The strength development law of γ-type dicalcium silicate (γ-C_(2)S) under different carbonation processes was investigated,and the carbonation mechanism of γ-C_(2)S under the action of NH_(4)HCO_(3) was clarified ...The strength development law of γ-type dicalcium silicate (γ-C_(2)S) under different carbonation processes was investigated,and the carbonation mechanism of γ-C_(2)S under the action of NH_(4)HCO_(3) was clarified by using a wide range of test methods,including XRD and SEM.A method of saturated NH_(4)HCO_(3) solution as a curing agent was identified to improve the carbonation efficiency and enhance the carbonation degree of γ-C_(2)S,and then a high-strength carbonated specimen was obtained.Microhardness analysis and SEM morphology analysis were conducted on the carbonised specimens obtained under atmospheric pressure carbonisation conditions using the curing agent.It was found that γ-C_(2)S could perform carbonisation well under atmospheric pressure,which promoted the carbonisation efficiency and decreased the carbonisation cost simultaneously.Therefore,a new carbonisation process solution was proposed for the rapid carbonisation of γ-C_(2)S.展开更多
The adsorption isotherm of sodium polyacrylate on dicalcium silicate(2CaO-SiO2) in sodium aluminate solution at 80 ℃ was studied.The type of surface adsorption of sodium polyacrylate is saturated adsorption,and the...The adsorption isotherm of sodium polyacrylate on dicalcium silicate(2CaO-SiO2) in sodium aluminate solution at 80 ℃ was studied.The type of surface adsorption of sodium polyacrylate is saturated adsorption,and the adsorption behavior belongs to L-type,according with the monolayer adsorption model of Langmuir equation.The surface coverage of sodium polyacrylate is 1.06 mol/μm2.The relation curve between the surface pressure and the molecular area of adsorption film was obtained by Gibbs formula.The variation of interfacial energy caused by adsorption as well as the relationship between the relation curve and the type of adsorption was discussed.展开更多
The present work presents the microstructure of β-Ca_(2)SiO_4(β-C_(2)S) after accelerated carbonation. The synthesis procedure of β-C_(2)S was examined first, and the crystalline and amorphous structure, the distri...The present work presents the microstructure of β-Ca_(2)SiO_4(β-C_(2)S) after accelerated carbonation. The synthesis procedure of β-C_(2)S was examined first, and the crystalline and amorphous structure, the distribution and the pore structure of β-C_(2)S carbonation products were also determined by X-ray diffraction(XRD) quantitative analysis, simultaneous thermal analyzer(TG/DTA), Fourier transform-infrared spectroscopy(FT-IR), high resolution ^(29)Si magic angle spinning nuclear magnetic resonance(^(29)Si NMR), N_(2)-sorption techniques, and scanning electron microscopy(SEM), respectively. Test results indicate that carbonation products are dramatically formed in the initial 2 h. The main carbonation products are crystalline calcite and amorphous three-dimensional network silica gels, which contain nanometer-sized pores. The calcite, silica gels and un-carbonated β-C_(2)S are distributed hierarchically.展开更多
The phase transition,morphology,stability and pulverization performance of dicalcium silicate(C_(2)S)with different Na_(2)O additions during the high-temperature sintering process were studied using XRD,SEM-EDS,FT-IR,...The phase transition,morphology,stability and pulverization performance of dicalcium silicate(C_(2)S)with different Na_(2)O additions during the high-temperature sintering process were studied using XRD,SEM-EDS,FT-IR,and Raman spectra methods.When the CaO to SiO_(2) molar ratio is 2.0 and the Na_(2)O to SiO_(2) molar ratio is below 0.20,the crystalline calcium silicate compounds includeγ-C_(2)S andβ-C_(2)S.As the Na_(2)O addition increases,the proportion,crystallinity and grain size ofβ-C_(2)S in the sintered products increase,those parameters ofγ-C_(2)S decrease,and the content of amorphous phase increases.Na_(2)O mainly forms solid solutions inβ-C_(2)S and inhibits the transition ofβ-C_(2)S toγ-C_(2)S,resulting in the sintered products unpulverized.The stability of sintered products in alkali solution decreases significantly with the increasing Na_(2)O additions,and theβ-C_(2)S solid solution with Na_(2)O is less stable thanγ-C_(2)S.The mechanism that Na_(2)O affects the transition of C_(2)S as well as its stability was also discussed,which can give actual guidance for the treatment of low-grade alumina-containing resources by the sintering process.展开更多
CO_(2)sequestration through steel slag is one of the effective approaches to simultaneously realize the resource utilization of industrial solid waste,reduce carbon emissions,and enhance the stability of steel slag as...CO_(2)sequestration through steel slag is one of the effective approaches to simultaneously realize the resource utilization of industrial solid waste,reduce carbon emissions,and enhance the stability of steel slag as a construction base,with considerable application prospects.Nevertheless,the components responsible for CO_(2)sequestration in steel slag predominantly exist as silicates,whose chemical inertness leads to suboptimal CO_(2)sequestration efficiency in the slag.Based on the strategy of activating the silicate components in steel slag with the alkali metal potassium(K)to improve the CO_(2)sequestration performance of steel slag,both experiments and theoretical calculations were performed to give a deep insight into the effect and mechanism of K modification on enhancing the CO_(2)sequestration capability of steel slag.In experiments,CO_(2)sequestration capacity of steel slag modified with 3 wt.%K reached 100.15 g/kg at 1000 K.Theoretical analysis has revealed that although K exhibits low reactivity,it enhances the electronic transition and amplifies charge localization at specific sites within Ca_(2)SiO_(4),consequently improving its CO_(2)sequestration capacity.However,an excessive doping of K led to the partial inactivation of some active sites within Ca_(2)SiO_(4).Furthermore,CO_(2)chemisorption on Ca_(2)SiO_(4)surface predominantly occurs through the chelate configuration of CO_(3)^(2−),suggesting the formation of a CaCO_(3)precursor.Thus,both the experimental results and theoretical calculations reveal the role of K on enhancing CO_(2)sequestration capability of steel slag.In summary,K modification offers promising prospects for improving CO_(2)sequestration properties of steel slag and provides support for the industrial implementation of carbon sequestration by steel slag.展开更多
Dicalcium silicate(Ca_(2)SiO_(4),C_(2)S)has osteogenic potential but induces macrophagic inflammation.Mitochondrial function plays a vital role in macrophage polarization and macrophagic inflammation.The mitochondrial...Dicalcium silicate(Ca_(2)SiO_(4),C_(2)S)has osteogenic potential but induces macrophagic inflammation.Mitochondrial function plays a vital role in macrophage polarization and macrophagic inflammation.The mitochondrial function of C_(2)S-treated macrophages is still unclear.This study hypothesized:(i)the C_(2)S modulates mitochondrial function and autophagy in macrophages to regulate macro-phagic inflammation,and(ii)C_(2)S-induced macrophagic inflammation regulates osteogenesis.We used RAW264.7 cells as a model of macrophage.The C_(2)S(75–150μg/ml)extract was used to analyze the macrophagic mitochondrial function and macrophagemediated effect on osteogenic differentiation of mouse bone marrow-derived mesenchymal stem cells(BMSCs).The results showed that C_(2)S extract(150μg/ml)induced TNF-α,IL-1βand IL-6 production in macrophages.C_(2)S extract(150μg/ml)enhanced reactive oxygen species level and intracellular calcium level but reduced mitochondrial membrane potential and ATP production.TEM images showed reduced mitochondrial abundance and altered the mitochondrial morphology in C_(2)S(150μg/ml)-treated macrophages.Protein level expression of PINK1,Parkin,Beclin1 and LC3 was upregulated but TOMM20 was downregulated.mRNA sequencing and KEGG analysis showed that C_(2)S-induced differentially expressed mRNAs in macrophages were mainly distributed in the essential signaling pathways involved in mitochondrial function and autophagy.The conditioned medium from C_(2)S-treated macrophage robustly promoted osteogenic differentiation in BMSCs.In conclusion,our results indicate mitochondrial dysfunction and autophagy as the possible mechanism of C_(2)S-induced macrophagic inflammation.The promotion of osteogenic differentiation of BMSCs by the C_(2)S-induced macrophagic inflammation suggests the potential application of C_(2)S in developing immunomodulatory bone grafts.展开更多
The mixture of CaHPO 4·2H 2O and CaCO 3 was ground in an aqueous system under appropriate conditions to investigate the mechanochemical reaction for the synthesis of crystalline hydroxyapatite (HA) powder. Hyd...The mixture of CaHPO 4·2H 2O and CaCO 3 was ground in an aqueous system under appropriate conditions to investigate the mechanochemical reaction for the synthesis of crystalline hydroxyapatite (HA) powder. Hydroxyapatite of high crystallinity powder including trace Ca 10 (PO 4) 6CO 3(OH) and Ca 9HPO 4(PO 4) 6OH can be synthesized by mechanical activation without further thermal treatment at a high temperature. The synthesis reaction during the grinding process was almost completed within 1h. The as-ground powder exhibits a particle distribution of 20-100nm in size with a spherical or rodlike morphology. The composition and degree of crystallinity of the mechanochemical synthesized hydroxyapatite powders were coincident with the cement-type hydroxyapatite.展开更多
基金Funded by Hubei Technology Innovation Key Program (No.2018AAA004)。
文摘The strength development law of γ-type dicalcium silicate (γ-C_(2)S) under different carbonation processes was investigated,and the carbonation mechanism of γ-C_(2)S under the action of NH_(4)HCO_(3) was clarified by using a wide range of test methods,including XRD and SEM.A method of saturated NH_(4)HCO_(3) solution as a curing agent was identified to improve the carbonation efficiency and enhance the carbonation degree of γ-C_(2)S,and then a high-strength carbonated specimen was obtained.Microhardness analysis and SEM morphology analysis were conducted on the carbonised specimens obtained under atmospheric pressure carbonisation conditions using the curing agent.It was found that γ-C_(2)S could perform carbonisation well under atmospheric pressure,which promoted the carbonisation efficiency and decreased the carbonisation cost simultaneously.Therefore,a new carbonisation process solution was proposed for the rapid carbonisation of γ-C_(2)S.
基金Project(50974036)supported by the National Natural Science Foundation of China
文摘The adsorption isotherm of sodium polyacrylate on dicalcium silicate(2CaO-SiO2) in sodium aluminate solution at 80 ℃ was studied.The type of surface adsorption of sodium polyacrylate is saturated adsorption,and the adsorption behavior belongs to L-type,according with the monolayer adsorption model of Langmuir equation.The surface coverage of sodium polyacrylate is 1.06 mol/μm2.The relation curve between the surface pressure and the molecular area of adsorption film was obtained by Gibbs formula.The variation of interfacial energy caused by adsorption as well as the relationship between the relation curve and the type of adsorption was discussed.
基金Funded by the National Natural Science Foundation of China(Nos.51272068,U1604118,and 51502080)
文摘The present work presents the microstructure of β-Ca_(2)SiO_4(β-C_(2)S) after accelerated carbonation. The synthesis procedure of β-C_(2)S was examined first, and the crystalline and amorphous structure, the distribution and the pore structure of β-C_(2)S carbonation products were also determined by X-ray diffraction(XRD) quantitative analysis, simultaneous thermal analyzer(TG/DTA), Fourier transform-infrared spectroscopy(FT-IR), high resolution ^(29)Si magic angle spinning nuclear magnetic resonance(^(29)Si NMR), N_(2)-sorption techniques, and scanning electron microscopy(SEM), respectively. Test results indicate that carbonation products are dramatically formed in the initial 2 h. The main carbonation products are crystalline calcite and amorphous three-dimensional network silica gels, which contain nanometer-sized pores. The calcite, silica gels and un-carbonated β-C_(2)S are distributed hierarchically.
基金Project(2018YFC1901903)supported by the National Key R&D Program of ChinaProjects(22078055,52074083,51674075)supported by the National Natural Science Foundation of China。
文摘The phase transition,morphology,stability and pulverization performance of dicalcium silicate(C_(2)S)with different Na_(2)O additions during the high-temperature sintering process were studied using XRD,SEM-EDS,FT-IR,and Raman spectra methods.When the CaO to SiO_(2) molar ratio is 2.0 and the Na_(2)O to SiO_(2) molar ratio is below 0.20,the crystalline calcium silicate compounds includeγ-C_(2)S andβ-C_(2)S.As the Na_(2)O addition increases,the proportion,crystallinity and grain size ofβ-C_(2)S in the sintered products increase,those parameters ofγ-C_(2)S decrease,and the content of amorphous phase increases.Na_(2)O mainly forms solid solutions inβ-C_(2)S and inhibits the transition ofβ-C_(2)S toγ-C_(2)S,resulting in the sintered products unpulverized.The stability of sintered products in alkali solution decreases significantly with the increasing Na_(2)O additions,and theβ-C_(2)S solid solution with Na_(2)O is less stable thanγ-C_(2)S.The mechanism that Na_(2)O affects the transition of C_(2)S as well as its stability was also discussed,which can give actual guidance for the treatment of low-grade alumina-containing resources by the sintering process.
基金supported by China Baowu Low Carbon Metallurgy Innovation Foundation(BWLCF202202)Major Industry Innovation Plan of Anhui Province(AHZDCYCX-LSDT2023-01).
文摘CO_(2)sequestration through steel slag is one of the effective approaches to simultaneously realize the resource utilization of industrial solid waste,reduce carbon emissions,and enhance the stability of steel slag as a construction base,with considerable application prospects.Nevertheless,the components responsible for CO_(2)sequestration in steel slag predominantly exist as silicates,whose chemical inertness leads to suboptimal CO_(2)sequestration efficiency in the slag.Based on the strategy of activating the silicate components in steel slag with the alkali metal potassium(K)to improve the CO_(2)sequestration performance of steel slag,both experiments and theoretical calculations were performed to give a deep insight into the effect and mechanism of K modification on enhancing the CO_(2)sequestration capability of steel slag.In experiments,CO_(2)sequestration capacity of steel slag modified with 3 wt.%K reached 100.15 g/kg at 1000 K.Theoretical analysis has revealed that although K exhibits low reactivity,it enhances the electronic transition and amplifies charge localization at specific sites within Ca_(2)SiO_(4),consequently improving its CO_(2)sequestration capacity.However,an excessive doping of K led to the partial inactivation of some active sites within Ca_(2)SiO_(4).Furthermore,CO_(2)chemisorption on Ca_(2)SiO_(4)surface predominantly occurs through the chelate configuration of CO_(3)^(2−),suggesting the formation of a CaCO_(3)precursor.Thus,both the experimental results and theoretical calculations reveal the role of K on enhancing CO_(2)sequestration capability of steel slag.In summary,K modification offers promising prospects for improving CO_(2)sequestration properties of steel slag and provides support for the industrial implementation of carbon sequestration by steel slag.
基金supported by High-level University Construction Funding of Guangzhou Medical University(02-412-B205002-1003017,06-410-2106035).
文摘Dicalcium silicate(Ca_(2)SiO_(4),C_(2)S)has osteogenic potential but induces macrophagic inflammation.Mitochondrial function plays a vital role in macrophage polarization and macrophagic inflammation.The mitochondrial function of C_(2)S-treated macrophages is still unclear.This study hypothesized:(i)the C_(2)S modulates mitochondrial function and autophagy in macrophages to regulate macro-phagic inflammation,and(ii)C_(2)S-induced macrophagic inflammation regulates osteogenesis.We used RAW264.7 cells as a model of macrophage.The C_(2)S(75–150μg/ml)extract was used to analyze the macrophagic mitochondrial function and macrophagemediated effect on osteogenic differentiation of mouse bone marrow-derived mesenchymal stem cells(BMSCs).The results showed that C_(2)S extract(150μg/ml)induced TNF-α,IL-1βand IL-6 production in macrophages.C_(2)S extract(150μg/ml)enhanced reactive oxygen species level and intracellular calcium level but reduced mitochondrial membrane potential and ATP production.TEM images showed reduced mitochondrial abundance and altered the mitochondrial morphology in C_(2)S(150μg/ml)-treated macrophages.Protein level expression of PINK1,Parkin,Beclin1 and LC3 was upregulated but TOMM20 was downregulated.mRNA sequencing and KEGG analysis showed that C_(2)S-induced differentially expressed mRNAs in macrophages were mainly distributed in the essential signaling pathways involved in mitochondrial function and autophagy.The conditioned medium from C_(2)S-treated macrophage robustly promoted osteogenic differentiation in BMSCs.In conclusion,our results indicate mitochondrial dysfunction and autophagy as the possible mechanism of C_(2)S-induced macrophagic inflammation.The promotion of osteogenic differentiation of BMSCs by the C_(2)S-induced macrophagic inflammation suggests the potential application of C_(2)S in developing immunomodulatory bone grafts.
文摘The mixture of CaHPO 4·2H 2O and CaCO 3 was ground in an aqueous system under appropriate conditions to investigate the mechanochemical reaction for the synthesis of crystalline hydroxyapatite (HA) powder. Hydroxyapatite of high crystallinity powder including trace Ca 10 (PO 4) 6CO 3(OH) and Ca 9HPO 4(PO 4) 6OH can be synthesized by mechanical activation without further thermal treatment at a high temperature. The synthesis reaction during the grinding process was almost completed within 1h. The as-ground powder exhibits a particle distribution of 20-100nm in size with a spherical or rodlike morphology. The composition and degree of crystallinity of the mechanochemical synthesized hydroxyapatite powders were coincident with the cement-type hydroxyapatite.