Artificial sensory systems(ASS)are pivotal to next-generation extended reality technologies,now evolving into flexible platforms for comfortable wear and immersive user experiences,while ensuring high performance and ...Artificial sensory systems(ASS)are pivotal to next-generation extended reality technologies,now evolving into flexible platforms for comfortable wear and immersive user experiences,while ensuring high performance and operational reliability.To address these demands,metal-based nanoparticles(NPs),such as noble metal,oxide,and multi-elemental NPs,have been extensively incorporated into functional materials of sensory and synaptic devices due to their tunable optical,electrical,and chemical properties,enhancing sensory precision,stability,and environmental adaptability.However,traditional NP fabrication methods often involve complex processing,residual contaminants,and scalability issues,limiting their effectiveness in ASS applications.State-of-the-art laser ablation in liquids(LAL)presents a promising alternative,offering scalable production of surfactant-free NPs with customizable physicochemical properties,though their application in electronics remains underexplored.This review delves into the transformative potential of LAL-fabricated NPs in ASS,covering the fundamental mechanisms of LAL,the role of process parameters,the derivative strategies for size modulation,the diversity of metal-based NPs,their applications in sensory and synaptic devices,and the challenges and perspectives for meeting industrial standards.Bridging the gap between LAL and ASS is poised to revolutionize both industrial manufacturing and academic research by offering scalable solutions to overcome intrinsic tradeoffs between flexibility and performance,fostering innovations in human-centric,immersive electronics.展开更多
Two viologen derivatives containing fluorine substituent(F)with an asymmetric structures,1,1'-bis(4-(trifluoromethyl)phenyl)-[4,4'-bipyridine]dihexafluorophosphate(DFPV)and 1-benzyl-1'-(4-(trifluoromethyl)...Two viologen derivatives containing fluorine substituent(F)with an asymmetric structures,1,1'-bis(4-(trifluoromethyl)phenyl)-[4,4'-bipyridine]dihexafluorophosphate(DFPV)and 1-benzyl-1'-(4-(trifluoromethyl)phenyl)-[4,4'-bipyridine]di-hexafluorophosphate(Bn-FPV),were synthesized.These viologen derivatives as active materials were used to assemble both flexible and rigid electrochromic devices(ECDs).ECDs based on DFPV exhibited reversible color change from colorless to deep green and ECDs based on Bn-FPV exhibited reversible color change from colorless to blue-green within applied voltage.It was found that the devices based on DFPV showed cycle stability,which could still maintain more than 90% after 1000 cycles.In addition,the modulation rate of the device to the solar irradiance is also calculated to characterize its application potential in smart windows.Among them,the rigid device(R-DFPV)based on the DFPV has a large solar irradiance modulation rate of 54.66%,which has the potential to be used as smart windows.展开更多
Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement ...Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement fails to reconcile ecological responsibility with advanced functional performance.By incorporating tailored fillers into cement matrices,the resulting composites achieve enhanced thermoelectric(TE)conversion capabilities.These materials can harness solar radiation from building envelopes and recover waste heat from indoor thermal gradients,facilitating bidirectional energy conversion.This review offers a comprehensive and timely overview of cementbased thermoelectric materials(CTEMs),integrating material design,device fabrication,and diverse applications into a holistic perspective.It summarizes recent advancements in TE performance enhancement,encompassing fillers optimization and matrices innovation.Additionally,the review consolidates fabrication strategies and performance evaluations of cement-based thermoelectric devices(CTEDs),providing detailed discussions on their roles in monitoring and protection,energy harvesting,and smart building.We also address sustainability,durability,and lifecycle considerations of CTEMs,which are essential for real-world deployment.Finally,we outline future research directions in materials design,device engineering,and scalable manufacturing to foster the practical application of CTEMs in sustainable and intelligent infrastructure.展开更多
Wearable ultrasound devices represent a transformative advancement in therapeutic applications,offering noninvasive,continuous,and targeted treatment for deep tissues.These systems leverage flexible materials(e.g.,pie...Wearable ultrasound devices represent a transformative advancement in therapeutic applications,offering noninvasive,continuous,and targeted treatment for deep tissues.These systems leverage flexible materials(e.g.,piezoelectric composites,biodegradable polymers)and conformable designs to enable stable integration with dynamic anatomical surfaces.Key innovations include ultrasound-enhanced drug delivery through cavitation-mediated transdermal penetration,accelerated tissue regeneration via mechanical and electrical stimulation,and precise neuromodulation using focused acoustic waves.Recent developments demonstrate wireless operation,real-time monitoring,and closed-loop therapy,facilitated by energy-efficient transducers and AI-driven adaptive control.Despite progress,challenges persist in material durability,clinical validation,and scalable manufacturing.Future directions highlight the integration of nanomaterials,3D-printed architectures,and multimodal sensing for personalized medicine.This technology holds significant potential to redefine chronic disease management,postoperative recovery,and neurorehabilitation,bridging the gap between clinical and home-based care.展开更多
Optofluidics is a rising technology that combines microfluidics and optics.Its goal is to manipulate light and flowing liquids on the micro/nanoscale and exploiting their interaction in optofluidic chips.The fluid flo...Optofluidics is a rising technology that combines microfluidics and optics.Its goal is to manipulate light and flowing liquids on the micro/nanoscale and exploiting their interaction in optofluidic chips.The fluid flow in the on-chip devices is reconfigurable,non-uniform and usually transports substances being analyzed,offering a new idea in the accurate manipulation of lights and biochemical samples.In this paper,we summarized the light modulation in heterogeneous media by unique fluid dynamic properties such as molecular diffusion,heat conduction,centrifugation effect,light-matter interaction and others.By understanding the novel phenomena due to the interaction of light and flowing liquids,quantities of tunable and reconfigurable optofluidic devices such as waveguides,lenses,and lasers are introduced.Those novel applications bring us firm conviction that optofluidics would provide better solutions to high-efficient and high-quality lab-on-chip systems in terms of biochemical analysis and environment monitoring.展开更多
We re port the facile synthesis of Ni,Co-double hydroxide wire(NCHW)-based electrodes directly grown on a conductive substrate via a hydrothermal process.Various NCHW nanostructures were grown on Ni foam,and the growt...We re port the facile synthesis of Ni,Co-double hydroxide wire(NCHW)-based electrodes directly grown on a conductive substrate via a hydrothermal process.Various NCHW nanostructures were grown on Ni foam,and the growth was controlled using different compositions of solvents(ethanol and water).With increasing volume ratio of ethanol to water,the density of the wires decreased,and the spatial voids between the wires increased.The formation of large empty spaces improved the electrochemical performance because the exposure of a large surface area of the structure to the electrolyte resulted in a large number of active sites and facile electrolyte penetration into the structure.The different NCHW structures were ascribed to the pivotal role of the solvent in the urea hydrolysis;the solvent triggered the formation of hydroxides during the hydrothermal synthesis.The electrochemical performance of the NCHW electrodes was investigated via galvanostatic charge/discha rge tests,cyclic voltammetry,and electrochemical impedance spectroscopy.The highest specific capacitance was 1694.7 m F/cm^2 at 2 mA/cm^2,with excellent capacitance retention of 81.5% after 5000 cycles.The superior electrochemical performance of the NCHW electrodes is attributed to the large number of active sites and facile electrolyte diffusion into the structure,due to the well-organized structure with an optimized density of nanowires and large voids between the wires.展开更多
Intelligent electronic devices(IEDs)are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions.In the context of the heightene...Intelligent electronic devices(IEDs)are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions.In the context of the heightened security challenges within smart grids,IEDs pose significant risks due to inherent hardware and software vulner-abilities,as well as the openness and vulnerability of communication protocols.Smart grid security,distinct from traditional internet security,mainly relies on monitoring network security events at the platform layer,lacking an effective assessment mechanism for IEDs.Hence,we incorporate considerations for both cyber-attacks and physical faults,presenting security assessment indicators and methods specifically tailored for IEDs.Initially,we outline the security monitoring technology for IEDs,considering the necessary data sources for their security assessment.Subsequently,we classify IEDs and establish a comprehensive security monitoring index system,incorporating factors such as running states,network traffic,and abnormal behaviors.This index system contains 18 indicators in 3 categories.Additionally,we elucidate quantitative methods for various indicators and propose a hybrid security assessment method known as GRCW-hybrid,combining grey relational analysis(GRA),analytic hierarchy process(AHP),and entropy weight method(EWM).According to the proposed assessment method,the security risk level of IEDs can be graded into 6 levels,namely 0,1,2,3,4,and 5.The higher the level,the greater the security risk.Finally,we assess and simulate 15 scenarios in 3 categories,which are based on monitoring indicators and real-world situations encountered by IEDs.The results show that calculated security risk level based on the proposed assessment method are consistent with actual simulation.Thus,the reasonableness and effectiveness of the proposed index system and assessment method are validated.展开更多
The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorph...The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorphic computing,inspired by the architecture of the human brain,offers a promising alternative by integrating memory and computational func-tions,enabling parallel,high-speed,and energy-efficient information processing.Among various neuromorphic technologies,ion-modulated optoelectronic devices have garnered attention due to their excellent ionic tunability and the availability of multi-dimensional control strategies.This review provides a comprehensive overview of recent progress in ion-modulation optoelec-tronic neuromorphic devices.It elucidates the key mechanisms underlying ionic modulation of light fields,including ion migra-tion dynamics and capture and release of charge through ions.Furthermore,the synthesis of active materials and the proper-ties of these devices are analyzed in detail.The review also highlights the application of ion-modulation optoelectronic devices in artificial vision systems,neuromorphic computing,and other bionic fields.Finally,the existing challenges and future direc-tions for the development of optoelectronic neuromorphic devices are discussed,providing critical insights for advancing this promising field.展开更多
To address the increasing demand for massive data storage and processing,brain-inspired neuromorphic comput-ing systems based on artificial synaptic devices have been actively developed in recent years.Among the vario...To address the increasing demand for massive data storage and processing,brain-inspired neuromorphic comput-ing systems based on artificial synaptic devices have been actively developed in recent years.Among the various materials inves-tigated for the fabrication of synaptic devices,silicon carbide(SiC)has emerged as a preferred choices due to its high electron mobility,superior thermal conductivity,and excellent thermal stability,which exhibits promising potential for neuromorphic applications in harsh environments.In this review,the recent progress in SiC-based synaptic devices is summarized.Firstly,an in-depth discussion is conducted regarding the categories,working mechanisms,and structural designs of these devices.Subse-quently,several application scenarios for SiC-based synaptic devices are presented.Finally,a few perspectives and directions for their future development are outlined.展开更多
Rapid industrialization advancements have grabbed worldwide attention to integrate a very large number of electronic components into a smaller space for performing multifunctional operations.To fulfill the growing com...Rapid industrialization advancements have grabbed worldwide attention to integrate a very large number of electronic components into a smaller space for performing multifunctional operations.To fulfill the growing computing demand state-of-the-art materials are required for substituting traditional silicon and metal oxide semiconductors frameworks.Two-dimensional(2D)materials have shown their tremendous potential surpassing the limitations of conventional materials for developing smart devices.Despite their ground-breaking progress over the last two decades,systematic studies providing in-depth insights into the exciting physics of 2D materials are still lacking.Therefore,in this review,we discuss the importance of 2D materials in bridging the gap between conventional and advanced technologies due to their distinct statistical and quantum physics.Moreover,the inherent properties of these materials could easily be tailored to meet the specific requirements of smart devices.Hence,we discuss the physics of various 2D materials enabling them to fabricate smart devices.We also shed light on promising opportunities in developing smart devices and identified the formidable challenges that need to be addressed.展开更多
Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by...Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by using portable diagnostic devices,avoiding sending samples to the medical laboratories.It has been extensively explored for diagnosing and monitoring patients’diseases and health conditions with the assistance of development in biochemistry and microfluidics.Microfluidic paper-based analytical devices(μPADs)have gained dramatic popularity in POCT because of their simplicity,user-friendly,fast and accurate result reading and low cost.SeveralμPADs have been successfully commercialized and received excellent feedback during the past several decades.This review briefly discusses the main types ofμPADs,preparation methods and their detection principles,followed by a few representative examples.The future perspectives of the development inμPADs are also provided.展开更多
Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantage...Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantages,convertingthe external analog signals to spikes is an essential prerequisite.Conventionalapproaches including analog-to-digital converters or ring oscillators,and sensorssuffer from high power and area costs.Recent efforts are devoted to constructingartificial sensory neurons based on emerging devices inspired by the biologicalsensory system.They can simultaneously perform sensing and spike conversion,overcoming the deficiencies of traditional sensory systems.This review summarizesand benchmarks the recent progress of artificial sensory neurons.It starts with thepresentation of various mechanisms of biological signal transduction,followed bythe systematic introduction of the emerging devices employed for artificial sensoryneurons.Furthermore,the implementations with different perceptual capabilitiesare briefly outlined and the key metrics and potential applications are also provided.Finally,we highlight the challenges and perspectives for the future development of artificial sensory neurons.展开更多
Changshu Textile Machinery Works Co.,Ltd.was founded in 1958 and is a professional R&D and manufacturing enterprise of looms shedding device in China.The company's products cover three series of shedding devic...Changshu Textile Machinery Works Co.,Ltd.was founded in 1958 and is a professional R&D and manufacturing enterprise of looms shedding device in China.The company's products cover three series of shedding devices for looms(Dobby,Jacquard,Cam Motion),forming a series of products with electronic shedding devices as the main products,and mechanical shedding devices as the auxiliary products.D2876pro electronic dobby The D2876pro electronic dobby is a high-performance equipment designed for a maximum operating speed of 800rpm.It has 16 cams,and 12mm of pitch,with a high installation type.The shedding type is double lift and full clear open.Its maximum wefts is 12,800 and 100,000.It has a two-stage filtration lubrication with a gerotor pump oil recycle system,and it is suitable for water-jet looms.展开更多
In recent years,as the dimensions of the conventional semiconductor technology is approaching the physical limits,while the multifunction circuits are restricted by the relatively fixed characteristics of the traditio...In recent years,as the dimensions of the conventional semiconductor technology is approaching the physical limits,while the multifunction circuits are restricted by the relatively fixed characteristics of the traditional metal−oxide−semiconductor field-effect transistors,reconfigurable devices that can realize reconfigurable characteristics and multiple functions at device level have been seen as a promising method to improve integration density and reduce power consumption.Owing to the ultrathin structure,effective control of the electronic characteristics and ability to modulate structural defects,two-dimensional(2D)materials have been widely used to fabricate reconfigurable devices.In this review,we summarize the working principles and related logic applications of reconfigurable devices based on 2D materials,including generating tunable anti-ambipolar responses and demonstrating nonvolatile operations.Furthermore,we discuss the analog signal processing applications of anti-ambipolar transistors and the artificial intelligence hardware implementations based on reconfigurable transistors and memristors,respectively,therefore highlighting the outstanding advantages of reconfigurable devices in footprint,energy consumption and performance.Finally,we discuss the challenges of the 2D materials-based reconfigurable devices.展开更多
The original online version of this article was revised:In this article,Jianhua Fan and Junqiu Zhang are both corresponding authors.In this article Junqiu Zhang should have been denoted as a corresponding author,as we...The original online version of this article was revised:In this article,Jianhua Fan and Junqiu Zhang are both corresponding authors.In this article Junqiu Zhang should have been denoted as a corresponding author,as well.The original article has been corrected.展开更多
In recent years,the rapid development of artificial intelligence has driven the widespread deployment of visual systems in complex environments such as autonomous driving,security surveillance,and medical diagnosis.Ho...In recent years,the rapid development of artificial intelligence has driven the widespread deployment of visual systems in complex environments such as autonomous driving,security surveillance,and medical diagnosis.However,existing image sensors—such as CMOS and CCD devices—intrinsically suffer from the limitation of fixed spectral response.Especially in environments with strong glare,haze,or dust,external spectral conditions often severely mismatch the device's design range,leading to significant degradation in image quality and a sharp drop in target recognition accuracy.While algorithmic post-processing(such as color bias correction or background suppression)can mitigate these issues,algorithm approaches typically introduce computational latency and increased energy consumption,making them unsuitable for edge computing or high-speed scenarios.展开更多
Driven by the urgent demands for information technology,energy,and intelligent industry,third-generation semiconductor GaN has emerged as a pivotal component in electronic and optoelectronic devices.Fundamentally,piez...Driven by the urgent demands for information technology,energy,and intelligent industry,third-generation semiconductor GaN has emerged as a pivotal component in electronic and optoelectronic devices.Fundamentally,piezoelectric polarization is the most essential feature of GaN materials.Incorporating piezotronics and piezo-phototronics,GaN materials synergize mechanical signals with electrical and optical signals,thereby achieving multi-field coupling that enhances device performance.Piezotronics regulates the carrier transport process in micro-nano devices,which has been proven to significantly improve the performance of devices(such as high electron mobility transistors and microLEDs)and brings many novel applications.This review examines GaN material properties and the theoretical foundations of piezotronics and phototronics.Furthermore,it delves into the fabrication and integration processes of GaN devices to achieve state-of-the-art performance.Additionally,this review analyzes the impact of introducing three-dimensional stress and regulatory forces on the electrical and optical output performance of devices.Moreover,it discusses the burgeoning applications of GaN devices in neural sensing,optoelectronic output,and energy harvesting.The potential of piezotroniccontrolled GaN devices provides valuable insights for future research and the development of multi-functional,diversified electronic devices.展开更多
The rapid advancement of modern electronics has led to a surge in solid electronic waste,which poses significant environmental and health challenges.This review focuses on recent developments in paper-based electronic...The rapid advancement of modern electronics has led to a surge in solid electronic waste,which poses significant environmental and health challenges.This review focuses on recent developments in paper-based electronic devices fabricated through low-cost,hand-printing techniques,with particular emphasis on their applications in energy harvesting,storage,and sensing.Unlike conventional plastic-based substrates,cellulose paper offers several advantages,including biodegradability,recyclability,and low fabrication cost.By integrating functional nanomaterials such as two-dimensional chalcogenides,metal oxides,conductive polymers,and carbon-based structures onto paper,researchers have achieved high-performance devices such as broadband photodetectors(responsivity up to 52 mA/W),supercapacitors(energy density~15.1 mWh/cm^(2)),and pressure sensors(sensitivity~18.42 kPa^(-1)).The hand-printing approach,which eliminates the need for sophisticated equipment and toxic solvents,offers a promising route for scalable,sustainable,and disposable electronics.This review outlines fabrication methods and key performance metrics,and discusses the current challenges and future directions for realizing robust,flexible devices aligned with green technology and the United Nation’s Sustainable Development Goals.展开更多
Zinc oxide(ZnO),as a broadband gap semiconductor material,exhibits unique physical and chemical properties that make it highly suitable for optoelectronics,piezoelectric devices,and gas-sensitive sensors,showing signi...Zinc oxide(ZnO),as a broadband gap semiconductor material,exhibits unique physical and chemical properties that make it highly suitable for optoelectronics,piezoelectric devices,and gas-sensitive sensors,showing significant potential for various applications.This paper focuses on the regulation and application of ZnO-based p-n junctions and piezoelectric devices.It discusses in detail the preparation of ZnO materials,the construction of p-n junctions,the optimization of piezoelectric device performance,and its application in various fields.By employing different preparation methods and strategies,high-quality ZnO thin films can be grown,and effective control of p-type conductivity achieved.This study provides both a theoretical foundation and technical support for controlling the performance of ZnO-based piezoelectric devices,as well as paving new pathways for the broader application of ZnO materials.展开更多
基金supported by the Nano&Material Technology Development Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(Grant Nos.RS-2024-00403639 and RS2024-00411904)。
文摘Artificial sensory systems(ASS)are pivotal to next-generation extended reality technologies,now evolving into flexible platforms for comfortable wear and immersive user experiences,while ensuring high performance and operational reliability.To address these demands,metal-based nanoparticles(NPs),such as noble metal,oxide,and multi-elemental NPs,have been extensively incorporated into functional materials of sensory and synaptic devices due to their tunable optical,electrical,and chemical properties,enhancing sensory precision,stability,and environmental adaptability.However,traditional NP fabrication methods often involve complex processing,residual contaminants,and scalability issues,limiting their effectiveness in ASS applications.State-of-the-art laser ablation in liquids(LAL)presents a promising alternative,offering scalable production of surfactant-free NPs with customizable physicochemical properties,though their application in electronics remains underexplored.This review delves into the transformative potential of LAL-fabricated NPs in ASS,covering the fundamental mechanisms of LAL,the role of process parameters,the derivative strategies for size modulation,the diversity of metal-based NPs,their applications in sensory and synaptic devices,and the challenges and perspectives for meeting industrial standards.Bridging the gap between LAL and ASS is poised to revolutionize both industrial manufacturing and academic research by offering scalable solutions to overcome intrinsic tradeoffs between flexibility and performance,fostering innovations in human-centric,immersive electronics.
基金Funded by the Natural Science Foundation of Guangdong(Nos.2014A030313241,2014B090901068,and 2016A010103003)。
文摘Two viologen derivatives containing fluorine substituent(F)with an asymmetric structures,1,1'-bis(4-(trifluoromethyl)phenyl)-[4,4'-bipyridine]dihexafluorophosphate(DFPV)and 1-benzyl-1'-(4-(trifluoromethyl)phenyl)-[4,4'-bipyridine]di-hexafluorophosphate(Bn-FPV),were synthesized.These viologen derivatives as active materials were used to assemble both flexible and rigid electrochromic devices(ECDs).ECDs based on DFPV exhibited reversible color change from colorless to deep green and ECDs based on Bn-FPV exhibited reversible color change from colorless to blue-green within applied voltage.It was found that the devices based on DFPV showed cycle stability,which could still maintain more than 90% after 1000 cycles.In addition,the modulation rate of the device to the solar irradiance is also calculated to characterize its application potential in smart windows.Among them,the rigid device(R-DFPV)based on the DFPV has a large solar irradiance modulation rate of 54.66%,which has the potential to be used as smart windows.
基金supported by the National Natural Science Foundation of China(No.52242305).
文摘Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement fails to reconcile ecological responsibility with advanced functional performance.By incorporating tailored fillers into cement matrices,the resulting composites achieve enhanced thermoelectric(TE)conversion capabilities.These materials can harness solar radiation from building envelopes and recover waste heat from indoor thermal gradients,facilitating bidirectional energy conversion.This review offers a comprehensive and timely overview of cementbased thermoelectric materials(CTEMs),integrating material design,device fabrication,and diverse applications into a holistic perspective.It summarizes recent advancements in TE performance enhancement,encompassing fillers optimization and matrices innovation.Additionally,the review consolidates fabrication strategies and performance evaluations of cement-based thermoelectric devices(CTEDs),providing detailed discussions on their roles in monitoring and protection,energy harvesting,and smart building.We also address sustainability,durability,and lifecycle considerations of CTEMs,which are essential for real-world deployment.Finally,we outline future research directions in materials design,device engineering,and scalable manufacturing to foster the practical application of CTEMs in sustainable and intelligent infrastructure.
基金the support from the start-up of the University of Missouri-Columbia。
文摘Wearable ultrasound devices represent a transformative advancement in therapeutic applications,offering noninvasive,continuous,and targeted treatment for deep tissues.These systems leverage flexible materials(e.g.,piezoelectric composites,biodegradable polymers)and conformable designs to enable stable integration with dynamic anatomical surfaces.Key innovations include ultrasound-enhanced drug delivery through cavitation-mediated transdermal penetration,accelerated tissue regeneration via mechanical and electrical stimulation,and precise neuromodulation using focused acoustic waves.Recent developments demonstrate wireless operation,real-time monitoring,and closed-loop therapy,facilitated by energy-efficient transducers and AI-driven adaptive control.Despite progress,challenges persist in material durability,clinical validation,and scalable manufacturing.Future directions highlight the integration of nanomaterials,3D-printed architectures,and multimodal sensing for personalized medicine.This technology holds significant potential to redefine chronic disease management,postoperative recovery,and neurorehabilitation,bridging the gap between clinical and home-based care.
基金This work is financially supported by National Natural Science Foundation of China(No.11774274)National Key R&D Program of China(2018YFC1003200)+1 种基金Open Financial Grant from Qingdao National Laboratory for Marine Science and Technology(No.QNLM2016ORP0410)Foundation Research Fund of Shenzhen Science and Technology Program(No.JCYJ20170818112939064).
文摘Optofluidics is a rising technology that combines microfluidics and optics.Its goal is to manipulate light and flowing liquids on the micro/nanoscale and exploiting their interaction in optofluidic chips.The fluid flow in the on-chip devices is reconfigurable,non-uniform and usually transports substances being analyzed,offering a new idea in the accurate manipulation of lights and biochemical samples.In this paper,we summarized the light modulation in heterogeneous media by unique fluid dynamic properties such as molecular diffusion,heat conduction,centrifugation effect,light-matter interaction and others.By understanding the novel phenomena due to the interaction of light and flowing liquids,quantities of tunable and reconfigurable optofluidic devices such as waveguides,lenses,and lasers are introduced.Those novel applications bring us firm conviction that optofluidics would provide better solutions to high-efficient and high-quality lab-on-chip systems in terms of biochemical analysis and environment monitoring.
基金This work was supported by the National Research Foundation(NRF)of South Korea funded by the Ministry of Science and ICT,Republic of Korea(Nos.NRF-2017R1A4A1014569 and NRF2018M3A7B4071535)。
文摘We re port the facile synthesis of Ni,Co-double hydroxide wire(NCHW)-based electrodes directly grown on a conductive substrate via a hydrothermal process.Various NCHW nanostructures were grown on Ni foam,and the growth was controlled using different compositions of solvents(ethanol and water).With increasing volume ratio of ethanol to water,the density of the wires decreased,and the spatial voids between the wires increased.The formation of large empty spaces improved the electrochemical performance because the exposure of a large surface area of the structure to the electrolyte resulted in a large number of active sites and facile electrolyte penetration into the structure.The different NCHW structures were ascribed to the pivotal role of the solvent in the urea hydrolysis;the solvent triggered the formation of hydroxides during the hydrothermal synthesis.The electrochemical performance of the NCHW electrodes was investigated via galvanostatic charge/discha rge tests,cyclic voltammetry,and electrochemical impedance spectroscopy.The highest specific capacitance was 1694.7 m F/cm^2 at 2 mA/cm^2,with excellent capacitance retention of 81.5% after 5000 cycles.The superior electrochemical performance of the NCHW electrodes is attributed to the large number of active sites and facile electrolyte diffusion into the structure,due to the well-organized structure with an optimized density of nanowires and large voids between the wires.
基金The financial support from the Program for Science and Technology of Henan Province of China(Grant No.242102210148)Henan Center for Outstanding Overseas Scientists(Grant No.GZS2022011)Songshan Laboratory Pre-Research Project(Grant No.YYJC032022022).
文摘Intelligent electronic devices(IEDs)are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions.In the context of the heightened security challenges within smart grids,IEDs pose significant risks due to inherent hardware and software vulner-abilities,as well as the openness and vulnerability of communication protocols.Smart grid security,distinct from traditional internet security,mainly relies on monitoring network security events at the platform layer,lacking an effective assessment mechanism for IEDs.Hence,we incorporate considerations for both cyber-attacks and physical faults,presenting security assessment indicators and methods specifically tailored for IEDs.Initially,we outline the security monitoring technology for IEDs,considering the necessary data sources for their security assessment.Subsequently,we classify IEDs and establish a comprehensive security monitoring index system,incorporating factors such as running states,network traffic,and abnormal behaviors.This index system contains 18 indicators in 3 categories.Additionally,we elucidate quantitative methods for various indicators and propose a hybrid security assessment method known as GRCW-hybrid,combining grey relational analysis(GRA),analytic hierarchy process(AHP),and entropy weight method(EWM).According to the proposed assessment method,the security risk level of IEDs can be graded into 6 levels,namely 0,1,2,3,4,and 5.The higher the level,the greater the security risk.Finally,we assess and simulate 15 scenarios in 3 categories,which are based on monitoring indicators and real-world situations encountered by IEDs.The results show that calculated security risk level based on the proposed assessment method are consistent with actual simulation.Thus,the reasonableness and effectiveness of the proposed index system and assessment method are validated.
基金supported by National Natural Science Foundation of China(62174164,U23A20568,and U22A2075)National Key Research and Development Project(2021YFA1202600)+2 种基金Talent Plan of Shanghai Branch,Chinese Academy of Sciences(CASSHB-QNPD-2023-022)Ningbo Technology Project(2022A-007-C)Ningbo Key Research and Development Project(2023Z021).
文摘The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorphic computing,inspired by the architecture of the human brain,offers a promising alternative by integrating memory and computational func-tions,enabling parallel,high-speed,and energy-efficient information processing.Among various neuromorphic technologies,ion-modulated optoelectronic devices have garnered attention due to their excellent ionic tunability and the availability of multi-dimensional control strategies.This review provides a comprehensive overview of recent progress in ion-modulation optoelec-tronic neuromorphic devices.It elucidates the key mechanisms underlying ionic modulation of light fields,including ion migra-tion dynamics and capture and release of charge through ions.Furthermore,the synthesis of active materials and the proper-ties of these devices are analyzed in detail.The review also highlights the application of ion-modulation optoelectronic devices in artificial vision systems,neuromorphic computing,and other bionic fields.Finally,the existing challenges and future direc-tions for the development of optoelectronic neuromorphic devices are discussed,providing critical insights for advancing this promising field.
基金supported by the Natural Science Foundation of Zhejiang Province(Grant No.LQ24F040007)the National Natural Science Foundation of China(Grant No.U22A2075)the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University)(Grant No.sklpme2024-1-21).
文摘To address the increasing demand for massive data storage and processing,brain-inspired neuromorphic comput-ing systems based on artificial synaptic devices have been actively developed in recent years.Among the various materials inves-tigated for the fabrication of synaptic devices,silicon carbide(SiC)has emerged as a preferred choices due to its high electron mobility,superior thermal conductivity,and excellent thermal stability,which exhibits promising potential for neuromorphic applications in harsh environments.In this review,the recent progress in SiC-based synaptic devices is summarized.Firstly,an in-depth discussion is conducted regarding the categories,working mechanisms,and structural designs of these devices.Subse-quently,several application scenarios for SiC-based synaptic devices are presented.Finally,a few perspectives and directions for their future development are outlined.
文摘Rapid industrialization advancements have grabbed worldwide attention to integrate a very large number of electronic components into a smaller space for performing multifunctional operations.To fulfill the growing computing demand state-of-the-art materials are required for substituting traditional silicon and metal oxide semiconductors frameworks.Two-dimensional(2D)materials have shown their tremendous potential surpassing the limitations of conventional materials for developing smart devices.Despite their ground-breaking progress over the last two decades,systematic studies providing in-depth insights into the exciting physics of 2D materials are still lacking.Therefore,in this review,we discuss the importance of 2D materials in bridging the gap between conventional and advanced technologies due to their distinct statistical and quantum physics.Moreover,the inherent properties of these materials could easily be tailored to meet the specific requirements of smart devices.Hence,we discuss the physics of various 2D materials enabling them to fabricate smart devices.We also shed light on promising opportunities in developing smart devices and identified the formidable challenges that need to be addressed.
文摘Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by using portable diagnostic devices,avoiding sending samples to the medical laboratories.It has been extensively explored for diagnosing and monitoring patients’diseases and health conditions with the assistance of development in biochemistry and microfluidics.Microfluidic paper-based analytical devices(μPADs)have gained dramatic popularity in POCT because of their simplicity,user-friendly,fast and accurate result reading and low cost.SeveralμPADs have been successfully commercialized and received excellent feedback during the past several decades.This review briefly discusses the main types ofμPADs,preparation methods and their detection principles,followed by a few representative examples.The future perspectives of the development inμPADs are also provided.
基金supported by the Key-Area Research and Development Program of Guangdong Province(Grants No.2021B0909060002)National Natural Science Foundation of China(Grants No.62204219,62204140)Major Program of Natural Science Foundation of Zhejiang Province(Grants No.LDT23F0401).
文摘Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantages,convertingthe external analog signals to spikes is an essential prerequisite.Conventionalapproaches including analog-to-digital converters or ring oscillators,and sensorssuffer from high power and area costs.Recent efforts are devoted to constructingartificial sensory neurons based on emerging devices inspired by the biologicalsensory system.They can simultaneously perform sensing and spike conversion,overcoming the deficiencies of traditional sensory systems.This review summarizesand benchmarks the recent progress of artificial sensory neurons.It starts with thepresentation of various mechanisms of biological signal transduction,followed bythe systematic introduction of the emerging devices employed for artificial sensoryneurons.Furthermore,the implementations with different perceptual capabilitiesare briefly outlined and the key metrics and potential applications are also provided.Finally,we highlight the challenges and perspectives for the future development of artificial sensory neurons.
文摘Changshu Textile Machinery Works Co.,Ltd.was founded in 1958 and is a professional R&D and manufacturing enterprise of looms shedding device in China.The company's products cover three series of shedding devices for looms(Dobby,Jacquard,Cam Motion),forming a series of products with electronic shedding devices as the main products,and mechanical shedding devices as the auxiliary products.D2876pro electronic dobby The D2876pro electronic dobby is a high-performance equipment designed for a maximum operating speed of 800rpm.It has 16 cams,and 12mm of pitch,with a high installation type.The shedding type is double lift and full clear open.Its maximum wefts is 12,800 and 100,000.It has a two-stage filtration lubrication with a gerotor pump oil recycle system,and it is suitable for water-jet looms.
基金support from the National Key Research and Development Program of China(Grant nos.2024YFA1409700 and 2023YFA1407000)the National Natural Science Foundation of China(Grant no.62374158).
文摘In recent years,as the dimensions of the conventional semiconductor technology is approaching the physical limits,while the multifunction circuits are restricted by the relatively fixed characteristics of the traditional metal−oxide−semiconductor field-effect transistors,reconfigurable devices that can realize reconfigurable characteristics and multiple functions at device level have been seen as a promising method to improve integration density and reduce power consumption.Owing to the ultrathin structure,effective control of the electronic characteristics and ability to modulate structural defects,two-dimensional(2D)materials have been widely used to fabricate reconfigurable devices.In this review,we summarize the working principles and related logic applications of reconfigurable devices based on 2D materials,including generating tunable anti-ambipolar responses and demonstrating nonvolatile operations.Furthermore,we discuss the analog signal processing applications of anti-ambipolar transistors and the artificial intelligence hardware implementations based on reconfigurable transistors and memristors,respectively,therefore highlighting the outstanding advantages of reconfigurable devices in footprint,energy consumption and performance.Finally,we discuss the challenges of the 2D materials-based reconfigurable devices.
文摘The original online version of this article was revised:In this article,Jianhua Fan and Junqiu Zhang are both corresponding authors.In this article Junqiu Zhang should have been denoted as a corresponding author,as well.The original article has been corrected.
基金supported in part by STI 2030-Major Projects(2022ZD0209200)in part by National Natural Science Foundation of China(62374099)+2 种基金in part by Beijing Natural Science Foundation−Xiaomi Innovation Joint Fund(L233009)Beijing Natural Science Foundation(L248104)in part by Independent Research Program of School of Integrated Circuits,Tsinghua University,in part by Tsinghua University Fuzhou Data Technology Joint Research Institute.
文摘In recent years,the rapid development of artificial intelligence has driven the widespread deployment of visual systems in complex environments such as autonomous driving,security surveillance,and medical diagnosis.However,existing image sensors—such as CMOS and CCD devices—intrinsically suffer from the limitation of fixed spectral response.Especially in environments with strong glare,haze,or dust,external spectral conditions often severely mismatch the device's design range,leading to significant degradation in image quality and a sharp drop in target recognition accuracy.While algorithmic post-processing(such as color bias correction or background suppression)can mitigate these issues,algorithm approaches typically introduce computational latency and increased energy consumption,making them unsuitable for edge computing or high-speed scenarios.
基金the support from the National Natural Science Foundation of China(Grant Nos.52173298,52192611 and 61904012)the National Key R&D Project from Minister of Science and Technology(2021YFA1201603)+1 种基金Beijing Natural Science Foundation(Z230024)the Fundamental Research Funds for the Central Universities。
文摘Driven by the urgent demands for information technology,energy,and intelligent industry,third-generation semiconductor GaN has emerged as a pivotal component in electronic and optoelectronic devices.Fundamentally,piezoelectric polarization is the most essential feature of GaN materials.Incorporating piezotronics and piezo-phototronics,GaN materials synergize mechanical signals with electrical and optical signals,thereby achieving multi-field coupling that enhances device performance.Piezotronics regulates the carrier transport process in micro-nano devices,which has been proven to significantly improve the performance of devices(such as high electron mobility transistors and microLEDs)and brings many novel applications.This review examines GaN material properties and the theoretical foundations of piezotronics and phototronics.Furthermore,it delves into the fabrication and integration processes of GaN devices to achieve state-of-the-art performance.Additionally,this review analyzes the impact of introducing three-dimensional stress and regulatory forces on the electrical and optical output performance of devices.Moreover,it discusses the burgeoning applications of GaN devices in neural sensing,optoelectronic output,and energy harvesting.The potential of piezotroniccontrolled GaN devices provides valuable insights for future research and the development of multi-functional,diversified electronic devices.
基金The Consortium for Scientific Research,Indore(CSR,Indore)(No.CRS/2021-22/01/426)is acknowledged by the authorsFor the research facilities,the authors are grateful to CHARUSAT University.
文摘The rapid advancement of modern electronics has led to a surge in solid electronic waste,which poses significant environmental and health challenges.This review focuses on recent developments in paper-based electronic devices fabricated through low-cost,hand-printing techniques,with particular emphasis on their applications in energy harvesting,storage,and sensing.Unlike conventional plastic-based substrates,cellulose paper offers several advantages,including biodegradability,recyclability,and low fabrication cost.By integrating functional nanomaterials such as two-dimensional chalcogenides,metal oxides,conductive polymers,and carbon-based structures onto paper,researchers have achieved high-performance devices such as broadband photodetectors(responsivity up to 52 mA/W),supercapacitors(energy density~15.1 mWh/cm^(2)),and pressure sensors(sensitivity~18.42 kPa^(-1)).The hand-printing approach,which eliminates the need for sophisticated equipment and toxic solvents,offers a promising route for scalable,sustainable,and disposable electronics.This review outlines fabrication methods and key performance metrics,and discusses the current challenges and future directions for realizing robust,flexible devices aligned with green technology and the United Nation’s Sustainable Development Goals.
基金The Natural Science Foundation of Guangdong Province(Project No.2023A1515012352)。
文摘Zinc oxide(ZnO),as a broadband gap semiconductor material,exhibits unique physical and chemical properties that make it highly suitable for optoelectronics,piezoelectric devices,and gas-sensitive sensors,showing significant potential for various applications.This paper focuses on the regulation and application of ZnO-based p-n junctions and piezoelectric devices.It discusses in detail the preparation of ZnO materials,the construction of p-n junctions,the optimization of piezoelectric device performance,and its application in various fields.By employing different preparation methods and strategies,high-quality ZnO thin films can be grown,and effective control of p-type conductivity achieved.This study provides both a theoretical foundation and technical support for controlling the performance of ZnO-based piezoelectric devices,as well as paving new pathways for the broader application of ZnO materials.