The rhizome functions are of great significance to the ecological protection of the western China mining area,whose ecological management can be provided with technical support via accurate calculations of the rhizome...The rhizome functions are of great significance to the ecological protection of the western China mining area,whose ecological management can be provided with technical support via accurate calculations of the rhizome biomass.The rhizome diameter is an important index parameter of rhizome biomass.In this study,we propose an estimation of rhizome diameters based on ground penetrating radar(GPR)-based reverse time migration(RTM)imaging technology.First,the spatial distribution of shallow rhizomes is simulated using the finite difference time domain method.The simulation data are examined via RTM imaging and single-channel rhizome analysis to obtain the rhizome index parameters:Δh,the width of the maximum positive peak amplitude measured at an amplitude of zero,andΔH,the distance between the zero-amplitude position above the largest positive peak in the shallow region and the zero-amplitude position below the largest positive peak in the deeper region.The experiments of physical models verify the effectiveness of the two parameters(Δh andΔH).and indicate that the values ofΔh andΔH are independent of the rhizome burial depth;instead,they are only related to the diameter of the rhizome.For both the numerical simulations and the physical model experiment,the estimation errors ofΔh andΔH for the rhizome diameters can be constrained to less than 6%and 5%,respectively,which shows that the estimation of the rhizome diameters using GPR based RTM imaging technology is reasonable and effective and its high estimation accuracy meets the technical requirements.展开更多
With their widespread utilization, cut-to-length harvesters have become a major source of ‘‘big data’’ for forest management as they constantly capture, and provide a daily flow of, information on log production a...With their widespread utilization, cut-to-length harvesters have become a major source of ‘‘big data’’ for forest management as they constantly capture, and provide a daily flow of, information on log production and assortment over large operational areas. Harvester data afford the calculation of the total log length between the stump and the last cut but not the total height of trees. They also contain the length and end diameters of individual logs but not always the diameter at breast height overbark(DBHOB) of harvested stems largely because of time lapse, operating and processing issues and other system deficiencies. Even when DBHOB is extracted from harvester data, errors and/or bias of the machine measurements due to the variation in the stump height of harvested stems from that specified for the harvester head prior to harvesting and diameter measurement errors may need to be corrected. This study developed(1) a system of equations for estimating DBHOB of trees from diameter overbark(DOB) measured by a harvester head at any height up to 3 m above ground level and(2) an equation to predict the total height of harvested stems in P. radiata plantations from harvester data. To generate the data required for this purpose, cut-to-length simulations of more than 3000 trees with detailed taper measurements were carried out in the computer using the cutting patterns extracted from the harvester data and stump height survey data from clearfall operations. The equation predicted total tree height from DBHOB, total log length and the small end diameter of the top log. Prediction accuracy for total tree height was evaluated both globally over the entire data space and locally within partitioned subspaces through benchmarking statistics. These statistics were better than that of the conventional height-diameter equations for P. radiata found in the literature, even when they incorporated stand age and the average height and diameter of dominant trees in the stand as predictors. So this equation when used with harvester data would outperform the conventional equations in tree height prediction. Tree and stand reconstructions of the harvested forest is the necessary first step to provide the essential link of harvester data to conventional inventory, remote sensing imagery and Li DAR data. The equations developed in this study will provide such a linkage for the most effective combined use of harvester data in predicting the attributes of individual trees, stands and forests, and product recovery for the management and planning of P. radiata plantations in New South Wales, Australia.展开更多
Recently the Journal of Mountain Science published three papers(Lumbres et al.2014;Jung et al.2015;Lumbres et al.2016)that compared selected taper models for bias and precision when estimating upper stem diameters f...Recently the Journal of Mountain Science published three papers(Lumbres et al.2014;Jung et al.2015;Lumbres et al.2016)that compared selected taper models for bias and precision when estimating upper stem diameters for various tree species.展开更多
基金supported by the Open Foundation of the State Key Laboratory of Water Resource Protection and Utilization in Coal Mining(Gant No.SHJT-16-30.18)National Natural Science Foundation of China(No.41602364)+1 种基金National Key R&D Program of China(No.2016YFC0801404)State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology(Beijing)(No.SKLCRSM16DCB14,SKLCRSM17DC01)。
文摘The rhizome functions are of great significance to the ecological protection of the western China mining area,whose ecological management can be provided with technical support via accurate calculations of the rhizome biomass.The rhizome diameter is an important index parameter of rhizome biomass.In this study,we propose an estimation of rhizome diameters based on ground penetrating radar(GPR)-based reverse time migration(RTM)imaging technology.First,the spatial distribution of shallow rhizomes is simulated using the finite difference time domain method.The simulation data are examined via RTM imaging and single-channel rhizome analysis to obtain the rhizome index parameters:Δh,the width of the maximum positive peak amplitude measured at an amplitude of zero,andΔH,the distance between the zero-amplitude position above the largest positive peak in the shallow region and the zero-amplitude position below the largest positive peak in the deeper region.The experiments of physical models verify the effectiveness of the two parameters(Δh andΔH).and indicate that the values ofΔh andΔH are independent of the rhizome burial depth;instead,they are only related to the diameter of the rhizome.For both the numerical simulations and the physical model experiment,the estimation errors ofΔh andΔH for the rhizome diameters can be constrained to less than 6%and 5%,respectively,which shows that the estimation of the rhizome diameters using GPR based RTM imaging technology is reasonable and effective and its high estimation accuracy meets the technical requirements.
基金supported by the Forestry Corporation of New South Wales
文摘With their widespread utilization, cut-to-length harvesters have become a major source of ‘‘big data’’ for forest management as they constantly capture, and provide a daily flow of, information on log production and assortment over large operational areas. Harvester data afford the calculation of the total log length between the stump and the last cut but not the total height of trees. They also contain the length and end diameters of individual logs but not always the diameter at breast height overbark(DBHOB) of harvested stems largely because of time lapse, operating and processing issues and other system deficiencies. Even when DBHOB is extracted from harvester data, errors and/or bias of the machine measurements due to the variation in the stump height of harvested stems from that specified for the harvester head prior to harvesting and diameter measurement errors may need to be corrected. This study developed(1) a system of equations for estimating DBHOB of trees from diameter overbark(DOB) measured by a harvester head at any height up to 3 m above ground level and(2) an equation to predict the total height of harvested stems in P. radiata plantations from harvester data. To generate the data required for this purpose, cut-to-length simulations of more than 3000 trees with detailed taper measurements were carried out in the computer using the cutting patterns extracted from the harvester data and stump height survey data from clearfall operations. The equation predicted total tree height from DBHOB, total log length and the small end diameter of the top log. Prediction accuracy for total tree height was evaluated both globally over the entire data space and locally within partitioned subspaces through benchmarking statistics. These statistics were better than that of the conventional height-diameter equations for P. radiata found in the literature, even when they incorporated stand age and the average height and diameter of dominant trees in the stand as predictors. So this equation when used with harvester data would outperform the conventional equations in tree height prediction. Tree and stand reconstructions of the harvested forest is the necessary first step to provide the essential link of harvester data to conventional inventory, remote sensing imagery and Li DAR data. The equations developed in this study will provide such a linkage for the most effective combined use of harvester data in predicting the attributes of individual trees, stands and forests, and product recovery for the management and planning of P. radiata plantations in New South Wales, Australia.
文摘Recently the Journal of Mountain Science published three papers(Lumbres et al.2014;Jung et al.2015;Lumbres et al.2016)that compared selected taper models for bias and precision when estimating upper stem diameters for various tree species.