoising is an important preprocessing step in seismic exploration that improves the signal-to-noise ratio(SNR)and helps identify oil and minerals.Dictionary learning(DL)is a promising method for noise attenuation.Th...Denoising is an important preprocessing step in seismic exploration that improves the signal-to-noise ratio(SNR)and helps identify oil and minerals.Dictionary learning(DL)is a promising method for noise attenuation.The DL extracts sparse features from noisy seismic data using over-complete dictionaries and performs denoising based on a threshold.However,the choice of threshold in DL greatly impacts the denoising results and the improvement in output SNR.Ramanujan’s sum(s)(RS)is a signal processing tool that exhibits derivative behavior and finds applications in edge detection and noise estimation of signals.Hence,we propose a novel DL method with threshold estimation based on RS to improve the output SNR.In this work,we estimate the noise variance of seismic data based on RS and use it as a threshold value for the DL method to perform denoising.We analyze the results of the proposed work on synthetically generated and field data sets.We perform simulations on noisy seismic data across a wide range of SNR values and tabulate the denoised results using the performance metrics SNR and mean squared error.The results indicate that the proposed method provides superior SNR and reduced mean squared error compared to MAD,SURE-based,and adaptive soft-thresholding techniques.展开更多
Sensitivity encoding(SENSE)is a parallel magnetic resonance imaging(MRI)reconstruction model by utilizing the sensitivity information of receiver coils to achieve image reconstruction.The existing SENSE-based reconstr...Sensitivity encoding(SENSE)is a parallel magnetic resonance imaging(MRI)reconstruction model by utilizing the sensitivity information of receiver coils to achieve image reconstruction.The existing SENSE-based reconstruction algorithms usually used nonadaptive sparsifying transforms,resulting in a limited reconstruction accuracy.Therefore,we proposed a new model for accurate parallel MRI reconstruction by combining the L0 norm regularization term based on the efficient sum of outer products dictionary learning(SOUPDIL)with the SENSE model,called SOUPDIL-SENSE.The SOUPDIL-SENSE model is mainly solved by utilizing the variable splitting and alternating direction method of multipliers techniques.The experimental results on four human datasets show that the proposed algorithm effectively promotes the image sparsity,eliminates the noise and artifacts of the reconstructed images,and improves the reconstruction accuracy.展开更多
The transformation of basic functions is one of the most commonly used techniques for seismic denoising,which employs sparse representation of seismic data in the transform domain. The choice of transform base functio...The transformation of basic functions is one of the most commonly used techniques for seismic denoising,which employs sparse representation of seismic data in the transform domain. The choice of transform base functions has an influence on denoising results. We propose a learning-type overcomplete dictionary based on the K-singular value decomposition( K-SVD) algorithm. To construct the dictionary and use it for random seismic noise attenuation,we replace fixed transform base functions with an overcomplete redundancy function library. Owing to the adaptability to data characteristics,the learning-type dictionary describes essential data characteristics much better than conventional denoising methods. The sparsest representation of signals is obtained by the learning and training of seismic data. By comparing the same seismic data obtained using the learning-type overcomplete dictionary based on K-SVD and the data obtained using other denoising methods,we find that the learning-type overcomplete dictionary based on the K-SVD algorithm represents the seismic data more sparsely,effectively suppressing the random noise and improving the signal-to-noise ratio.展开更多
A Chinese-English Dictionary (Revised Edition) is even more standardized andconsistent than its 1978 edition in the inclusion of words, the arrangement of lexical units. thedefinition and the exemplification, but it i...A Chinese-English Dictionary (Revised Edition) is even more standardized andconsistent than its 1978 edition in the inclusion of words, the arrangement of lexical units. thedefinition and the exemplification, but it is still slightly blemished by some unfair coverage andinappropriate. unbalanced or unconcerted explanations, specifications and illustrations. Its meritsand demerits are made evident by comparing it with Far East Chinese-English Dictionary andother dictionaries.展开更多
Dictionary has many functions, in which the function of definition is of very importance because the main purpose of dictionary is providing the entry's meaning information for the readers so that the readers can ...Dictionary has many functions, in which the function of definition is of very importance because the main purpose of dictionary is providing the entry's meaning information for the readers so that the readers can understand and use the entry-word and the realization of the purpose completely depends on lexicographical definition. However, the function of definition is limited, which need the exemplification to assist it. Therefore, the exemplification becomes very important, too. Good exemplification can assist definition, provide grammatical information, and supplement the information usage and so on. Many researches studied the exemplification of dictionary, its principles and so on. Dictionary changed much with the development of technology and many kinds of electronic dictionaries appeared. Few studies are involved with the new-type dictionary. Based on the general principles of the exemplification in a learner's printed dictionary, it is necessary to construct the general principles about the exemplification in the electronic learner's dictionary.展开更多
The success of ultrasonic nondestructive testing technology depends not only on the generation and measurement of the desired waveform, but also on the signal processing of the measured waves. The traditional time-dom...The success of ultrasonic nondestructive testing technology depends not only on the generation and measurement of the desired waveform, but also on the signal processing of the measured waves. The traditional time-domain methods have been partly successful in identifying small cracks, but not so successful in estimating crack size, especially in strong backscattering noise. Sparse signal representation can provide sparse information that represents the signal time-frequency signature, which can also be used in processing ultrasonic nondestructive signals. A novel ultrasonic nondestructive signal processing algorithm based on signal sparse representation is proposed. In order to suppress noise, matching pursuit algorithm with Gabor dictionary is selected as the signal decomposition method. Precise echoes information, such as crack location and size, can be estimated by quantitative analysis with Gabor atom. To verify the performance, the proposed algorithm is applied to computer simulation signal and experimental ultrasonic signals which represent multiple backscattered echoes from a thin metal plate with artificial holes. The results show that this algorithm not only has an excellent performance even when dealing with signals in the presence of strong noise, but also is successful in estimating crack location and size. Moreover, the algorithm can be applied to data compression of ultrasonic nondestructive signal.展开更多
Impulse components in vibration signals are important fault features of complex machines. Sparse coding (SC) algorithm has been introduced as an impulse feature extraction method, but it could not guarantee a satisf...Impulse components in vibration signals are important fault features of complex machines. Sparse coding (SC) algorithm has been introduced as an impulse feature extraction method, but it could not guarantee a satisfactory performance in processing vibration signals with heavy background noises. In this paper, a method based on fusion sparse coding (FSC) and online dictionary learning is proposed to extract impulses efficiently. Firstly, fusion scheme of different sparse coding algorithms is presented to ensure higher reconstruction accuracy. Then, an improved online dictionary learning method using FSC scheme is established to obtain redundant dictionary and it can capture specific features of training samples and reconstruct the sparse approximation of vibration signals. Simulation shows that this method has a good performance in solving sparse coefficients and training redundant dictionary compared with other methods. Lastly, the proposed method is further applied to processing aircraft engine rotor vibration signals. Compared with other feature extraction approaches, our method can extract impulse features accurately and efficiently from heavy noisy vibration signal, which has significant supports for machinery fault detection and diagnosis.展开更多
Time-domain airborne electromagnetic(AEM)data are frequently subject to interference from various types of noise,which can reduce the data quality and affect data inversion and interpretation.Traditional denoising met...Time-domain airborne electromagnetic(AEM)data are frequently subject to interference from various types of noise,which can reduce the data quality and affect data inversion and interpretation.Traditional denoising methods primarily deal with data directly,without analyzing the data in detail;thus,the results are not always satisfactory.In this paper,we propose a method based on dictionary learning for EM data denoising.This method uses dictionary learning to perform feature analysis and to extract and reconstruct the true signal.In the process of dictionary learning,the random noise is fi ltered out as residuals.To verify the eff ectiveness of this dictionary learning approach for denoising,we use a fi xed overcomplete discrete cosine transform(ODCT)dictionary algorithm,the method-of-optimal-directions(MOD)dictionary learning algorithm,and the K-singular value decomposition(K-SVD)dictionary learning algorithm to denoise decay curves at single points and to denoise profi le data for diff erent time channels in time-domain AEM.The results show obvious diff erences among the three dictionaries for denoising AEM data,with the K-SVD dictionary achieving the best performance.展开更多
Recently,sparse representation classification(SRC)and fisher discrimination dictionary learning(FDDL)methods have emerged as important methods for vehicle classification.In this paper,inspired by recent breakthroughs ...Recently,sparse representation classification(SRC)and fisher discrimination dictionary learning(FDDL)methods have emerged as important methods for vehicle classification.In this paper,inspired by recent breakthroughs of discrimination dictionary learning approach and multi-task joint covariate selection,we focus on the problem of vehicle classification in real-world applications by formulating it as a multi-task joint sparse representation model based on fisher discrimination dictionary learning to merge the strength of multiple features among multiple sensors.To improve the classification accuracy in complex scenes,we develop a new method,called multi-task joint sparse representation classification based on fisher discrimination dictionary learning,for vehicle classification.In our proposed method,the acoustic and seismic sensor data sets are captured to measure the same physical event simultaneously by multiple heterogeneous sensors and the multi-dimensional frequency spectrum features of sensors data are extracted using Mel frequency cepstral coefficients(MFCC).Moreover,we extend our model to handle sparse environmental noise.We experimentally demonstrate the benefits of joint information fusion based on fisher discrimination dictionary learning from different sensors in vehicle classification tasks.展开更多
Comments were made on the "word-for-word" literal translation method used by Mr. Nigel Wiseman in A Practical Dictionary of Chinese Medicine. He believes that only literal translation can reflect Chinese medical con...Comments were made on the "word-for-word" literal translation method used by Mr. Nigel Wiseman in A Practical Dictionary of Chinese Medicine. He believes that only literal translation can reflect Chinese medical concepts accurately. The so-called "word-for-word" translation is actually "English-word-for- Chinese-character" translation. First, the authors of the dictionary made a list of Single Characters with English Equivalents, and then they gave each character of the medical term an English equivalent according to the list. Finally, they made some minor modifications to make the rendering grammatically smoother. Many English terms thus produced are confusing. The defect of the word-for-word literal translation stems from the erroneous idea that a single character constitutes the basic element of meaning corresponding to the notion of "word" in English, and the meaning of a disyllabic or polysyllabic Chinese word is the simple addition of the constituent characters. Another big mistake is the negligence of the polysemy of Chinese characters. One or two English equivalents can by no means cover all the various meanings of a single character which is a polysemous monosyllabic word. Various examples were cited from this dictionary to illustrate the mistakes.展开更多
Human action recognition under complex environment is a challenging work.Recently,sparse representation has achieved excellent results of dealing with human action recognition problem under different conditions.The ma...Human action recognition under complex environment is a challenging work.Recently,sparse representation has achieved excellent results of dealing with human action recognition problem under different conditions.The main idea of sparse representation classification is to construct a general classification scheme where the training samples of each class can be considered as the dictionary to express the query class,and the minimal reconstruction error indicates its corresponding class.However,how to learn a discriminative dictionary is still a difficult work.In this work,we make two contributions.First,we build a new and robust human action recognition framework by combining one modified sparse classification model and deep convolutional neural network(CNN)features.Secondly,we construct a novel classification model which consists of the representation-constrained term and the coefficients incoherence term.Experimental results on benchmark datasets show that our modified model can obtain competitive results in comparison to other state-of-the-art models.展开更多
Text in natural scene images usually carries abundant semantic information. However, due to variations of text and complexity of background, detecting text in scene images becomes a critical and challenging task. In t...Text in natural scene images usually carries abundant semantic information. However, due to variations of text and complexity of background, detecting text in scene images becomes a critical and challenging task. In this paper, we present a novel method to detect text from scene images. Firstly, we decompose scene images into background and text components using morphological component analysis(MCA), which will reduce the adverse effects of complex backgrounds on the detection results.In order to improve the performance of image decomposition,two discriminative dictionaries of background and text are learned from the training samples. Moreover, Laplacian sparse regularization is introduced into our proposed dictionary learning method which improves discrimination of dictionary. Based on the text dictionary and the sparse-representation coefficients of text, we can construct the text component. After that, the text in the query image can be detected by applying certain heuristic rules. The results of experiments show the effectiveness of the proposed method.展开更多
Full waveform inversion(FWI)is an extremely important velocity-model-building method.However,it involves a large amount of calculation,which hindsers its practical application.The multi-source technology can reduce th...Full waveform inversion(FWI)is an extremely important velocity-model-building method.However,it involves a large amount of calculation,which hindsers its practical application.The multi-source technology can reduce the number of forward modeling shots during the inversion process,thereby improving the efficiency.However,it introduces crossnoise problems.In this paper,we propose a sparse constrained encoding multi-source FWI method based on K-SVD dictionary learning.The phase encoding technology is introduced to reduce crosstalk noise,whereas the K-SVD dictionary learning method is used to obtain the basis of the transformation according to the characteristics of the inversion results.The multiscale inversion method is adopted to further enhance the stability of FWI.Finally,the synthetic subsag model and the Marmousi model are set to test the effectiveness of the newly proposed method.Analysis of the results suggest the following:(1)The new method can effectively reduce the computational complexity of FWI while ensuring inversion accuracy and stability;(2)The proposed method can be combined with the time-domain multi-scale FWI strategy flexibly to further avoid the local minimum and to improve the stability of inversion,which is of significant importance for the inversion of the complex model.展开更多
Mr. Wiseman believes that Western medical terms chosen as equivalents of Chinese medical terms should be the words known to all speakers and not requiring any specialist knowledge or instrumentation to understand or i...Mr. Wiseman believes that Western medical terms chosen as equivalents of Chinese medical terms should be the words known to all speakers and not requiring any specialist knowledge or instrumentation to understand or identify, and strictly technical Western medical terms should be avoided regardless of their conceptual conformity to the Chinese terms. Accordingly, many inappropriate Western medical terms are selected as English equivalents by the authors of the Dictionary, and on the other hand, many ready-made appropriate Western medical terms are replaced by loan English terms with the Chinese style of word formation. The experience gained in solving the problems of translating Western medical terms into Chinese when West- ern medicine was first introduced to China is helpful for translating Chinese medical terms into English. However, the authors of the Dictionary adhere to their own opinions, ignoring others" experience. The English terms thus created do not reflect the genuine meaning of the Chinese terms, but make the English glossary in chaos. The so-called true face of traditional Chinese revealed by such terms is merely the Chinese custom of word formation and metaphoric rhetoric. In other words, traditional Chinese medicine is not regarded as a system of medicine but merely some Oriental folklore.展开更多
Compressed Sensing (CS) offers a method to solve the channel estimation problems for an underwater acoustic system, based on the existence of a sparse representation of the treated signal and an overcomplete diction...Compressed Sensing (CS) offers a method to solve the channel estimation problems for an underwater acoustic system, based on the existence of a sparse representation of the treated signal and an overcomplete dictionary with a set of non-orthogonal bases. In this paper, we proposed a new approach to optimize dictionaries by decreasing the average measure of the mutual coherence of the effective dictionary. A fixed link between the average mutual coherence and the CS perforrmnce is indicated by designing three factors: operating bandwidth, the number of pilot subcarriers, and coherence bandwidth. Both the Orthogonal Matching Pursuit (OMP) and the Basis Pursuit De-Noising (BPDN) are compared to the Dantzig Selector (DS) for different Signal Noise Ratio (SNR) and shown to benefit from the newly designed dictionary. Nurnerical sinmlations and experimental data of an OFDM receiver are used to evaluate the proposed method in comparison with the conventional LeastSquare (LS) estirmtor. The results show that the dictionary with a better condition considerably improves the perforrmnce of the channel estimation.展开更多
Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artif...Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception.展开更多
The localized faults of rolling bearings can be diagnosed by its vibration impulsive signals.However,it is always a challenge to extract the impulsive feature under background noise and non-stationary conditions.This ...The localized faults of rolling bearings can be diagnosed by its vibration impulsive signals.However,it is always a challenge to extract the impulsive feature under background noise and non-stationary conditions.This paper investigates impulsive signals detection of a single-point defect rolling bearing and presents a novel data-driven detection approach based on dictionary learning.To overcome the effects harmonic and noise components,we propose an autoregressive-minimum entropy deconvolution model to separate harmonic and deconvolve the effect of the transmission path.To address the shortcomings of conventional sparse representation under the changeable operation environment,we propose an approach that combines K-clustering with singular value decomposition(K-SVD)and split-Bregman to extract impulsive components precisely.Via experiments on synthetic signals and real run-to-failure signals,the excellent performance for different impulsive signals detection verifies the effectiveness and robustness of the proposed approach.Meanwhile,a comparison with the state-of-the-art methods is illustrated,which shows that the proposed approach can provide more accurate detected impulsive signals.展开更多
Data-driven process-monitoring methods have been the mainstream for complex industrial systems due to their universality and the reduced need for reaction mechanisms and first-principles knowledge.However,most data-dr...Data-driven process-monitoring methods have been the mainstream for complex industrial systems due to their universality and the reduced need for reaction mechanisms and first-principles knowledge.However,most data-driven process-monitoring methods assume that historical training data and online testing data follow the same distribution.In fact,due to the harsh environment of industrial systems,the collected data from real industrial processes are always affected by many factors,such as the changeable operating environment,variation in the raw materials,and production indexes.These factors often cause the distributions of online monitoring data and historical training data to differ,which induces a model mismatch in the process-monitoring task.Thus,it is difficult to achieve accurate process monitoring when a model learned from training data is applied to actual online monitoring.In order to resolve the problem of the distribution divergence between historical training data and online testing data that is induced by changeable operation environments,a robust transfer dictionary learning(RTDL)algorithm is proposed in this paper for industrial process monitoring.The RTDL is a synergy of representative learning and domain adaptive transfer learning.The proposed method regards historical training data and online testing data as the source domain and the target domain,respectively,in the transfer learning problem.Maximum mean discrepancy regularization and linear discriminant analysis-like regularization are then incorporated into the dictionary learning framework,which can reduce the distribution divergence between the source domain and target domain.In this way,a robust dictionary can be learned even if the characteristics of the source domain and target domain are evidently different under the interference of a realistic and changeable operation environment.Such a dictionary can effectively improve the performance of process monitoring and mode classification.Extensive experiments including a numerical simulation and two industrial systems are conducted to verify the efficiency and superiority of the proposed method.展开更多
文摘The niche discipline of Indo-European Studies has proven itself to be prevailingly au courant by launching several projects in the field of online etymological dictionaries.My paper will offer an overview of these projects(including the Lexicon Etymologicum Digitale Indoeuropaeum(LEDI)directed by me)and analyse their approaches,features,and peculiarities(e.g.,commercial vs.open access).Special attention will paid to the projects’inclusions of phonetic rules and affixes,which makes derivation transparent and is helpful for didactic purposes.
文摘Denoising is an important preprocessing step in seismic exploration that improves the signal-to-noise ratio(SNR)and helps identify oil and minerals.Dictionary learning(DL)is a promising method for noise attenuation.The DL extracts sparse features from noisy seismic data using over-complete dictionaries and performs denoising based on a threshold.However,the choice of threshold in DL greatly impacts the denoising results and the improvement in output SNR.Ramanujan’s sum(s)(RS)is a signal processing tool that exhibits derivative behavior and finds applications in edge detection and noise estimation of signals.Hence,we propose a novel DL method with threshold estimation based on RS to improve the output SNR.In this work,we estimate the noise variance of seismic data based on RS and use it as a threshold value for the DL method to perform denoising.We analyze the results of the proposed work on synthetically generated and field data sets.We perform simulations on noisy seismic data across a wide range of SNR values and tabulate the denoised results using the performance metrics SNR and mean squared error.The results indicate that the proposed method provides superior SNR and reduced mean squared error compared to MAD,SURE-based,and adaptive soft-thresholding techniques.
基金the National Natural Science Foundation of China(No.61861023)the Yunnan Fundamental Research Project(No.202301AT070452)。
文摘Sensitivity encoding(SENSE)is a parallel magnetic resonance imaging(MRI)reconstruction model by utilizing the sensitivity information of receiver coils to achieve image reconstruction.The existing SENSE-based reconstruction algorithms usually used nonadaptive sparsifying transforms,resulting in a limited reconstruction accuracy.Therefore,we proposed a new model for accurate parallel MRI reconstruction by combining the L0 norm regularization term based on the efficient sum of outer products dictionary learning(SOUPDIL)with the SENSE model,called SOUPDIL-SENSE.The SOUPDIL-SENSE model is mainly solved by utilizing the variable splitting and alternating direction method of multipliers techniques.The experimental results on four human datasets show that the proposed algorithm effectively promotes the image sparsity,eliminates the noise and artifacts of the reconstructed images,and improves the reconstruction accuracy.
基金Supported by the National"863"Project(No.2014AA06A605)
文摘The transformation of basic functions is one of the most commonly used techniques for seismic denoising,which employs sparse representation of seismic data in the transform domain. The choice of transform base functions has an influence on denoising results. We propose a learning-type overcomplete dictionary based on the K-singular value decomposition( K-SVD) algorithm. To construct the dictionary and use it for random seismic noise attenuation,we replace fixed transform base functions with an overcomplete redundancy function library. Owing to the adaptability to data characteristics,the learning-type dictionary describes essential data characteristics much better than conventional denoising methods. The sparsest representation of signals is obtained by the learning and training of seismic data. By comparing the same seismic data obtained using the learning-type overcomplete dictionary based on K-SVD and the data obtained using other denoising methods,we find that the learning-type overcomplete dictionary based on the K-SVD algorithm represents the seismic data more sparsely,effectively suppressing the random noise and improving the signal-to-noise ratio.
文摘A Chinese-English Dictionary (Revised Edition) is even more standardized andconsistent than its 1978 edition in the inclusion of words, the arrangement of lexical units. thedefinition and the exemplification, but it is still slightly blemished by some unfair coverage andinappropriate. unbalanced or unconcerted explanations, specifications and illustrations. Its meritsand demerits are made evident by comparing it with Far East Chinese-English Dictionary andother dictionaries.
文摘Dictionary has many functions, in which the function of definition is of very importance because the main purpose of dictionary is providing the entry's meaning information for the readers so that the readers can understand and use the entry-word and the realization of the purpose completely depends on lexicographical definition. However, the function of definition is limited, which need the exemplification to assist it. Therefore, the exemplification becomes very important, too. Good exemplification can assist definition, provide grammatical information, and supplement the information usage and so on. Many researches studied the exemplification of dictionary, its principles and so on. Dictionary changed much with the development of technology and many kinds of electronic dictionaries appeared. Few studies are involved with the new-type dictionary. Based on the general principles of the exemplification in a learner's printed dictionary, it is necessary to construct the general principles about the exemplification in the electronic learner's dictionary.
基金supported by National Natural Science Foundation of China (Grant No. 60672108, Grant No. 60372020)
文摘The success of ultrasonic nondestructive testing technology depends not only on the generation and measurement of the desired waveform, but also on the signal processing of the measured waves. The traditional time-domain methods have been partly successful in identifying small cracks, but not so successful in estimating crack size, especially in strong backscattering noise. Sparse signal representation can provide sparse information that represents the signal time-frequency signature, which can also be used in processing ultrasonic nondestructive signals. A novel ultrasonic nondestructive signal processing algorithm based on signal sparse representation is proposed. In order to suppress noise, matching pursuit algorithm with Gabor dictionary is selected as the signal decomposition method. Precise echoes information, such as crack location and size, can be estimated by quantitative analysis with Gabor atom. To verify the performance, the proposed algorithm is applied to computer simulation signal and experimental ultrasonic signals which represent multiple backscattered echoes from a thin metal plate with artificial holes. The results show that this algorithm not only has an excellent performance even when dealing with signals in the presence of strong noise, but also is successful in estimating crack location and size. Moreover, the algorithm can be applied to data compression of ultrasonic nondestructive signal.
基金supported by the National Natural Science Foundation of China (No. 51201182)
文摘Impulse components in vibration signals are important fault features of complex machines. Sparse coding (SC) algorithm has been introduced as an impulse feature extraction method, but it could not guarantee a satisfactory performance in processing vibration signals with heavy background noises. In this paper, a method based on fusion sparse coding (FSC) and online dictionary learning is proposed to extract impulses efficiently. Firstly, fusion scheme of different sparse coding algorithms is presented to ensure higher reconstruction accuracy. Then, an improved online dictionary learning method using FSC scheme is established to obtain redundant dictionary and it can capture specific features of training samples and reconstruct the sparse approximation of vibration signals. Simulation shows that this method has a good performance in solving sparse coefficients and training redundant dictionary compared with other methods. Lastly, the proposed method is further applied to processing aircraft engine rotor vibration signals. Compared with other feature extraction approaches, our method can extract impulse features accurately and efficiently from heavy noisy vibration signal, which has significant supports for machinery fault detection and diagnosis.
基金financially supported the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA14020102)the National Natural Science Foundation of China (Nos. 41774125,41530320 and 41804098)the Key National Research Project of China (Nos. 2016YFC0303100,2017YFC0601900)。
文摘Time-domain airborne electromagnetic(AEM)data are frequently subject to interference from various types of noise,which can reduce the data quality and affect data inversion and interpretation.Traditional denoising methods primarily deal with data directly,without analyzing the data in detail;thus,the results are not always satisfactory.In this paper,we propose a method based on dictionary learning for EM data denoising.This method uses dictionary learning to perform feature analysis and to extract and reconstruct the true signal.In the process of dictionary learning,the random noise is fi ltered out as residuals.To verify the eff ectiveness of this dictionary learning approach for denoising,we use a fi xed overcomplete discrete cosine transform(ODCT)dictionary algorithm,the method-of-optimal-directions(MOD)dictionary learning algorithm,and the K-singular value decomposition(K-SVD)dictionary learning algorithm to denoise decay curves at single points and to denoise profi le data for diff erent time channels in time-domain AEM.The results show obvious diff erences among the three dictionaries for denoising AEM data,with the K-SVD dictionary achieving the best performance.
基金This work was supported by National Natural Science Foundation of China(NSFC)under Grant No.61771299,No.61771322,No.61375015,No.61301027.
文摘Recently,sparse representation classification(SRC)and fisher discrimination dictionary learning(FDDL)methods have emerged as important methods for vehicle classification.In this paper,inspired by recent breakthroughs of discrimination dictionary learning approach and multi-task joint covariate selection,we focus on the problem of vehicle classification in real-world applications by formulating it as a multi-task joint sparse representation model based on fisher discrimination dictionary learning to merge the strength of multiple features among multiple sensors.To improve the classification accuracy in complex scenes,we develop a new method,called multi-task joint sparse representation classification based on fisher discrimination dictionary learning,for vehicle classification.In our proposed method,the acoustic and seismic sensor data sets are captured to measure the same physical event simultaneously by multiple heterogeneous sensors and the multi-dimensional frequency spectrum features of sensors data are extracted using Mel frequency cepstral coefficients(MFCC).Moreover,we extend our model to handle sparse environmental noise.We experimentally demonstrate the benefits of joint information fusion based on fisher discrimination dictionary learning from different sensors in vehicle classification tasks.
文摘Comments were made on the "word-for-word" literal translation method used by Mr. Nigel Wiseman in A Practical Dictionary of Chinese Medicine. He believes that only literal translation can reflect Chinese medical concepts accurately. The so-called "word-for-word" translation is actually "English-word-for- Chinese-character" translation. First, the authors of the dictionary made a list of Single Characters with English Equivalents, and then they gave each character of the medical term an English equivalent according to the list. Finally, they made some minor modifications to make the rendering grammatically smoother. Many English terms thus produced are confusing. The defect of the word-for-word literal translation stems from the erroneous idea that a single character constitutes the basic element of meaning corresponding to the notion of "word" in English, and the meaning of a disyllabic or polysyllabic Chinese word is the simple addition of the constituent characters. Another big mistake is the negligence of the polysemy of Chinese characters. One or two English equivalents can by no means cover all the various meanings of a single character which is a polysemous monosyllabic word. Various examples were cited from this dictionary to illustrate the mistakes.
基金This research was funded by the National Natural Science Foundation of China(21878124,31771680 and 61773182).
文摘Human action recognition under complex environment is a challenging work.Recently,sparse representation has achieved excellent results of dealing with human action recognition problem under different conditions.The main idea of sparse representation classification is to construct a general classification scheme where the training samples of each class can be considered as the dictionary to express the query class,and the minimal reconstruction error indicates its corresponding class.However,how to learn a discriminative dictionary is still a difficult work.In this work,we make two contributions.First,we build a new and robust human action recognition framework by combining one modified sparse classification model and deep convolutional neural network(CNN)features.Secondly,we construct a novel classification model which consists of the representation-constrained term and the coefficients incoherence term.Experimental results on benchmark datasets show that our modified model can obtain competitive results in comparison to other state-of-the-art models.
基金supported in part by the National Natural Science Foundation of China(61302041,61363044,61562053,61540042)the Applied Basic Research Foundation of Yunnan Provincial Science and Technology Department(2013FD011,2016FD039)
文摘Text in natural scene images usually carries abundant semantic information. However, due to variations of text and complexity of background, detecting text in scene images becomes a critical and challenging task. In this paper, we present a novel method to detect text from scene images. Firstly, we decompose scene images into background and text components using morphological component analysis(MCA), which will reduce the adverse effects of complex backgrounds on the detection results.In order to improve the performance of image decomposition,two discriminative dictionaries of background and text are learned from the training samples. Moreover, Laplacian sparse regularization is introduced into our proposed dictionary learning method which improves discrimination of dictionary. Based on the text dictionary and the sparse-representation coefficients of text, we can construct the text component. After that, the text in the query image can be detected by applying certain heuristic rules. The results of experiments show the effectiveness of the proposed method.
基金jointly supported by the National Science and Technology Major Project(Nos.2016ZX05002-005-07HZ,2016ZX05014-001-008HZ,and 2016ZX05026-002-002HZ)National Natural Science Foundation of China(Nos.41720104006 and 41274124)+2 种基金Chinese Academy of Sciences Strategic Pilot Technology Special Project(A)(No.XDA14010303)Shandong Province Innovation Project(No.2017CXGC1602)Independent Innovation(No.17CX05011)。
文摘Full waveform inversion(FWI)is an extremely important velocity-model-building method.However,it involves a large amount of calculation,which hindsers its practical application.The multi-source technology can reduce the number of forward modeling shots during the inversion process,thereby improving the efficiency.However,it introduces crossnoise problems.In this paper,we propose a sparse constrained encoding multi-source FWI method based on K-SVD dictionary learning.The phase encoding technology is introduced to reduce crosstalk noise,whereas the K-SVD dictionary learning method is used to obtain the basis of the transformation according to the characteristics of the inversion results.The multiscale inversion method is adopted to further enhance the stability of FWI.Finally,the synthetic subsag model and the Marmousi model are set to test the effectiveness of the newly proposed method.Analysis of the results suggest the following:(1)The new method can effectively reduce the computational complexity of FWI while ensuring inversion accuracy and stability;(2)The proposed method can be combined with the time-domain multi-scale FWI strategy flexibly to further avoid the local minimum and to improve the stability of inversion,which is of significant importance for the inversion of the complex model.
文摘Mr. Wiseman believes that Western medical terms chosen as equivalents of Chinese medical terms should be the words known to all speakers and not requiring any specialist knowledge or instrumentation to understand or identify, and strictly technical Western medical terms should be avoided regardless of their conceptual conformity to the Chinese terms. Accordingly, many inappropriate Western medical terms are selected as English equivalents by the authors of the Dictionary, and on the other hand, many ready-made appropriate Western medical terms are replaced by loan English terms with the Chinese style of word formation. The experience gained in solving the problems of translating Western medical terms into Chinese when West- ern medicine was first introduced to China is helpful for translating Chinese medical terms into English. However, the authors of the Dictionary adhere to their own opinions, ignoring others" experience. The English terms thus created do not reflect the genuine meaning of the Chinese terms, but make the English glossary in chaos. The so-called true face of traditional Chinese revealed by such terms is merely the Chinese custom of word formation and metaphoric rhetoric. In other words, traditional Chinese medicine is not regarded as a system of medicine but merely some Oriental folklore.
基金Acknowledgements This work was supported by the National Science Foundation of China under Grant No. 60976065. The authors would like to thank the anonymous reviewers for comments that helped improve the paper.
文摘Compressed Sensing (CS) offers a method to solve the channel estimation problems for an underwater acoustic system, based on the existence of a sparse representation of the treated signal and an overcomplete dictionary with a set of non-orthogonal bases. In this paper, we proposed a new approach to optimize dictionaries by decreasing the average measure of the mutual coherence of the effective dictionary. A fixed link between the average mutual coherence and the CS perforrmnce is indicated by designing three factors: operating bandwidth, the number of pilot subcarriers, and coherence bandwidth. Both the Orthogonal Matching Pursuit (OMP) and the Basis Pursuit De-Noising (BPDN) are compared to the Dantzig Selector (DS) for different Signal Noise Ratio (SNR) and shown to benefit from the newly designed dictionary. Nurnerical sinmlations and experimental data of an OFDM receiver are used to evaluate the proposed method in comparison with the conventional LeastSquare (LS) estirmtor. The results show that the dictionary with a better condition considerably improves the perforrmnce of the channel estimation.
文摘Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception.
基金This work was supported by the National Natural Science Foundation of China(61773080,61633005)the Fundamental Research Funds for the Central Universities(2019CDYGZD001)Scientific Reserve Talent Programs of Chongqing University(cqu2018CDHB1B04).
文摘The localized faults of rolling bearings can be diagnosed by its vibration impulsive signals.However,it is always a challenge to extract the impulsive feature under background noise and non-stationary conditions.This paper investigates impulsive signals detection of a single-point defect rolling bearing and presents a novel data-driven detection approach based on dictionary learning.To overcome the effects harmonic and noise components,we propose an autoregressive-minimum entropy deconvolution model to separate harmonic and deconvolve the effect of the transmission path.To address the shortcomings of conventional sparse representation under the changeable operation environment,we propose an approach that combines K-clustering with singular value decomposition(K-SVD)and split-Bregman to extract impulsive components precisely.Via experiments on synthetic signals and real run-to-failure signals,the excellent performance for different impulsive signals detection verifies the effectiveness and robustness of the proposed approach.Meanwhile,a comparison with the state-of-the-art methods is illustrated,which shows that the proposed approach can provide more accurate detected impulsive signals.
基金This work was supported in part by the National Natural Science Foundation of China(61988101)in part by the National Key R&D Program of China(2018YFB1701100).
文摘Data-driven process-monitoring methods have been the mainstream for complex industrial systems due to their universality and the reduced need for reaction mechanisms and first-principles knowledge.However,most data-driven process-monitoring methods assume that historical training data and online testing data follow the same distribution.In fact,due to the harsh environment of industrial systems,the collected data from real industrial processes are always affected by many factors,such as the changeable operating environment,variation in the raw materials,and production indexes.These factors often cause the distributions of online monitoring data and historical training data to differ,which induces a model mismatch in the process-monitoring task.Thus,it is difficult to achieve accurate process monitoring when a model learned from training data is applied to actual online monitoring.In order to resolve the problem of the distribution divergence between historical training data and online testing data that is induced by changeable operation environments,a robust transfer dictionary learning(RTDL)algorithm is proposed in this paper for industrial process monitoring.The RTDL is a synergy of representative learning and domain adaptive transfer learning.The proposed method regards historical training data and online testing data as the source domain and the target domain,respectively,in the transfer learning problem.Maximum mean discrepancy regularization and linear discriminant analysis-like regularization are then incorporated into the dictionary learning framework,which can reduce the distribution divergence between the source domain and target domain.In this way,a robust dictionary can be learned even if the characteristics of the source domain and target domain are evidently different under the interference of a realistic and changeable operation environment.Such a dictionary can effectively improve the performance of process monitoring and mode classification.Extensive experiments including a numerical simulation and two industrial systems are conducted to verify the efficiency and superiority of the proposed method.