期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Face recognition algorithm using collaborative sparse representation based on CNN features
1
作者 ZHAO Shilin XU Chengjun LIU Changrong 《Journal of Measurement Science and Instrumentation》 2025年第1期85-95,共11页
Considering that the algorithm accuracy of the traditional sparse representation models is not high under the influence of multiple complex environmental factors,this study focuses on the improvement of feature extrac... Considering that the algorithm accuracy of the traditional sparse representation models is not high under the influence of multiple complex environmental factors,this study focuses on the improvement of feature extraction and model construction.Firstly,the convolutional neural network(CNN)features of the face are extracted by the trained deep learning network.Next,the steady-state and dynamic classifiers for face recognition are constructed based on the CNN features and Haar features respectively,with two-stage sparse representation introduced in the process of constructing the steady-state classifier and the feature templates with high reliability are dynamically selected as alternative templates from the sparse representation template dictionary constructed using the CNN features.Finally,the results of face recognition are given based on the classification results of the steady-state classifier and the dynamic classifier together.Based on this,the feature weights of the steady-state classifier template are adjusted in real time and the dictionary set is dynamically updated to reduce the probability of irrelevant features entering the dictionary set.The average recognition accuracy of this method is 94.45%on the CMU PIE face database and 96.58%on the AR face database,which is significantly improved compared with that of the traditional face recognition methods. 展开更多
关键词 sparse representation deep learning face recognition dictionary update feature extraction
在线阅读 下载PDF
A Generalized Two-Level Bregman Method with Dictionary Updating for Non-Convex Magnetic Resonance Imaging Reconstruction 被引量:1
2
作者 张明辉 何小洋 +1 位作者 杜沈园 刘且根 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第6期660-669,共10页
In recent years, it has shown that a generalized thresholding algorithm is useful for inverse problems with sparsity constraints. The generalized thresholding minimizes the non-convex p-norm based function with p <... In recent years, it has shown that a generalized thresholding algorithm is useful for inverse problems with sparsity constraints. The generalized thresholding minimizes the non-convex p-norm based function with p < 1, and it penalizes small coefficients over a wider range meanwhile applies less bias to the larger coefficients.In this work, on the basis of two-level Bregman method with dictionary updating(TBMDU), we use the modified thresholding to minimize the non-convex function and propose the generalized TBMDU(GTBMDU) algorithm.The experimental results on magnetic resonance(MR) image simulations and real MR data, under a variety of sampling trajectories and acceleration factors, consistently demonstrate that the proposed algorithm can efficiently reconstruct the MR images and present advantages over the previous soft thresholding approaches. 展开更多
关键词 magnetic resonance imaging(MRI) sparse representation non-convex generalized thresholding dictionary updating alternating direction method two-level Bregman method with dictionary updating(TBMDU)
原文传递
Graph Regularized Sparse Coding Method for Highly Undersampled MRI Reconstruction 被引量:1
3
作者 张明辉 尹子瑞 +2 位作者 卢红阳 吴建华 刘且根 《Journal of Donghua University(English Edition)》 EI CAS 2015年第3期434-441,共8页
The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) ... The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) was proposed. The graph regularized sparse coding showed the potential in maintaining the geometrical information of the data. In this study, it was incorporated with two-level Bregman iterative procedure that updated the data term in outer-level and learned dictionary in innerlevel. Moreover,the graph regularized sparse coding and simple dictionary updating stages derived by the inner minimization made the proposed algorithm converge in few iterations, meanwhile achieving superior reconstruction performance. Extensive experimental results have demonstrated GSCMRI can consistently recover both real-valued MR images and complex-valued MR data efficiently,and outperform the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values. 展开更多
关键词 magnetic resonance imaging graph regularized sparse coding Bregman iterative method dictionary updating alternating direction method
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部