Dew is an essential water resource for the survival and reproduction of organisms in arid and semi-arid regions.Yet estimating the dew amount and quantifying its long-term variation are challenging.In this study,we el...Dew is an essential water resource for the survival and reproduction of organisms in arid and semi-arid regions.Yet estimating the dew amount and quantifying its long-term variation are challenging.In this study,we elucidate the dew amount and its long-term variation in the Kunes River Valley,Northwest China,based on the measured daily dew amount and reconstructed values(using meteorological data from 1980 to 2021),respectively.Four key results were found:(1)the daily mean dew amount was 0.05 mm during the observation period(4 July-12 August and 13 September-7 October of 2021).In 35 d of the observation period(i.e.,73%of the observation period),the daily dew amount exceeded the threshold(>0.03 mm/d)for microorganisms;(2)air temperature,relative humidity,and wind speed had significant impacts on the daily dew amount based on the relationships between the measured dew amount and meteorological variables;(3)for estimating the daily dew amount,random forest(RF)model outperformed multiple linear regression(MLR)model given its larger R^(2) and lower MAE and RMSE;and(4)the dew amount during June-October and in each month did not vary significantly from 1980 to the beginning of the 21^(st) century.It then significantly decreased for about a decade,after it increased slightly from 2013 to 2021.For the whole meteorological period of 1980-2021,the dew amount decreased significantly during June-October and in July and September,and there was no significant variation in June,August,and October.Variation in the dew amount in the Kunes River Valley was mainly driven by relative humidity.This study illustrates that RF model can be used to reconstruct long-term variation in the dew amount,which provides valuable information for us to better understand the dew amount and its relationship with climate change.展开更多
The chemical composition of dew is closely related to the air quality.Since 2013,China has promulgated a series of laws and regulations focused on air pollution control,and remarkable results have been achieved over t...The chemical composition of dew is closely related to the air quality.Since 2013,China has promulgated a series of laws and regulations focused on air pollution control,and remarkable results have been achieved over the past decade.As an indicator of near-surface air quality,the chemical composition of dew obviously changes.The dew quality was affected mainly by the local air quality.The mean dew pH was 6.3±0.4(n=186)from 2013 to 2023,and the order of ions was SO_(4)^(2-)(3180.7±3592.0μeq/L)>NH_(4)^(+)(2552.3±2971.8μeq/L)>Ca^(2+)(1006.2±945.5μeq/L)>NO_(3)^(-)(397.2±511.0μeq/L)>Cl^(-)(152.3±133.4μeq/L)>K^(+)(149.4±191.6μeq/L)>F^(-)(133.0±110.3μeq/L)>Na^(+)(123.8±94.9μeq/L)>Mg^(2+)(83.3±65.6μeq/L).The dew quality deteriorated on hazy days.There were no haze events during the condensation period after 2020,which caused a significant reduction in the concentration of the main ions in the dew.Over the past decade,electrical conductivity(EC),total dissolved solids(TDS),PM_(2.5) and PM_(10),as well as major ions(SO_(4)^(2-),NO_(3)^(-),NH_(4)^(+),Ca^(2+),Cl^(-),Na^(+),F^(-),K^(+)and Mg^(2+))in dew,have all tended to decrease.The annualmean NO_(3)^(-)concentration in 2023 was 86.5%lower than that in 2013,with values of 79.3%for SO_(4)^(2-),77.3%for Ca^(2+),76.7%for NH_(4)^(+),74.6%for K^(+),65.4%for Mg^(2+),63.4%for Na^(+),61.7%for Cl^(-),and 60.3%for F^(-).展开更多
Shale gas reservoirs typically contain numerous nanoscale pores,with pore size playing a significant role in influencing the gas behavior.To better understand the related mechanisms,this study employs the Gauge-GEMC m...Shale gas reservoirs typically contain numerous nanoscale pores,with pore size playing a significant role in influencing the gas behavior.To better understand the related mechanisms,this study employs the Gauge-GEMC molecular simulation method to systematically analyze the effects of various pore sizes(5,10,20,and 40 nm)on the phase behavior and dew point pressure of the shale gas reservoir components.The simulation results reveal that when pore sizes are smaller than 40 nm,the dew point pressure increases significantly as the pore size decreases.For instance,the dew point pressure in 5 nmpores is 20.3%higher than undermacroscopic conditions.Additionally,larger hydrocarbon molecules exhibit a tendency to aggregate in smaller pores,particularly in the 5–10 nm range,where the relative concentration of heavy hydrocarbons(C_(4+))increases markedly.Moreover,as the pore size becomes larger,the component distribution gradually aligns with experimental results observed under macroscopic conditions.This study demonstrates that pore effects are more pronounced for smaller sizes,directly influencing the aggregation of heavy hydrocarbons and the rise in dew point pressure.These phenomena could significantly impact the diffusivity of shale gas reservoirs and the recovery of condensate gas.The findings provide new theoretical insights into phase behavior changes in nanopores,offering valuable guidance for optimizing shale gas reservoir extraction strategies.展开更多
Dew is an important supplement water source in arid and semi-arid areas. In order to determine the dew formation on different kinds of soils associated with various shrub species and microhabitats, we performed measur...Dew is an important supplement water source in arid and semi-arid areas. In order to determine the dew formation on different kinds of soils associated with various shrub species and microhabitats, we performed measurement of accumulated dew formation amount and duration in October 2009 in a revegetation-stabilized arid desert ecosystem in Shapotou area, northern China. The results indicated that the accumulated dew formation amount was four times larger at open spaces as compared to under the canopy, and it was nearly twice as much under living Artemisia ordosica plants(L.A.) as compared to under living Caragana korshinskii plants(L.C.). The opposite characteristics were found for dew duration between different microhabitats. Dew amounts at different vertical heights around the shrub stands were in the order of 50 cm above the canopy〉the canopy edge〉under the canopy. Dew amount continued to increase after dawn, and the proportion of average accumulated dew amount after dawn accounting for the average maximum amount increased from above the canopy to under the canopy. Dew formation duration after sunrise accounted for more than 50% of the total formation duration during the day time. Contrary to the distribution characteristics of dew amount, dew duration after dawn and total dew formation duration during the day time were both highest under the canopy, followed by at the canopy edge and then at 50 cm above the canopy. The portion of dew duration after dawn accounting for the total dew duration during the day time increased from above the canopy to under the canopy. From these results, we may conclude that dew availability as a supplemental water resource for improving the microhabitats in water-limited arid ecosystems is position dependent especially for the plant microhabitats at different stands layers.展开更多
To improve the wall surface hydrophilicity of a tube type indirect evaporative cooler,a new method adopting porous ceramics is proposed.This method realizes the combination of porous ceramics and the evaporative cooli...To improve the wall surface hydrophilicity of a tube type indirect evaporative cooler,a new method adopting porous ceramics is proposed.This method realizes the combination of porous ceramics and the evaporative cooling technique.The design calculation of the porous ceramics tube type dew point indirect evaporative cooler are carried out from such aspects as the volumes and status parameters of the primary and secondary air,the cooler structure,the heat transfer of the solid porous ceramic tubes and the resistance of the cooler.The calculation results show that the design is reasonable.Finally,based on the design calculation,the porous ceramics tube type dew point indirect evaporative cooler is successfully manufactured.展开更多
Dew is an important water source for plants in arid and semi-arid regions. However, information on dew is scarce in such regions. In this study, we explored dew formation, amount, and duration of rain-fed jujube(Zizy...Dew is an important water source for plants in arid and semi-arid regions. However, information on dew is scarce in such regions. In this study, we explored dew formation, amount, and duration of rain-fed jujube(Zizyphus jujube Mill) trees in a semi-arid loess hilly region of China(i.e., Mizhi County). The data included dew intensity and duration, relative humidity, temperature, and wind speed measured from 26 July to 23 October, 2012 and from 24 June to 17 October, 2013 using a micro-climate system(including dielectric leaf wetness sensors, VP-3 Relative Humidity/Temperature Sensor, High Resolution Rain Gauge, and Davis Cup Anemometer). The results show that atmospheric conditions of relative humidity of 〉78% and dew point temperature of 1°C–3°C are significantly favorable to dew formation. Compared with the rainfall, dew was characterized by high frequency, strong stability, and long duration. Furthermore, heavy dew accounted for a large proportion of the total amount. The empirical models(i.e., relative humidity model(RH model) and dew point depression model(DPD model)) for daily dew duration estimation performed well at 15-min intervals, with low errors ranging between 1.29 and 1.60 h, respectively. But it should be noted that the models should be calibrated firstly by determining the optimal thresholds of relatively humidity for RH model and dew point depression for DPD model. For rain-fed jujube trees in the semi-arid loess hilly regions of China, the optimal threshold of relative humidity was 78%, and the optimal upper and lower thresholds of dew point depression were 1°C and 5°C, respectively. The study further demonstrates that dew is an important water resource that cannot be ignored for rain-fed jujube trees and may affect water balance at regional scales.展开更多
Dew is an important source of water which significantly influences the physiological status of vegetation and the microclimate environment. For quantifying the characteristics of dew events and analyzing the underlyin...Dew is an important source of water which significantly influences the physiological status of vegetation and the microclimate environment. For quantifying the characteristics of dew events and analyzing the underlying mechanism of dew formation in different ecosystems, we measured, based on the flux-profile method, the amount, frequency and duration of dew events in two croplands, an arid artificial oasis cropland in Zhangye, Gansu province and a sub-humid cropland in Luancheng, Hebei province in China. The results showed that dew events were observed in a total of 69 days in Zhangye, which accounted for 59% of the growing season(from 28 May to 21 September, 2012), while 128 days in Luancheng, which accounted for 79% of the growing season(from 5 April to 13 September, 2008). The frequencies of dew events were 2.8 and 2.4 times of those of precipitation in Zhangye and Luancheng, respectively. In addition, the dew amount reached up to 9.9 and 20.2 mm in Zhangye and Luancheng, which accounted for 9.5% and 4.1% of precipitation, respectively. The average amount of dew was 0.14 and 0.16 mm/night in Zhangye and Luancheng, respectively and the duration of dew events ranged from 0.5 to 12.0 h in the two study sites. Dew amounts were associated with the gradient of atmospheric water vapor concentration and dew duration(P<0.001) in both the two sites. The result implies that dew events play a more important role in crop growth in arid areas in comparison to sub-humid areas considering the dew occurrence frequency and the amount per night.展开更多
Dew has been recognized for its ecological significance and has also been identified as an additional source of water in arid zones. We used factorial control experiment, under dew presence in the field, to explore ph...Dew has been recognized for its ecological significance and has also been identified as an additional source of water in arid zones. We used factorial control experiment, under dew presence in the field, to explore photosynthetic performance, water status and growth response of desert annual herbage. Bassia dasyphylla seedlings were grown in contrasting dew treatments (dew-absent and dew-present) and different watering regimes (normal and deficient). The effects of dew on the water status and photosynthetic performance of Bassia dasyphylla grown in a desert area of the Hexi Corridor in Northwestern China, were evaluated. The results indicated the pres- ence of dew significantly increased relative water content (RWC) of shoots and total biomass of plants in both water regimes, and enhanced the diurnal shoot water potential and stomatal conductance in the early morning, as well as photosynthetic rate, which reached its maximum only in the water-stressed regime. The presence of dew increased aboveground growth of plants and photosynthate accumulation in leaves, but decreased the root-to-shoot ratio in both water regimes. Dew may have an important role in improving plant water status and ameliorating the adverse effects of plants exposed to prolonged drought.展开更多
In order to investigate the dew amounts and analysis formation conditions of dew by examining the correlations between dew amounts and meteorological factors in Carex lasiocarpa marsh in the Sanjiang Plain,the dew amo...In order to investigate the dew amounts and analysis formation conditions of dew by examining the correlations between dew amounts and meteorological factors in Carex lasiocarpa marsh in the Sanjiang Plain,the dew amounts and several meteorological factors were monitored during the growing season from June to September in 2005 and 2008 at the Sanjiang Mire Wetland Experimental Station,Chinese Academy of Sciences.Dew was collected by woodstick made by poplar tree in Carex lasiocarpa marsh and the amounts were estimated by subtraction method.The results indicated that average daily accumulated dew amounts reached the peak in August.The highest dew amounts in Carex lasiocarpa marsh were 0.201 mm/d,and the most frequent dew volume ranged from 0.08 mm/d to 0.14 mm/d.The amounts correlated positively with relative humidity,dew point temperature,and water vapor pressure.Whereas it correlated negatively with wind speed.The dew production in Carex lasiocarpa marsh more frequently occurred under the conditions of wind speed around 2.0 m/s,the water vapor pressure above 9 hPa;the relative humidity between 90% and 95% and dew point temperature above 6 ℃.展开更多
Thermal spray coatings have been widely used on hearth rolls in a continuous annealing line to improve steel sheet quality and prolong the roll service life. One of the common defects formed on a working hearth roll i...Thermal spray coatings have been widely used on hearth rolls in a continuous annealing line to improve steel sheet quality and prolong the roll service life. One of the common defects formed on a working hearth roll is the oxide pickup. The most common cause of the pickup formation is that the active Mn oxide reacts with coating. The potentials of two different coatings, CoCrAlYTa-Al2O3 (No. 1) and CoCrYNi-Y2O3 (No. 2), to duplicate pickups by reacting with Fe and Mn oxides were studied. There are three stages during pickup producing and growing. No. 2 coating effectively reduced the corrosion of Mn oxide. The characterization and modification of the surface oxide formed can be changed with different dew points. The results indicate that the dew point from — 53 to — 10 ℃ can change the depth of Mn oxide, such that an alteration can prevent the first stage and second stage and is good for preventing the pickup growing.展开更多
It is important to understand the effects of dew events on non-mucilaginous seed germination of annual desert plant species during dry seasons, which is critical to maintaining long-term soil seed banks in a harsh des...It is important to understand the effects of dew events on non-mucilaginous seed germination of annual desert plant species during dry seasons, which is critical to maintaining long-term soil seed banks in a harsh desert environment. We hypothesize that dew deposition also assists in the non-mucilaginous seed germination of annual desert species. A common field dew treatment experiment was conducted in the Linze Inland River Basin Research Station to investigate the effects of dew deposition on the seed germination of four annual species, including Agriophyllum squarrosum, Corispermum mongoficum, Bassia dasyphylla and Halogeton arachnoideus. The results showed that the presence of dew significantly increased seed germination percentages and decreased the nonviable seed percentages of B. dasyphylla and H. arachnoideus, whereas there was no such trend for the seeds of C. mongolicum and A. squarrosum. The ecological effects of dew on the seed germination and viability of the annual desert plants were species specific. Although dew wetting is insufficient to cause seed germination, it may help in priming the seeds.展开更多
The effect of dew points(-50,-l0 and+10℃)on the galvanizing properties of a high-manganese twinning-inducedplasticity(TWIP)steel was studied.Scanning electron microscopy(SEM),glow discharge optical emission spectrome...The effect of dew points(-50,-l0 and+10℃)on the galvanizing properties of a high-manganese twinning-inducedplasticity(TWIP)steel was studied.Scanning electron microscopy(SEM),glow discharge optical emission spectrometry(GDOES)and X-ray photoelectron spectroscopy(XPS)were used for microscopic observation and qualitative analysis of the interfacial layer between the steel surface and the zinc layer after hot-dip galvanizing.SEM analysis results show thatthree diffcrent morphologies of metallic oxides are formed on the interfacial layer under the different dew points.GDOES results show that Al is present in the molten zinc,reacting with Fe on the steel surface to form Fe2Al5,which can increasethe galvanizing properties.XPS results show that the valence states of Mn in the interfacial alloy layer are Mn'*and Mn*+,and the valence stales of Fe are Fe^0,Fe^2+and Fe^3+.The experimental results show that the hot-dip galvanizing performanceis the best at-10℃ and the formation of Mn and Fe intermetallic oxides has a bad effect on hot-dip galvanizing behaviorof the high-manganese TWIP steel.The types of the formed surface oxides(MnO,Mn3O4,Mn2O3,FeO3,and Fe2MnO4)onthe surface of the steel sheet are confirmed.It can obtain the best hot-dip galvanizing performance of the high-manganese TWIP steel by controlling the dew point from-10 to-5℃.展开更多
The low temperature process of cold dew wind( from September 19 to 27 in 2011) for late rice production was dynamically monitored by using CLDAS temperature,combined with the background information of rice cultivation...The low temperature process of cold dew wind( from September 19 to 27 in 2011) for late rice production was dynamically monitored by using CLDAS temperature,combined with the background information of rice cultivation from multi-source satellite database together with an reference to the monitoring indexes of cold dew wind disaster to verify the precision of CLDAS data,so as to provide a reference for monitoring chilling damage caused by cold dew wind in late rice production in Guangxi. The results showed that the cold wind dew caused heavy damage to an area of 3 159. 76 km^2,moderate damage to an area of 559. 77 km^2 and light damage to an area of 2 452. 14 km^2. The correlation coefficients between CLDAS inversion temperature and actual temperature of 12 verification meteorological stations were all larger than 0. 93,and the difference in daily average temperature was 0. 3 ℃. The time difference between maximum and minimum temperature provided by CLDAS and corresponding actual temperature from 12 meteorological stations was less than 1 h. The temperature data provided by CLDAS was in accordance with actual temperature data. With an advantage of rapidly,minutely and accurately monitoring the grade distribution of local cold dew wind disaster for late rice,CLDAS can be used in monitoring cold dew wind in late rice production in Guangxi.展开更多
Accurate estimation of dew point temperature(Tdew)plays a very important role in the fields of water resource management,agricultural engineering,climatology and energy utilization.However,there are few studies on the...Accurate estimation of dew point temperature(Tdew)plays a very important role in the fields of water resource management,agricultural engineering,climatology and energy utilization.However,there are few studies on the applicability of local Tdew algorithms at regional scales.This study evaluated the performance of a new machine learning algorithm,i.e.,gradient boosting on decision trees with categorical features support(Cat Boost)to estimate daily Tdew using limited local and cross-station meteorological data.The random forests(RF)algorithm was also assessed for comparison.Daily meteorological data from 2016 to 2019,including maximum,minimum and average temperature(Tmax,Tmin and Tmean),maximum,minimum and average relative humidity(RHmax,RHmin and RHmean),maximum,minimum and average global solar radiation(Rsmax,Rsmin and Rsmean)from three weather stations in Hunan of China were used to evaluate the CatBoost and RF algorithms.The results showed that both algorithms achieved satisfactory estimation accuracy at the target stations(on average RMSE=1.020℃,R^(2)=0.969,MAE=0.718℃and NRMSE=0.087)in the absence of complete meteorological parameters(with only temperature data as input).The Cat Boost algorithm(on average RMSE=1.900℃and R^(2)=0.835)was better than the RF algorithm(on average RMSE=2.214℃andR^(2)=0.828).The accuracy and stability of the CatBoost and RF algorithms were positively correlated with the number of input parameters,and the three-parameter algorithms achieved higher estimation accuracy than the two-parameter algorithms.The developed methodology is helpful to predict Tdew at regional scale.展开更多
The query optimizer uses cost-based optimization to create an execution plan with the least cost,which also consumes the least amount of resources.The challenge of query optimization for relational database systems is...The query optimizer uses cost-based optimization to create an execution plan with the least cost,which also consumes the least amount of resources.The challenge of query optimization for relational database systems is a combinatorial optimization problem,which renders exhaustive search impossible as query sizes rise.Increases in CPU performance have surpassed main memory,and disk access speeds in recent decades,allowing data compression to be used—strategies for improving database performance systems.For performance enhancement,compression and query optimization are the two most factors.Compression reduces the volume of data,whereas query optimization minimizes execution time.Compressing the database reduces memory requirement,data takes less time to load into memory,fewer buffer missing occur,and the size of intermediate results is more diminutive.This paper performed query optimization on the graph database in a cloud dew environment by considering,which requires less time to execute a query.The factors compression and query optimization improve the performance of the databases.This research compares the performance of MySQL and Neo4j databases in terms of memory usage and execution time running on cloud dew servers.展开更多
The climatic general situation of cold dew wind weather in past years,main circulation features in early cold dew wind years as well as changes of circulation feature in prophase were conducted statistical analysis,be...The climatic general situation of cold dew wind weather in past years,main circulation features in early cold dew wind years as well as changes of circulation feature in prophase were conducted statistical analysis,besides,many meteorological factors influenced the time of cold dew wind weather were analyzed.The damage and defensive countermeasures of cold dew wind on late rice production.展开更多
This paper describes construction and characterization of a dew/frost -point generator developed at national institute for standards. It is intended to operate in the range from -50 ℃to 0 ℃. The air flows through a ...This paper describes construction and characterization of a dew/frost -point generator developed at national institute for standards. It is intended to operate in the range from -50 ℃to 0 ℃. The air flows through a saturator controlled by a regulated flow meter. The reference dew/frost -point temperature was measured by standard platinum resistance thermometer (SPRT) connected to a resistance bridge. A comparative study between the saturator temperature of the new generator measured by SPRT and the dew/frost-point temperature of a calibrated chilled-mirror hygrometer was conducted. It helped to determine the uncertainty of saturator; this uncertainty was found to be between ±0.06℃ to -4- 0.15℃ at confidence limit of 95%.Several experiments were carried out in the mentioned range. Obtained results gave the confidence that NIS generator could be used as a primary humid air generator.展开更多
The occurrence of liquid condensation in natural gas accounts for new challenges during the interoperability between transmission networks,where condensation would lead to higher pressure drops,lower line capacity and...The occurrence of liquid condensation in natural gas accounts for new challenges during the interoperability between transmission networks,where condensation would lead to higher pressure drops,lower line capacity and may cause safety problem.A successful case of hydrocarbon dew point(HCDP)analysis is demonstrated during the mixing of natural gases in the transmission pipeline.Methods used to predict the HCDP are combined with equations of state(EOS)and characterization of C6+heavy components.Predictions are compared with measured HCDP with different concentrations of mixed gases at a wide range of pressure and temperature scopes.Software named"PipeGasAnalysis"is developed and helps to systematic analyze the condensation problem,which will provide the guidance for the design and operation of the network.展开更多
基金supported by the National Natural Science Foundation of China (41901048)the Project of State Key Laboratory of Desert and Oasis Ecology,Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences (E151030101)+1 种基金the Project of National Cryosphere Desert Data Center of China (2021kf02)the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2021438)
文摘Dew is an essential water resource for the survival and reproduction of organisms in arid and semi-arid regions.Yet estimating the dew amount and quantifying its long-term variation are challenging.In this study,we elucidate the dew amount and its long-term variation in the Kunes River Valley,Northwest China,based on the measured daily dew amount and reconstructed values(using meteorological data from 1980 to 2021),respectively.Four key results were found:(1)the daily mean dew amount was 0.05 mm during the observation period(4 July-12 August and 13 September-7 October of 2021).In 35 d of the observation period(i.e.,73%of the observation period),the daily dew amount exceeded the threshold(>0.03 mm/d)for microorganisms;(2)air temperature,relative humidity,and wind speed had significant impacts on the daily dew amount based on the relationships between the measured dew amount and meteorological variables;(3)for estimating the daily dew amount,random forest(RF)model outperformed multiple linear regression(MLR)model given its larger R^(2) and lower MAE and RMSE;and(4)the dew amount during June-October and in each month did not vary significantly from 1980 to the beginning of the 21^(st) century.It then significantly decreased for about a decade,after it increased slightly from 2013 to 2021.For the whole meteorological period of 1980-2021,the dew amount decreased significantly during June-October and in July and September,and there was no significant variation in June,August,and October.Variation in the dew amount in the Kunes River Valley was mainly driven by relative humidity.This study illustrates that RF model can be used to reconstruct long-term variation in the dew amount,which provides valuable information for us to better understand the dew amount and its relationship with climate change.
基金supported by the Natural Science Foundation of Jilin Province(No.YDZJ202401369ZYTS)the National Natural Science Foundation of China(No.42175140).
文摘The chemical composition of dew is closely related to the air quality.Since 2013,China has promulgated a series of laws and regulations focused on air pollution control,and remarkable results have been achieved over the past decade.As an indicator of near-surface air quality,the chemical composition of dew obviously changes.The dew quality was affected mainly by the local air quality.The mean dew pH was 6.3±0.4(n=186)from 2013 to 2023,and the order of ions was SO_(4)^(2-)(3180.7±3592.0μeq/L)>NH_(4)^(+)(2552.3±2971.8μeq/L)>Ca^(2+)(1006.2±945.5μeq/L)>NO_(3)^(-)(397.2±511.0μeq/L)>Cl^(-)(152.3±133.4μeq/L)>K^(+)(149.4±191.6μeq/L)>F^(-)(133.0±110.3μeq/L)>Na^(+)(123.8±94.9μeq/L)>Mg^(2+)(83.3±65.6μeq/L).The dew quality deteriorated on hazy days.There were no haze events during the condensation period after 2020,which caused a significant reduction in the concentration of the main ions in the dew.Over the past decade,electrical conductivity(EC),total dissolved solids(TDS),PM_(2.5) and PM_(10),as well as major ions(SO_(4)^(2-),NO_(3)^(-),NH_(4)^(+),Ca^(2+),Cl^(-),Na^(+),F^(-),K^(+)and Mg^(2+))in dew,have all tended to decrease.The annualmean NO_(3)^(-)concentration in 2023 was 86.5%lower than that in 2013,with values of 79.3%for SO_(4)^(2-),77.3%for Ca^(2+),76.7%for NH_(4)^(+),74.6%for K^(+),65.4%for Mg^(2+),63.4%for Na^(+),61.7%for Cl^(-),and 60.3%for F^(-).
基金financially supported by the Hubei Province Education Department of China(Project Name:Research on the Formation Mechanism and Microscopic Characteristics of Tight Dolomite Reservoirs in Salt Lake Basins:A Case Study of the Xingouzui Formation in the Jianghan Basin,Grant No.B2020032).
文摘Shale gas reservoirs typically contain numerous nanoscale pores,with pore size playing a significant role in influencing the gas behavior.To better understand the related mechanisms,this study employs the Gauge-GEMC molecular simulation method to systematically analyze the effects of various pore sizes(5,10,20,and 40 nm)on the phase behavior and dew point pressure of the shale gas reservoir components.The simulation results reveal that when pore sizes are smaller than 40 nm,the dew point pressure increases significantly as the pore size decreases.For instance,the dew point pressure in 5 nmpores is 20.3%higher than undermacroscopic conditions.Additionally,larger hydrocarbon molecules exhibit a tendency to aggregate in smaller pores,particularly in the 5–10 nm range,where the relative concentration of heavy hydrocarbons(C_(4+))increases markedly.Moreover,as the pore size becomes larger,the component distribution gradually aligns with experimental results observed under macroscopic conditions.This study demonstrates that pore effects are more pronounced for smaller sizes,directly influencing the aggregation of heavy hydrocarbons and the rise in dew point pressure.These phenomena could significantly impact the diffusivity of shale gas reservoirs and the recovery of condensate gas.The findings provide new theoretical insights into phase behavior changes in nanopores,offering valuable guidance for optimizing shale gas reservoir extraction strategies.
基金financially supported by the National Natural Science Foundation of China (41201085)the 100 Talents Program of the Chinese Academy of Sciences
文摘Dew is an important supplement water source in arid and semi-arid areas. In order to determine the dew formation on different kinds of soils associated with various shrub species and microhabitats, we performed measurement of accumulated dew formation amount and duration in October 2009 in a revegetation-stabilized arid desert ecosystem in Shapotou area, northern China. The results indicated that the accumulated dew formation amount was four times larger at open spaces as compared to under the canopy, and it was nearly twice as much under living Artemisia ordosica plants(L.A.) as compared to under living Caragana korshinskii plants(L.C.). The opposite characteristics were found for dew duration between different microhabitats. Dew amounts at different vertical heights around the shrub stands were in the order of 50 cm above the canopy〉the canopy edge〉under the canopy. Dew amount continued to increase after dawn, and the proportion of average accumulated dew amount after dawn accounting for the average maximum amount increased from above the canopy to under the canopy. Dew formation duration after sunrise accounted for more than 50% of the total formation duration during the day time. Contrary to the distribution characteristics of dew amount, dew duration after dawn and total dew formation duration during the day time were both highest under the canopy, followed by at the canopy edge and then at 50 cm above the canopy. The portion of dew duration after dawn accounting for the total dew duration during the day time increased from above the canopy to under the canopy. From these results, we may conclude that dew availability as a supplemental water resource for improving the microhabitats in water-limited arid ecosystems is position dependent especially for the plant microhabitats at different stands layers.
基金The National Natural Science Foundation of China(No.50846056)
文摘To improve the wall surface hydrophilicity of a tube type indirect evaporative cooler,a new method adopting porous ceramics is proposed.This method realizes the combination of porous ceramics and the evaporative cooling technique.The design calculation of the porous ceramics tube type dew point indirect evaporative cooler are carried out from such aspects as the volumes and status parameters of the primary and secondary air,the cooler structure,the heat transfer of the solid porous ceramic tubes and the resistance of the cooler.The calculation results show that the design is reasonable.Finally,based on the design calculation,the porous ceramics tube type dew point indirect evaporative cooler is successfully manufactured.
基金funded by the National Key Technology R&D Program (2015BAC01B03)the Science and Technology Coordination and Innovation Project of Shaanxi Province (2014KTCG01-03)
文摘Dew is an important water source for plants in arid and semi-arid regions. However, information on dew is scarce in such regions. In this study, we explored dew formation, amount, and duration of rain-fed jujube(Zizyphus jujube Mill) trees in a semi-arid loess hilly region of China(i.e., Mizhi County). The data included dew intensity and duration, relative humidity, temperature, and wind speed measured from 26 July to 23 October, 2012 and from 24 June to 17 October, 2013 using a micro-climate system(including dielectric leaf wetness sensors, VP-3 Relative Humidity/Temperature Sensor, High Resolution Rain Gauge, and Davis Cup Anemometer). The results show that atmospheric conditions of relative humidity of 〉78% and dew point temperature of 1°C–3°C are significantly favorable to dew formation. Compared with the rainfall, dew was characterized by high frequency, strong stability, and long duration. Furthermore, heavy dew accounted for a large proportion of the total amount. The empirical models(i.e., relative humidity model(RH model) and dew point depression model(DPD model)) for daily dew duration estimation performed well at 15-min intervals, with low errors ranging between 1.29 and 1.60 h, respectively. But it should be noted that the models should be calibrated firstly by determining the optimal thresholds of relatively humidity for RH model and dew point depression for DPD model. For rain-fed jujube trees in the semi-arid loess hilly regions of China, the optimal threshold of relative humidity was 78%, and the optimal upper and lower thresholds of dew point depression were 1°C and 5°C, respectively. The study further demonstrates that dew is an important water resource that cannot be ignored for rain-fed jujube trees and may affect water balance at regional scales.
基金supported by the National Natural Science Foundation of China (91125002)the Strategic Priority Research Program of Chinese Academy of Sciences (XDA05050601)
文摘Dew is an important source of water which significantly influences the physiological status of vegetation and the microclimate environment. For quantifying the characteristics of dew events and analyzing the underlying mechanism of dew formation in different ecosystems, we measured, based on the flux-profile method, the amount, frequency and duration of dew events in two croplands, an arid artificial oasis cropland in Zhangye, Gansu province and a sub-humid cropland in Luancheng, Hebei province in China. The results showed that dew events were observed in a total of 69 days in Zhangye, which accounted for 59% of the growing season(from 28 May to 21 September, 2012), while 128 days in Luancheng, which accounted for 79% of the growing season(from 5 April to 13 September, 2008). The frequencies of dew events were 2.8 and 2.4 times of those of precipitation in Zhangye and Luancheng, respectively. In addition, the dew amount reached up to 9.9 and 20.2 mm in Zhangye and Luancheng, which accounted for 9.5% and 4.1% of precipitation, respectively. The average amount of dew was 0.14 and 0.16 mm/night in Zhangye and Luancheng, respectively and the duration of dew events ranged from 0.5 to 12.0 h in the two study sites. Dew amounts were associated with the gradient of atmospheric water vapor concentration and dew duration(P<0.001) in both the two sites. The result implies that dew events play a more important role in crop growth in arid areas in comparison to sub-humid areas considering the dew occurrence frequency and the amount per night.
基金financially supported by the National Natural Sciences Foundation of China (30771767 and 40601016)
文摘Dew has been recognized for its ecological significance and has also been identified as an additional source of water in arid zones. We used factorial control experiment, under dew presence in the field, to explore photosynthetic performance, water status and growth response of desert annual herbage. Bassia dasyphylla seedlings were grown in contrasting dew treatments (dew-absent and dew-present) and different watering regimes (normal and deficient). The effects of dew on the water status and photosynthetic performance of Bassia dasyphylla grown in a desert area of the Hexi Corridor in Northwestern China, were evaluated. The results indicated the pres- ence of dew significantly increased relative water content (RWC) of shoots and total biomass of plants in both water regimes, and enhanced the diurnal shoot water potential and stomatal conductance in the early morning, as well as photosynthetic rate, which reached its maximum only in the water-stressed regime. The presence of dew increased aboveground growth of plants and photosynthate accumulation in leaves, but decreased the root-to-shoot ratio in both water regimes. Dew may have an important role in improving plant water status and ameliorating the adverse effects of plants exposed to prolonged drought.
基金Under the auspices of National Natural Science Foundation of China(40771035)the Knowledge Innovation Project,Chinese Academy of Sciences(KZCX2-YW-Q06-03)
文摘In order to investigate the dew amounts and analysis formation conditions of dew by examining the correlations between dew amounts and meteorological factors in Carex lasiocarpa marsh in the Sanjiang Plain,the dew amounts and several meteorological factors were monitored during the growing season from June to September in 2005 and 2008 at the Sanjiang Mire Wetland Experimental Station,Chinese Academy of Sciences.Dew was collected by woodstick made by poplar tree in Carex lasiocarpa marsh and the amounts were estimated by subtraction method.The results indicated that average daily accumulated dew amounts reached the peak in August.The highest dew amounts in Carex lasiocarpa marsh were 0.201 mm/d,and the most frequent dew volume ranged from 0.08 mm/d to 0.14 mm/d.The amounts correlated positively with relative humidity,dew point temperature,and water vapor pressure.Whereas it correlated negatively with wind speed.The dew production in Carex lasiocarpa marsh more frequently occurred under the conditions of wind speed around 2.0 m/s,the water vapor pressure above 9 hPa;the relative humidity between 90% and 95% and dew point temperature above 6 ℃.
基金the financial support from National Natural Science Foundation of China(No.U1460101).
文摘Thermal spray coatings have been widely used on hearth rolls in a continuous annealing line to improve steel sheet quality and prolong the roll service life. One of the common defects formed on a working hearth roll is the oxide pickup. The most common cause of the pickup formation is that the active Mn oxide reacts with coating. The potentials of two different coatings, CoCrAlYTa-Al2O3 (No. 1) and CoCrYNi-Y2O3 (No. 2), to duplicate pickups by reacting with Fe and Mn oxides were studied. There are three stages during pickup producing and growing. No. 2 coating effectively reduced the corrosion of Mn oxide. The characterization and modification of the surface oxide formed can be changed with different dew points. The results indicate that the dew point from — 53 to — 10 ℃ can change the depth of Mn oxide, such that an alteration can prevent the first stage and second stage and is good for preventing the pickup growing.
基金funded by the National Basic Research Program of China(2013CB429903)the West Light Program for Talent Cultivation of Chinese Academy of Sciencesthe National Natural Science Foundation of China(41301604)
文摘It is important to understand the effects of dew events on non-mucilaginous seed germination of annual desert plant species during dry seasons, which is critical to maintaining long-term soil seed banks in a harsh desert environment. We hypothesize that dew deposition also assists in the non-mucilaginous seed germination of annual desert species. A common field dew treatment experiment was conducted in the Linze Inland River Basin Research Station to investigate the effects of dew deposition on the seed germination of four annual species, including Agriophyllum squarrosum, Corispermum mongoficum, Bassia dasyphylla and Halogeton arachnoideus. The results showed that the presence of dew significantly increased seed germination percentages and decreased the nonviable seed percentages of B. dasyphylla and H. arachnoideus, whereas there was no such trend for the seeds of C. mongolicum and A. squarrosum. The ecological effects of dew on the seed germination and viability of the annual desert plants were species specific. Although dew wetting is insufficient to cause seed germination, it may help in priming the seeds.
基金This work is financially supported by the National Key R&D Program of China(2017YFB0304402)the National Natural Science Foundation of China(51971127).
文摘The effect of dew points(-50,-l0 and+10℃)on the galvanizing properties of a high-manganese twinning-inducedplasticity(TWIP)steel was studied.Scanning electron microscopy(SEM),glow discharge optical emission spectrometry(GDOES)and X-ray photoelectron spectroscopy(XPS)were used for microscopic observation and qualitative analysis of the interfacial layer between the steel surface and the zinc layer after hot-dip galvanizing.SEM analysis results show thatthree diffcrent morphologies of metallic oxides are formed on the interfacial layer under the different dew points.GDOES results show that Al is present in the molten zinc,reacting with Fe on the steel surface to form Fe2Al5,which can increasethe galvanizing properties.XPS results show that the valence states of Mn in the interfacial alloy layer are Mn'*and Mn*+,and the valence stales of Fe are Fe^0,Fe^2+and Fe^3+.The experimental results show that the hot-dip galvanizing performanceis the best at-10℃ and the formation of Mn and Fe intermetallic oxides has a bad effect on hot-dip galvanizing behaviorof the high-manganese TWIP steel.The types of the formed surface oxides(MnO,Mn3O4,Mn2O3,FeO3,and Fe2MnO4)onthe surface of the steel sheet are confirmed.It can obtain the best hot-dip galvanizing performance of the high-manganese TWIP steel by controlling the dew point from-10 to-5℃.
基金Supported by the National Agricultural Science and Technology Achievements Transformation Project of China(2014GB2E100281)the Science and Technology Key R&D Program of Guangxi(Guike AB17195037)
文摘The low temperature process of cold dew wind( from September 19 to 27 in 2011) for late rice production was dynamically monitored by using CLDAS temperature,combined with the background information of rice cultivation from multi-source satellite database together with an reference to the monitoring indexes of cold dew wind disaster to verify the precision of CLDAS data,so as to provide a reference for monitoring chilling damage caused by cold dew wind in late rice production in Guangxi. The results showed that the cold wind dew caused heavy damage to an area of 3 159. 76 km^2,moderate damage to an area of 559. 77 km^2 and light damage to an area of 2 452. 14 km^2. The correlation coefficients between CLDAS inversion temperature and actual temperature of 12 verification meteorological stations were all larger than 0. 93,and the difference in daily average temperature was 0. 3 ℃. The time difference between maximum and minimum temperature provided by CLDAS and corresponding actual temperature from 12 meteorological stations was less than 1 h. The temperature data provided by CLDAS was in accordance with actual temperature data. With an advantage of rapidly,minutely and accurately monitoring the grade distribution of local cold dew wind disaster for late rice,CLDAS can be used in monitoring cold dew wind in late rice production in Guangxi.
基金the Shandong Provincial Natural Science Fund(ZR2020ME254 and ZR2020QD061).
文摘Accurate estimation of dew point temperature(Tdew)plays a very important role in the fields of water resource management,agricultural engineering,climatology and energy utilization.However,there are few studies on the applicability of local Tdew algorithms at regional scales.This study evaluated the performance of a new machine learning algorithm,i.e.,gradient boosting on decision trees with categorical features support(Cat Boost)to estimate daily Tdew using limited local and cross-station meteorological data.The random forests(RF)algorithm was also assessed for comparison.Daily meteorological data from 2016 to 2019,including maximum,minimum and average temperature(Tmax,Tmin and Tmean),maximum,minimum and average relative humidity(RHmax,RHmin and RHmean),maximum,minimum and average global solar radiation(Rsmax,Rsmin and Rsmean)from three weather stations in Hunan of China were used to evaluate the CatBoost and RF algorithms.The results showed that both algorithms achieved satisfactory estimation accuracy at the target stations(on average RMSE=1.020℃,R^(2)=0.969,MAE=0.718℃and NRMSE=0.087)in the absence of complete meteorological parameters(with only temperature data as input).The Cat Boost algorithm(on average RMSE=1.900℃and R^(2)=0.835)was better than the RF algorithm(on average RMSE=2.214℃andR^(2)=0.828).The accuracy and stability of the CatBoost and RF algorithms were positively correlated with the number of input parameters,and the three-parameter algorithms achieved higher estimation accuracy than the two-parameter algorithms.The developed methodology is helpful to predict Tdew at regional scale.
文摘The query optimizer uses cost-based optimization to create an execution plan with the least cost,which also consumes the least amount of resources.The challenge of query optimization for relational database systems is a combinatorial optimization problem,which renders exhaustive search impossible as query sizes rise.Increases in CPU performance have surpassed main memory,and disk access speeds in recent decades,allowing data compression to be used—strategies for improving database performance systems.For performance enhancement,compression and query optimization are the two most factors.Compression reduces the volume of data,whereas query optimization minimizes execution time.Compressing the database reduces memory requirement,data takes less time to load into memory,fewer buffer missing occur,and the size of intermediate results is more diminutive.This paper performed query optimization on the graph database in a cloud dew environment by considering,which requires less time to execute a query.The factors compression and query optimization improve the performance of the databases.This research compares the performance of MySQL and Neo4j databases in terms of memory usage and execution time running on cloud dew servers.
文摘The climatic general situation of cold dew wind weather in past years,main circulation features in early cold dew wind years as well as changes of circulation feature in prophase were conducted statistical analysis,besides,many meteorological factors influenced the time of cold dew wind weather were analyzed.The damage and defensive countermeasures of cold dew wind on late rice production.
文摘This paper describes construction and characterization of a dew/frost -point generator developed at national institute for standards. It is intended to operate in the range from -50 ℃to 0 ℃. The air flows through a saturator controlled by a regulated flow meter. The reference dew/frost -point temperature was measured by standard platinum resistance thermometer (SPRT) connected to a resistance bridge. A comparative study between the saturator temperature of the new generator measured by SPRT and the dew/frost-point temperature of a calibrated chilled-mirror hygrometer was conducted. It helped to determine the uncertainty of saturator; this uncertainty was found to be between ±0.06℃ to -4- 0.15℃ at confidence limit of 95%.Several experiments were carried out in the mentioned range. Obtained results gave the confidence that NIS generator could be used as a primary humid air generator.
基金Project(2011ZX05026-004-03)supported by the Key National Science and Technology Specific Program,ChinaProject(NCET-12-0969)supported by the Program for New Century Excellent Talents in University,China+1 种基金Project(51104167)supported by the National Natural Science Foundation of ChinaProject(BJ-2011-02)supported by the Research Funds of China University of Petroleum-Beijing
文摘The occurrence of liquid condensation in natural gas accounts for new challenges during the interoperability between transmission networks,where condensation would lead to higher pressure drops,lower line capacity and may cause safety problem.A successful case of hydrocarbon dew point(HCDP)analysis is demonstrated during the mixing of natural gases in the transmission pipeline.Methods used to predict the HCDP are combined with equations of state(EOS)and characterization of C6+heavy components.Predictions are compared with measured HCDP with different concentrations of mixed gases at a wide range of pressure and temperature scopes.Software named"PipeGasAnalysis"is developed and helps to systematic analyze the condensation problem,which will provide the guidance for the design and operation of the network.