Silicon carbide(SiC)has great potential for optomechanical applications due to its outstanding optical and mechanical properties.However,challenges associated with SiC nanofabrication have constrained its adoption in ...Silicon carbide(SiC)has great potential for optomechanical applications due to its outstanding optical and mechanical properties.However,challenges associated with SiC nanofabrication have constrained its adoption in optomechanical devices,as embodied by the considerable optical loss or lack of integrated optical access in existing mechanical resonators.In this work,we overcome such challenges and demonstrate a low-loss,ultracompact optomechanical resonator in an integrated 4H-SiC-on-insulator(4H-SiCOI)photonic platform for the first time,to our knowledge.Based on a suspended 4.3-μm-radius microdisk,the SiC optomechanical resonator features low optical loss(<1 dB∕cm),a high mechanical frequency f m of 0.95×10^(9)Hz,a mechanical quality factor Q_(m)of 1.92×10^(4),and a footprint of<1×10^(−5)mm^(2).The corresponding f_(m)·Q_(m)product is estimated to be 1.82×10^(13)Hz,which is among the highest reported values of optomechanical cavities tested in ambient environment at room temperature.In addition,the strong optomechanical coupling in the SiC microdisk enables coherent regenerative optomechanical oscillations at a threshold optical dropped power of 14μW,which also supports efficient harmonic generation at increased power levels.With such competitive performance,we envision a range of chip-scale optomechanical applications to be enabled by the low-loss 4H-SiCOI platform.展开更多
文摘Silicon carbide(SiC)has great potential for optomechanical applications due to its outstanding optical and mechanical properties.However,challenges associated with SiC nanofabrication have constrained its adoption in optomechanical devices,as embodied by the considerable optical loss or lack of integrated optical access in existing mechanical resonators.In this work,we overcome such challenges and demonstrate a low-loss,ultracompact optomechanical resonator in an integrated 4H-SiC-on-insulator(4H-SiCOI)photonic platform for the first time,to our knowledge.Based on a suspended 4.3-μm-radius microdisk,the SiC optomechanical resonator features low optical loss(<1 dB∕cm),a high mechanical frequency f m of 0.95×10^(9)Hz,a mechanical quality factor Q_(m)of 1.92×10^(4),and a footprint of<1×10^(−5)mm^(2).The corresponding f_(m)·Q_(m)product is estimated to be 1.82×10^(13)Hz,which is among the highest reported values of optomechanical cavities tested in ambient environment at room temperature.In addition,the strong optomechanical coupling in the SiC microdisk enables coherent regenerative optomechanical oscillations at a threshold optical dropped power of 14μW,which also supports efficient harmonic generation at increased power levels.With such competitive performance,we envision a range of chip-scale optomechanical applications to be enabled by the low-loss 4H-SiCOI platform.