期刊文献+
共找到33,572篇文章
< 1 2 250 >
每页显示 20 50 100
A Comprehensive Review of Multimodal Deep Learning for Enhanced Medical Diagnostics 被引量:1
1
作者 Aya M.Al-Zoghby Ahmed Ismail Ebada +2 位作者 Aya S.Saleh Mohammed Abdelhay Wael A.Awad 《Computers, Materials & Continua》 2025年第9期4155-4193,共39页
Multimodal deep learning has emerged as a key paradigm in contemporary medical diagnostics,advancing precision medicine by enabling integration and learning from diverse data sources.The exponential growth of high-dim... Multimodal deep learning has emerged as a key paradigm in contemporary medical diagnostics,advancing precision medicine by enabling integration and learning from diverse data sources.The exponential growth of high-dimensional healthcare data,encompassing genomic,transcriptomic,and other omics profiles,as well as radiological imaging and histopathological slides,makes this approach increasingly important because,when examined separately,these data sources only offer a fragmented picture of intricate disease processes.Multimodal deep learning leverages the complementary properties of multiple data modalities to enable more accurate prognostic modeling,more robust disease characterization,and improved treatment decision-making.This review provides a comprehensive overview of the current state of multimodal deep learning approaches in medical diagnosis.We classify and examine important application domains,such as(1)radiology,where automated report generation and lesion detection are facilitated by image-text integration;(2)histopathology,where fusion models improve tumor classification and grading;and(3)multi-omics,where molecular subtypes and latent biomarkers are revealed through cross-modal learning.We provide an overview of representative research,methodological advancements,and clinical consequences for each domain.Additionally,we critically analyzed the fundamental issues preventing wider adoption,including computational complexity(particularly in training scalable,multi-branch networks),data heterogeneity(resulting from modality-specific noise,resolution variations,and inconsistent annotations),and the challenge of maintaining significant cross-modal correlations during fusion.These problems impede interpretability,which is crucial for clinical trust and use,in addition to performance and generalizability.Lastly,we outline important areas for future research,including the development of standardized protocols for harmonizing data,the creation of lightweight and interpretable fusion architectures,the integration of real-time clinical decision support systems,and the promotion of cooperation for federated multimodal learning.Our goal is to provide researchers and clinicians with a concise overview of the field’s present state,enduring constraints,and exciting directions for further research through this review. 展开更多
关键词 Multimodal deep learning medical diagnostics multimodal healthcare fusion healthcare data integration
暂未订购
Advancing healthcare through laboratory on a chip technology:Transforming microorganism identification and diagnostics
2
作者 Carlos M Ardila 《World Journal of Clinical Cases》 SCIE 2025年第3期9-19,共11页
In a recent case report in the World Journal of Clinical Cases,emphasized the crucial role of rapidly and accurately identifying pathogens to optimize patient treatment outcomes.Laboratory-on-a-chip(LOC)technology has... In a recent case report in the World Journal of Clinical Cases,emphasized the crucial role of rapidly and accurately identifying pathogens to optimize patient treatment outcomes.Laboratory-on-a-chip(LOC)technology has emerged as a transformative tool in health care,offering rapid,sensitive,and specific identification of microorganisms.This editorial provides a comprehensive overview of LOC technology,highlighting its principles,advantages,applications,challenges,and future directions.Success studies from the field have demonstrated the practical benefits of LOC devices in clinical diagnostics,epidemiology,and food safety.Comparative studies have underscored the superiority of LOC technology over traditional methods,showcasing improvements in speed,accuracy,and portability.The future integration of LOC with biosensors,artificial intelligence,and data analytics promises further innovation and expansion.This call to action emphasizes the importance of continued research,investment,and adoption to realize the full potential of LOC technology in improving healthcare outcomes worldwide. 展开更多
关键词 Laboratory-on-a-chip Microorganism identification diagnostics Point-ofcare testing Biosensors
暂未订购
Langmuir probe diagnostics in multi-Maxwellian EEDF plasmas
3
作者 YIP Chi-shung JIN Chenyao +1 位作者 JIANG Di ZHANG Wei 《推进技术》 北大核心 2025年第6期254-274,共21页
This article provides a short review on the importance of the detailed analysis of a Langmuir probe I-V trace in a multi-Maxwellian plasma,and discuss proper procedures analyzing Langmuir probe I-V traces in bi-Maxwel... This article provides a short review on the importance of the detailed analysis of a Langmuir probe I-V trace in a multi-Maxwellian plasma,and discuss proper procedures analyzing Langmuir probe I-V traces in bi-Maxwellian and triple-Maxwellian Electron Energy Distribution Function(EEDF)plasmas.Discus⁃sion and demonstration of procedures include the treatment of the ion saturation current,electron saturation cur⁃rent,space-charge effects on the I-V trace,and most importantly how to properly isolate and fit for each electron group present in an I-V trace reflecting a mult-Maxwellian EEDF,as well as how having a multi-Maxwellian EEDF affects the procedures of treating the ion and electron saturation currents.Shortcomings of common improp⁃er procedures are discussed and demonstrated with simulated I-V traces to show how these procedures gives false measurements. 展开更多
关键词 Plasma diagnostics Langmuir probes EEDFs I-V characteristics Electron temperature
原文传递
A Narrative Review of Artificial Intelligence in Medical Diagnostics
4
作者 Takanobu Hirosawa Taro Shimizu 《Computers, Materials & Continua》 2025年第6期3919-3944,共26页
Artificial Intelligence(AI)is fundamentally transforming medical diagnostics,driving advancements that enhance accuracy,efficiency,and personalized patient care.This narrative review explores AI integration across var... Artificial Intelligence(AI)is fundamentally transforming medical diagnostics,driving advancements that enhance accuracy,efficiency,and personalized patient care.This narrative review explores AI integration across various diagnostic domains,emphasizing its role in improving clinical decision-making.The evolution of medical diagnostics from traditional observational methods to sophisticated imaging,laboratory tests,and molecular diagnostics lays the foundation for understanding AI’s impact.Modern diagnostics are inherently complex,influenced by multifactorial disease presentations,patient variability,cognitive biases,and systemic factors like data overload and interdisciplinary collaboration.AI-enhanced clinical decision support systems utilize both knowledge-based and non-knowledge-based approaches,employing machine learning and deep learning algorithms to analyze vast datasets,identify patterns,and generate accurate differential diagnoses.AI’s potential in diagnostics is demonstrated through applications in genomics,predictive analytics,and early disease detection,with successful case studies in oncology,radiology,pathology,ophthalmology,dermatology,gastroenterology,and psychiatry.These applications demonstrate AI’s ability to process complex medical data,facilitate early intervention,and extend specialized care to underserved populations.However,integrating AI into diagnostics faces significant limitations,including technical challenges related to data quality and system integration,regulatory hurdles,ethical concerns about transparency and bias,and risks of misinformation and overreliance.Addressing these challenges requires robust regulatory frameworks,ethical guidelines,and continuous advancements in AI technology.The future of AI in diagnostics promises further innovations in multimodal AI,genomic data integration,and expanding access to high-quality diagnostic services globally.Responsible and ethical implementation of AI will be crucial to fully realize its potential,ensuring AI serves as a powerful ally in achieving diagnostic excellence and improving global health care outcomes.This narrative review emphasizes AI’s pivotal role in shaping the future of medical diagnostics,advocating for sustained investment and collaborative efforts to harness its benefits effectively. 展开更多
关键词 Artificial intelligence clinical decision support systems diagnostic accuracy health care innovation medical diagnostics personalized medicine
暂未订购
A deep learning approach for enhanced degradation diagnostics of NMC lithium-ion batteries via impedance spectra
5
作者 Yue Sun Rui Xiong +2 位作者 Peng Wang Hailong Li Fengchun Sun 《Journal of Energy Chemistry》 2025年第8期894-907,共14页
Electrochemical impedance spectroscopy(EIS)offers valuable insights into the dynamic behaviors of lithium-ion batteries,making it a powerful and non-invasive tool for evaluating battery health.However,EIS falls short ... Electrochemical impedance spectroscopy(EIS)offers valuable insights into the dynamic behaviors of lithium-ion batteries,making it a powerful and non-invasive tool for evaluating battery health.However,EIS falls short in quantitatively determining the degree of specific degradation modes,which are essential for improving battery lifespan.This study introduces a novel approach employing deep neural networks enhanced by an attention mechanism to identify the degree of degradation modes.The proposed method can automatically determine the most relevant frequency ranges for each degradation mode,which can link impedance characteristics to battery degradation.To overcome the limitation of scarce labeled experimental data,simulation results derived from mechanistic models are incorporated into the model.Validation results demonstrate that the proposed method could achieve root mean square errors below 3%for estimating loss of lithium inventory and loss of active material of the positive electrode,and below 4%for estimating loss of active material of the negative electrode while requiring only 25%of early-stage experimental degradation data.By integrating simulation results,the proposed method achieves a reduction in maximum estimation error ranging from 42.92%to 66.30%across different temperatures and operating conditions compared to the baseline model trained solely on experimental data. 展开更多
关键词 Lithium-ion battery Degradation diagnostics Impedance spectra Integration strategy Deep learning
在线阅读 下载PDF
Reviving classical Bawl (urine) diagnostics in Unani medicine via artificial intelligence and digital tools: toward integrative informatics for traditional systems
6
作者 Farooqui Shazia Parveen Khaleel Ahmed +4 位作者 Athar Parvez Ansari Kazi Kabiruddin Ahmed Noor Zaheer Ahmed Shaheen Akhlaq Sendhilkumar Selvaradjou 《Digital Chinese Medicine》 2025年第3期313-322,共10页
In Unani medicine,Bawl(urine)is recognized as a key diagnostic tool,with humoural imbalances assessed via parameters like color,consistency,sediment,clarity,froth,odor,and volume.This conceptual review explores how th... In Unani medicine,Bawl(urine)is recognized as a key diagnostic tool,with humoural imbalances assessed via parameters like color,consistency,sediment,clarity,froth,odor,and volume.This conceptual review explores how these classical diagnostic indicators may be contextualized alongside modern urinalysis markers(e.g.,bilirubin,protein,ketones,and sedimentation)and examined through emerging artificial intelligence(AI)frameworks.Potential applications include ResNet-18 for color classification,You Only Look Once version 8(YOLOv8)for sediment detection,long short-term memory(LSTM)for viscosity estimation,and EfficientDet for froth analysis,with standardized urine images/videos forming the basis of future datasets.Additionally,a comparative ontology is proposed to align Unani perspectives with diagnostic approaches in traditional Chinese medicine,encouraging cross-system integration.By synthesizing classical epistemology with computational intelligence,this review highlights pathways for developing AI-based decision support systems to promote personalized,accessible,and telemedicine-enabled healthcare. 展开更多
关键词 Unani medicine Bawl(urine)diagnostics Artificial intelligence Deep learning ResNet YOLOv8 Urine biomarkers
暂未订购
Large Models for Machine Monitoring and Fault Diagnostics:Opportunities,Challenges,and Future Direction
7
作者 Xuefeng Chen Yaguo Lei +9 位作者 Yan-Fu Li Simon Parkinson Xiang Li Jinxin Liu Fan Lu Huan Wang Zisheng Wang Bin Yang Shilong Ye Zhibin Zhao 《Journal of Dynamics, Monitoring and Diagnostics》 2025年第2期76-90,共15页
As a critical technology for industrial system reliability and safety,machine monitoring and fault diagnostics have advanced transformatively with large language models(LLMs).This paper reviews LLM-based monitoring an... As a critical technology for industrial system reliability and safety,machine monitoring and fault diagnostics have advanced transformatively with large language models(LLMs).This paper reviews LLM-based monitoring and diagnostics methodologies,categorizing them into in-context learning,fine-tuning,retrievalaugmented generation,multimodal learning,and time series approaches,analyzing advances in diagnostics and decision support.It identifies bottlenecks like limited industrial data and edge deployment issues,proposing a three-stage roadmap to highlight LLMs’potential in shaping adaptive,interpretable PHM frameworks. 展开更多
关键词 context learning fault diagnostics LLMs multimodal learning
在线阅读 下载PDF
Current innovations in head and neck cancer:From diagnostics to therapeutics
8
作者 TAYYABA SATTAR IQRA NAZIR +6 位作者 MEHREEN JABBAR JAVARIA MALIK SABA AFZAL SANA HANIF SEYED ALI MOSADDAD AHMED HUSSAIN HAMID TEBYANIYAN 《Oncology Research》 2025年第5期1019-1032,共14页
Background:Head and neck cancers(HNC)account for a significant global health burden,with increasing incidence rates and complex treatment requirements.Traditional diagnostic and therapeutic approaches,while effective,... Background:Head and neck cancers(HNC)account for a significant global health burden,with increasing incidence rates and complex treatment requirements.Traditional diagnostic and therapeutic approaches,while effective,often result in substantial morbidity and limitations in personalized care.This review provides a comprehensive overview of the latest innovations in diagnostics and therapeutic strategies for HNC from 2015 to 2024.Methods:A review of literature focused on pe-reviewed journals,clinical trial databases,and oncology conference proceedings.Key areas include molecular diagnostics,imaging technologies,minimally invasive surgeries,and innovative therapeutic strategies.Results:Technologies like liquid biopsy next-generation sequencing(NGS)have greatly improved diagnostic accuracy and personalization in HNC care.These advancements have improved survival rates and enhanced patients’quality of life.Personalized therapeutic approaches,including immune checkpoint inhibitors,precision radiation therapy,and surgery,have led to enhanced treatment efficacy while reducing side effects.The integration of AI and machine learning into diagnostics and treatment planning shows promise in optimizing clinical decision-making and predicting treatment outcomes.Conclusion:The current innovations in diagnostics and therapeutics are reshaping the management of head and neck cancer,offering more tailored and effective approaches to care.Overall,the continuous integration of these innovations in clinical practice is reshaping HNC treatment and improving patient outcomes and survival rates.Future research should focus on further refining these technologies,addressing challenges related to accessibility,and exploring their long-term clinical benefits in diverse patient populations. 展开更多
关键词 Head and neck cancer(HNC) diagnostics THERAPEUTICS Innovations
暂未订购
Performance Assessment of Semiconductor Detector Used in Diagnostics and Interventional Radiology at the Nigerian Secondary Standard Dosimetry Laboratory
9
作者 Samuel Mofolorunsho Oyeyemi Olumide Olaife Akerele +6 位作者 David Olakanmi Olaniyi Francis Adole Agada Sherif Olaniyi Kelani Akinkunmi Emmanuel Ladapo Ahmed Mohammed Shiyanbade Bamidele Musbau Adeniran Latifat Ronke Owoade 《World Journal of Nuclear Science and Technology》 2025年第1期17-29,共13页
Radiation doses to patients in diagnostics and interventional radiology need to be optimized to comply with the principles of radiation protection in medical practice. This involves using specific detectors with respe... Radiation doses to patients in diagnostics and interventional radiology need to be optimized to comply with the principles of radiation protection in medical practice. This involves using specific detectors with respective diagnostic beams to carry out quality control/quality assurance tests needed to optimize patient doses in the hospital. Semiconductor detectors are used in dosimetry to verify the equipment performance and dose to patients. This work aims to assess the performance, energy dependence, and response of five commercially available semiconductor detectors in RQR, RQR-M, RQA, and RQT at Secondary Standard Dosimetry for clinical applications. The diagnostic beams were generated using Exradin A4 reference ion chamber and PTW electrometer. The ambient temperature and pressure were noted for KTP correction. The detectors designed for RQR showed good performance in RQT beams and vice versa. The detectors designed for RQR-M displayed high energy dependency in other diagnostic beams. The type of diagnostic beam quality determines the response of semiconductor detectors. Therefore, a detector should be calibrated according to the beam qualities to be measured. 展开更多
关键词 Semiconductor Detectors Optimization of Protection CALIBRATION Patient Dose Diagnostic Radiology
在线阅读 下载PDF
Artificial Intelligence in Diagnostics of Traditional Chinese Medicine
10
作者 Tingye Wang Xuemei Wang +1 位作者 Ningyi Wei Dan He 《Journal of Contemporary Educational Research》 2025年第6期143-147,共5页
With the rapid development of science and technology,the application of artificial intelligence(AI)technology in medical education has become increasingly widespread in the digital age,bringing new opportunities and c... With the rapid development of science and technology,the application of artificial intelligence(AI)technology in medical education has become increasingly widespread in the digital age,bringing new opportunities and challenges to China’s higher education of traditional Chinese medicine(TCM).In the context of digital education,it is of great significance to construct a teaching model that integrates AI technology with the characteristics of the diagnostics of traditional Chinese medicine,in order to improve the quality of curriculum teaching in the future.This article aims to introduce how to organically integrate AI technology with diagnostics of traditional Chinese medicine teaching based on the characteristics of the discipline,to achieve teaching mode reform,therefore to improve the teaching quality of traditional Chinese medicine education,and cultivate high-quality TCM talents that meet the needs of the new era. 展开更多
关键词 diagnostics of traditional Chinese medicine Artificial intelligence Teaching reform Traditional Chinese medicine
在线阅读 下载PDF
Aircraft Engine Sensor Fault Diagnostics Based on Estimation of Engine's Health Degradation 被引量:10
11
作者 薛薇 郭迎清 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第1期18-21,共4页
A duty in development of an on-line fault detection algorithm is to make it associate with estimation of engine s health degradation. For this purpose,an on-line diagnostic algorithm is put forward. Using a tracking f... A duty in development of an on-line fault detection algorithm is to make it associate with estimation of engine s health degradation. For this purpose,an on-line diagnostic algorithm is put forward. Using a tracking filter to estimate the engine s health condition over its lifetime,can be reconstructed an onboard model,which is then made to match a real aircraft gas turbine engine. Finally,a bank of Kalman filters is applied in fault detection and isola-tion (FDI) of sensors for the engine. Through the bank... 展开更多
关键词 aerospace propulsion system Kalman filter health degradation sensor fault diagnostics
原文传递
超声参数联合血清miR-129-5p、miR-654-5p对乳腺癌的诊断价值
12
作者 代妮娜 张文君 张华 《检验医学与临床》 2026年第1期1-6,共6页
目的探讨超声参数联合血清miR-129-5p、miR-654-5p对乳腺癌的诊断价值。方法选取2021年12月至2023年12月在湖北省十堰市太和医院住院进行手术治疗的93例女性乳腺癌患者作为乳腺癌组,同期收治的93例女性乳腺良性病变患者作为良性组,另选... 目的探讨超声参数联合血清miR-129-5p、miR-654-5p对乳腺癌的诊断价值。方法选取2021年12月至2023年12月在湖北省十堰市太和医院住院进行手术治疗的93例女性乳腺癌患者作为乳腺癌组,同期收治的93例女性乳腺良性病变患者作为良性组,另选取同期在湖北省十堰市太和医院体检的93例女性健康体检者作为对照组。所有研究对象均进行超声检查,并记录相关参数[最大血流速度(V_(max))、血流阻力指数(RI)、搏动指数(PI)];采用实时荧光定量反转录聚合酶链反应检测所有研究对象血清miR-129-5p、miR-654-5p水平;绘制受试者工作特征(ROC)曲线分析V_(max)、RI、PI及血清miR-129-5p、miR-654-5p对乳腺癌的诊断价值。结果良性组、乳腺癌组血清miR-129-5p、miR-654-5p水平均明显低于对照组,且乳腺癌组血清miR-129-5p、miR-654-5p水平均低于良性组,差异均有统计学意义(P<0.05)。良性组、乳腺癌组V_(max)、RI、PI均明显高于对照组,且乳腺癌组V_(max)、RI、PI均高于良性组,差异均有统计学意义(P<0.05)。TNM分期为Ⅲ~Ⅳ期、有淋巴结转移、中低分化程度的乳腺癌患者血清miR-129-5p、miR-654-5p低表达比例均高于TNM分期为Ⅰ~Ⅱ期、无淋巴结转移、高分化程度的乳腺癌患者,差异均有统计学意义(P<0.05)。ROC曲线分析结果显示,V_(max)、RI、PI、miR-129-5p、miR-654-5p联合诊断乳腺癌的曲线下面积(AUC)为0.892,大于5项单独诊断的AUC(0.712、0.783、0.720、0.648、0.718),差异均有统计学意义(Z=4.013、4.215、3.889、6.223、3.887,P<0.05)。结论乳腺癌患者血清miR-129-5p、miR-654-5p水平均降低,超声参数(V_(max)、RI、PI)均升高,超声参数联合血清miR-129-5p、miR-654-5p诊断乳腺癌的价值较高。 展开更多
关键词 超声参数 miR-129-5p miR-654-5p 乳腺癌 诊断价值 微小RNA
暂未订购
不同穿刺入路在经皮穿刺椎体成形术/经皮穿刺后凸成形术中的应用
13
作者 王鹏 王璐璐 《精准医学杂志》 2026年第1期87-91,共5页
目前经皮穿刺椎体成形术(PVP)/经皮穿刺后凸成形术(PKP)的穿刺路径包括经椎弓根单侧入路、双侧入路、椎弓根外入路三大类。本文概括了14种临床上常见的PVP/PKP穿刺入路方式或穿刺技术,包括其使用条件、最佳适用指征和技术风险等。近年... 目前经皮穿刺椎体成形术(PVP)/经皮穿刺后凸成形术(PKP)的穿刺路径包括经椎弓根单侧入路、双侧入路、椎弓根外入路三大类。本文概括了14种临床上常见的PVP/PKP穿刺入路方式或穿刺技术,包括其使用条件、最佳适用指征和技术风险等。近年来椎弓根外入路穿刺技术应用逐渐广泛。采用椎弓根外入路穿刺技术的PVP/PKP手术在手术时间、手术创伤、医患放射暴露剂量、耗材费用方面均低于传统经椎弓根双侧入路手术,并能摆脱传统经椎弓根单侧入路穿刺时椎弓根外壁对穿刺外展角的限制,使穿刺针外展角度增大,更有利于穿刺针尖端到达中线附近,实现骨水泥沿中线附近对称弥散。在胸椎及腰椎上段,由于存在脊髓损伤风险,穿刺可优先考虑椎弓根外入路。而腰椎下段由于单侧椎弓根外入路穿刺存在损伤腰动脉风险,推荐使用经椎弓根单侧入路。术前穿刺路径规划需根据操作者技术优势,并结合患者伤椎形态差异与关键参数等选择合适的手术方式。 展开更多
关键词 椎体后凸成形术 椎体成形术 穿刺术 穿刺入路 骨黏合剂 诊断和治疗物质外渗 综述
暂未订购
超声联合磁共振成像对孕妇胎盘植入产前诊断的效能
14
作者 张静 杨志涛 +1 位作者 吴士昊 王谦谦 《精准医学杂志》 2026年第1期54-57,共4页
目的探讨超声联合磁共振成像(MRI)检查对孕妇胎盘植入产前诊断的效能。方法选择2019年1月—2023年12月我院收治的疑似产前胎盘植入的患者65例作为研究对象。分别收集所有患者的术前超声和MRI的诊断结果(包括MRI各征象数据),以及术后的... 目的探讨超声联合磁共振成像(MRI)检查对孕妇胎盘植入产前诊断的效能。方法选择2019年1月—2023年12月我院收治的疑似产前胎盘植入的患者65例作为研究对象。分别收集所有患者的术前超声和MRI的诊断结果(包括MRI各征象数据),以及术后的病理诊断结果。患者的最终诊断结果以手术病理结果为准。采用受试者工作特征(ROC)曲线分析评估各检查方法的诊断效能,通过Kappa一致性检验比较超声、MRI及超声联合MRI诊断结果与手术病理结果的一致性。结果本研究纳入的65例患者中,经手术病理确诊胎盘植入54例。诊断效能比较显示,超声检查诊断胎盘植入的灵敏度为100.00%,但特异度较低(45.45%),准确率为90.77%,其诊断结果与病理结果的一致性中等(Kappa=0.581);MRI检查诊断胎盘植入的灵敏度(96.30%)和特异度(100.00%)均较高,准确率达96.92%,与病理结果诊断高度一致(Kappa=0.898);超声联合MRI检查诊断胎盘植入的灵敏度、特异度及准确率均为100.00%,与病理结果完全一致(Kappa=1.000)。在MRI各征象中,“胎盘内低信号带或信号不均匀”诊断孕妇胎盘植入的敏感度为最高(92.59%),“子宫肌层低信号带中断或不连续”诊断孕妇胎盘植入的特异度最高(100.00%)。结论超声联合MRI检查对孕妇胎盘植入的产前诊断效能优于两种技术单独使用,可显著提高胎盘植入产前诊断的准确性和可靠性。 展开更多
关键词 超声检查 磁共振成像 侵入性胎盘 产前诊断 诊断技术 妇产科 孕妇
暂未订购
多种肿瘤相关自身抗体对肺癌的诊断价值
15
作者 何亚妮 姚耀婵 赖裕轶 《中外医学研究》 2026年第1期29-33,共5页
目的:探讨血清中多种肿瘤相关自身抗体的单独检测及其联合检测在肺癌临床诊断中的应用价值。方法:选取2022年1月—2023年6月南宁市第一人民医院收治的97例诊断为肺癌的患者为肺癌组,同期82例诊断为非肺癌恶性肿瘤患者为非肺癌组,80例肺... 目的:探讨血清中多种肿瘤相关自身抗体的单独检测及其联合检测在肺癌临床诊断中的应用价值。方法:选取2022年1月—2023年6月南宁市第一人民医院收治的97例诊断为肺癌的患者为肺癌组,同期82例诊断为非肺癌恶性肿瘤患者为非肺癌组,80例肺部良性病变患者为良性病变组,以及82名体检健康者且无明显肺部异常者为对照组。采用酶联免疫吸附试验(ELISA)检测4组研究对象血清中多种肿瘤相关自身抗体:P_(53)蛋白(P_(53))、神经元特异性蛋白(PGP9.5)、SRY-box转录因子-2(SOX2)、肿瘤相关睾丸抗原7(GAGE7)、RNA解旋酶抗体4-5(GBU4-5)、素瘤相关抗原A1(MAGE A1)和癌症相关抗原(CAGE)表达水平。比较4组研究对象的P_(53)、PGP9.5、SOX2、GAGE7、GBU4-5、MAGE A1、CAGE表达水平及联合检测的阳性率。分析P_(53)、PGP9.5、SOX2、GAGE7、GBU4-5、MAGE A1、CAGE水平及联合检测在肺癌患者中的诊断价值。结果:肺癌组P_(53)、PGP9.5、SOX2、GAGE7、GBU4-5、MAGE A1、CAGE水平高于对照组,差异有统计学意义(P<0.05);肺癌组与非肺癌组比较,除P_(53)外,PGP9.5、SOX2、GAGE7、GBU4-5、MAGE A1、CAGE表达水平比较,差异无统计学意义(P>0.05);肺癌组与肺部良性疾病组相比,除P_(53)、PGP9.5外,其余上述抗体表达水平比较,差异无统计学意义(P>0.05)。联合检测的阳性率分别为肺癌组49.8%、非肺癌组26.8%、肺部良性病变组16.25%,差异有统计学意义(P<0.05)。受试者工作特征(ROC)曲线分析显示联合检测肺癌的敏感度为69.1%,特异度为72.1%,ROC曲线下面积(AUC)为0.749,差异有统计学意义(P<0.05)。结论:多种肿瘤相关自身抗体联合检测对肺癌具有一定的诊断价值。 展开更多
关键词 肿瘤相关自身抗体 肺癌 联合检测 诊断价值
暂未订购
径向超声小探头技术联合SHOX2、RASSF1A基因甲基化检测在肺外周实性/亚实性结节中的诊断作用研究
16
作者 李黎 任杰 +3 位作者 弓慧 麦日耶木姑丽·艾山 李菲菲 郑大勇 《影像科学与光化学》 2026年第1期21-27,共7页
目的:研究径向超声小探头技术联合Ras相关区域家族1A(RASSF1A)基因、矮小同源盒基因(SHOX2)甲基化检测在肺外周实性/亚实性结节中的诊断价值。方法:选取2021年7月至2023年10月我院收治的302例外周肺结节患者,经支气管镜行径向超声小探... 目的:研究径向超声小探头技术联合Ras相关区域家族1A(RASSF1A)基因、矮小同源盒基因(SHOX2)甲基化检测在肺外周实性/亚实性结节中的诊断价值。方法:选取2021年7月至2023年10月我院收治的302例外周肺结节患者,经支气管镜行径向超声小探头技术引导肺活检,并经实时荧光PCR检测肺泡灌洗液中RASSF1A、SHOX2基因的甲基化状态。结果:与径向超声小探头、RASSF1A、SHOX2基因甲基化单独诊断比较,联合诊断灵敏度(99.45%)、特异度(100.00%)、准确度(99.67%)较高(P<0.05);径向超声小探头+RASSF1A、SHOX2基因甲基化相对于细胞学可将恶性肺结节诊断灵敏度从50.82%提高至99.45%,特异度从97.48%提高至100.00%;径向超声小探头技术联合RASSF1A、SHOX2基因甲基化检测的阳性率在细胞学发现癌细胞组为100.00%,结果未明组为100.00%,未发现癌细胞组为43.10%;径向超声小探头+RASSF1A、SHOX2基因甲基化对亚实性恶性肺结节检出率高于径向超声小探头(P<0.05)。结论:径向超声小探头技术联合RASSF1A、SHOX2基因甲基化检测可有效提高肺外周实性/亚实性结节检出率,为临床早期筛查提供参考依据。 展开更多
关键词 外周肺结节 径向超声 小探头技术 SHOX2基因 RASSF1A基因 诊断价值
暂未订购
微血管成像分级联合CT血管造影对高血压并发急性脑梗死的诊断价值
17
作者 李成林 薛晨 +2 位作者 丁雅莉 赵佼 火红 《陕西医学杂志》 2026年第1期78-82,共5页
目的:探讨微血管成像(SMI)分级联合CT血管造影(CTA)对高血压伴急性脑梗死(ACI)的诊断价值。方法:选择120例高血压患者为研究目标,根据是否发生ACI分组,分为非ACI组50例,ACI组70例,记录两组患者SMI分级、CTA检查结果,ROC曲线分析SMI分级... 目的:探讨微血管成像(SMI)分级联合CT血管造影(CTA)对高血压伴急性脑梗死(ACI)的诊断价值。方法:选择120例高血压患者为研究目标,根据是否发生ACI分组,分为非ACI组50例,ACI组70例,记录两组患者SMI分级、CTA检查结果,ROC曲线分析SMI分级联合CTA对高血压伴ACI的诊断价值,多因素Logistic回归分析高血压发生ACI的影响因素。结果:ACI组收缩压、收缩期最大流速、舒张末期最大流速及颈总动脉IMT增厚、不稳定斑块占比高于非ACI组(均P<0.05)。非ACI组0~3级分别为24、14、6、4例,ACI组0~3级分别为7、8、32、23例。ACI组以2、3级为主,非ACI组以0、1级为主,ACI组2、3级占比明显高于非ACI组(均P<0.05)。非ACI组CTA检查阳性7例(14.58%)、阴性41例(85.42%),ACI组CTA检查阳性60例(85.71%)、阴性10例(14.28%),ACI组软斑块、混合斑块占比明显高于非ACI组(均P<0.05)。SMI分级、CTA联合诊断高血压伴ACI的曲线下面积(AUC)为0.923(95%CI:0.881~0.965),优于两者单独检测(P<0.05)。高SMI分级、CTA阳性、颈总动脉IMT增厚是高血压患者发生ACI的影响因素(均P<0.05)。结论:SMI分级联合CTA对高血压伴急性脑梗死有较高的辅助诊断价值。 展开更多
关键词 血管成像SMI分级 CT血管造影 高血压 急性脑梗死 诊断价值 危险因素
暂未订购
颈脑一体化超声斑块回声特征联合血浆CRP、LDL-C水平对动脉粥样硬化斑块不稳定性的诊断价值
18
作者 曾红英 颜媛 徐敏 《影像科学与光化学》 2026年第1期110-116,共7页
目的:评估颈脑一体化超声斑块回声特征联合血浆CRP和LDL-C水平在动脉粥样硬化斑块不稳定性诊断中的临床价值。方法:本研究纳入2021年1月至2023年6月期间的264名动脉粥样硬化患者。所有患者接受颈脑一体化超声检查,评估斑块回声特征,并... 目的:评估颈脑一体化超声斑块回声特征联合血浆CRP和LDL-C水平在动脉粥样硬化斑块不稳定性诊断中的临床价值。方法:本研究纳入2021年1月至2023年6月期间的264名动脉粥样硬化患者。所有患者接受颈脑一体化超声检查,评估斑块回声特征,并通过免疫比浊法和酶法检测血浆CRP和LDL-C水平。斑块稳定性通过超声造影和CT血管成像评估,并以急性心肌梗死或脑卒中发生作为临床标准。采用多因素Logistic回归分析评估颈脑一体化超声斑块回声特征、CRP和LDL-C与斑块不稳定性之间的关系,同时使用ROC曲线评估各项检测方法的诊断性能。结果:低回声斑块126例(47.7%),混合回声斑块98例(37.1%),高回声斑块40例(15.2%)。斑块不稳定的患者有98例(37.1%)。单独使用斑块回声特征的敏感度为85.4%,特异度为77.2%;CRP的敏感度为71.3%,特异度为68.5%;LDL-C的敏感度为60.1%,特异度为64.8%。多因素Logistic回归分析显示,颈脑一体化超声斑块回声特征(OR=3.62,95%CI:2.45~5.31,P<0.001)、CRP(OR=2.48,95%CI:1.56~3.97,P=0.002)和LDL-C(OR=1.89,95%CI:1.22~2.94,P=0.015)为斑块不稳定性的独立预测因素。ROC曲线分析显示,联合诊断模型的AUC为0.91(95%CI:0.88~0.94),明显高于单项指标(斑块回声特征:AUC=0.82,95%CI:0.77~0.87;CRP:AUC=0.81,95%CI:0.76~0.86;LDL-C:AUC=0.80,95%CI:0.74~0.85)。联合模型的敏感度为91.2%,特异度为82.6%。结论:颈脑一体化超声斑块回声特征联合CRP和LDL-C水平,在动脉粥样硬化斑块不稳定性诊断中表现出较高的诊断效能,能有效提高早期识别能力,为临床提供高效筛查手段。 展开更多
关键词 颈脑一体化超声 斑块回声特征 C反应蛋白 低密度脂蛋白胆固醇 动脉粥样硬化 斑块不稳定性 诊断价值
暂未订购
强直性脊柱炎患者环状RNA hsa_circ_0001707的表达及意义
19
作者 周瑶 戴乾滨 +3 位作者 龙伟 胡凯翔 吴锐 符碧琪 《实用医学杂志》 北大核心 2026年第2期295-302,共8页
目的通过检测强直性脊柱炎(AS)患者外周血PBMCs中hsa_circ_0001707和hsa_circ_0075522的表达水平,探讨环状RNA(circRNA)在AS诊断和疾病活动性评估中的临床价值。方法研究采用病例对照设计,纳入88例初诊的AS患者和80例健康对照者,两组基... 目的通过检测强直性脊柱炎(AS)患者外周血PBMCs中hsa_circ_0001707和hsa_circ_0075522的表达水平,探讨环状RNA(circRNA)在AS诊断和疾病活动性评估中的临床价值。方法研究采用病例对照设计,纳入88例初诊的AS患者和80例健康对照者,两组基线特征匹配良好。采用聚合酶链式反应(qPCR)方式检测外周血hsa_circ_0001707、hsa_circ_0075522和HLA-B27的表达;疾病活动度评估采用巴斯AS疾病活动指数(BASDAI);全自动分析仪测定红细胞沉降率(ESR)、C反应蛋白(CRP)及血常规中各项指标,基于血常规检测结果计算了多个新型炎症指标,包括淋巴细胞与单核细胞比值(LMR)、中性粒细胞与淋巴细胞比值(NLR)、血小板与淋巴细胞比值(PLR)、衍生中性粒细胞与淋巴细胞比值(dNLR)以及系统性免疫炎症指数(SII)。结果circRNA检测结果表明,hsa_circ_0001707在AS患者中显著上调,而hsa_circ_0075522则明显下调(均P<0.05)。进一步的受试者工作特征(ROC)曲线分析显示,hsa_circ_0001707在鉴别AS患者与健康对照方面具有中等诊断效能(AUC=0.677,P<0.001),与dNLR联合使用后,诊断效能显著增强(AUC=0.835,P<0.001)。在疾病活动性评估方面,活动期AS患者(BASDAI≥4)hsa_circ_0001707表达水平显著高于非活动期,且与CRP同步上升,而hsa_circ_0075522未显示出显著变化。hsa_circ_0001707对活动性AS的判别能力优于CRP(AUC分别为0.684与0.674)。相关性分析进一步支持hsa_circ_0001707在AS疾病过程中的潜在作用。其水平与多项炎症指标(NLR、SII、CRP)及BASDAI呈正相关(P<0.05),而与淋巴细胞比例(L%)及LMR呈负相关,提示其可能参与调控AS的炎症反应与免疫异常过程。相比之下,hsa_circ_0075522未表现出与临床参数的相关性。结论hsa_circ_0001707可能作为一种有前景的外周血生物标志物,在AS的诊断及活动性评估中发挥潜在作用。 展开更多
关键词 强直性脊柱炎 环状RNA hsa_circ_0001707 生物标志物 疾病活动度 炎症 诊断模型
暂未订购
中医四诊诊断心血管疾病研究概述
20
作者 朱烔依 汪佳琪 张哲 《中国现代药物应用》 2026年第3期168-171,共4页
现代医学模式转型背景下“主动健康”战略对诊疗提出新要求,传统医学在心血管疾病诊疗中的独特优势日益受到重视。但传统医学诊断容易受到工作经验、外界环境等因素干扰,且缺乏客观量化评价体系,导致诊断可重复性低和准确率低等问题。因... 现代医学模式转型背景下“主动健康”战略对诊疗提出新要求,传统医学在心血管疾病诊疗中的独特优势日益受到重视。但传统医学诊断容易受到工作经验、外界环境等因素干扰,且缺乏客观量化评价体系,导致诊断可重复性低和准确率低等问题。因此,中医四诊结合现代医学与人工智能技术,利用客观化数据实现定性资料到定量数据的转换,构建心血管疾病诊断模型,从而有效提升诊断准确率。为证候演变规律研究提供了新范式,对推动中西医结合智慧医疗发展具有重要临床价值。 展开更多
关键词 中医四诊 心血管疾病 疾病诊断 诊断模型
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部