【目的】MADS-box转录因子是植物最大的转录因子家族之一,在植物生长发育和胁迫响应中均发挥重要功能。前期通过转录组数据获得一个辣椒热响应基因,该基因编码MADS-box转录因子家族成员CaAGL61(Agamous-like MADS-box protein AGL61)。...【目的】MADS-box转录因子是植物最大的转录因子家族之一,在植物生长发育和胁迫响应中均发挥重要功能。前期通过转录组数据获得一个辣椒热响应基因,该基因编码MADS-box转录因子家族成员CaAGL61(Agamous-like MADS-box protein AGL61)。在此基础上,进一步研究CaAGL61在辣椒耐热性调控中的功能,为深入了解辣椒耐热分子机制提供理论参考,为辣椒耐热性的遗传改良提供基因位点。【方法】通过SMART在线工具预测CaAGL61保守结构域,使用MEGA7构建辣椒和其他植物物种AGL61蛋白的系统发育树,利用实时荧光定量PCR技术探究CaAGL61在辣椒中的表达模式,运用烟草亚细胞定位技术和酵母双杂交自激活系统检测CaAGL61的转录因子特性,利用病毒诱导的基因沉默技术和基因瞬时过表达技术探究CaAGL61表达对辣椒耐热性的影响。【结果】CaAGL61编码179个氨基酸,包含一个MADS结构域,在系统进化方面高度保守。CaAGL61在辣椒花器官中的表达量最高、其次是茎和果实,根中的表达量最低;进一步分析发现CaAGL61的表达量随着花器官的成熟而增加,尤其在授粉坐果期的花药中表达量最高;45℃高温处理显著上调了CaAGL61的表达水平。亚细胞定位显示,CaAGL61定位于细胞核中;酵母转录激活分析表明,CaAGL61具有转录激活活性。CaAGL61沉默植株的耐热性显著增强,热胁迫处理后,与对照相比,CaAGL61沉默植株生长点萎蔫程度减轻,叶片相对电导率降低,丙二醛含量、死细胞和活性氧积累减少,而叶绿素含量升高。相反,CaAGL61瞬时过表达降低了辣椒的耐热性,与对照相比,表现为植株受热胁迫损伤程度更严重,叶片相对电导率升高,丙二醛含量、死细胞和活性氧积累增多,叶绿素含量下降。【结论】鉴定了一个辣椒热响应MADS-box转录因子基因CaAGL61,该基因通过加剧氧化胁迫而负调控辣椒耐热性。展开更多
To address the issue of coordinated control of multiple hydrogen and battery storage units to suppress the grid-injected power deviation of wind farms,an online optimization strategy for Battery-hydrogen hybrid energy...To address the issue of coordinated control of multiple hydrogen and battery storage units to suppress the grid-injected power deviation of wind farms,an online optimization strategy for Battery-hydrogen hybrid energy storage systems based on measurement feedback is proposed.First,considering the high charge/discharge losses of hydrogen storage and the low energy density of battery storage,an operational optimization objective is established to enable adaptive energy adjustment in the Battery-hydrogen hybrid energy storage system.Next,an online optimization model minimizing the operational cost of the hybrid system is constructed to suppress grid-injected power deviations with satisfying the operational constraints of hydrogen storage and batteries.Finally,utilizing the online measurement of the energy states of hydrogen storage and batteries,an online optimization strategy based on measurement feedback is designed.Case study results show:before and after smoothing the fluctuations in wind power,the time when the power exceeded the upper and lower limits of the grid-injected power accounted for 24.1%and 1.45%of the total time,respectively,the proposed strategy can effectively keep the grid-injected power deviations of wind farms within the allowable range.Hydrogen storage and batteries respectively undertake long-term and short-term charge/discharge tasks,effectively reducing charge/discharge losses of the Battery-hydrogen hybrid energy storage systems and improving its operational efficiency.展开更多
Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address th...Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address this issue,we propose a geometric error cost sensitivity-based accuracy allocation method for five-axis machine tools.A geometric error model consisting of 4l error components is constructed based on homogeneous transformation matrices.Volumetric points with positional and tool direction deviations are randomly sampled to evaluate the accuracy of the machine tool.The sensitivity of each error component at these sampling points is analyzed using the Sobol method.To balance the needs of geometric precision and manufacturing cost,a geometric error cost sensitivity function is developed to estimate the required cost.By allocating error components affecting tool direction deviation first and the remaining components second,this allocation scheme ensures that both deviations meet the requirements.We also perform numerical simulation of a BC-type(B-axis and C-axis type)five-axis machine tool to validate the method.The results show that the new allocation scheme reduces the total geometric error cost by 27.8%compared to a uniform allocation scheme,and yields the same positional and tool direction machining accuracies.展开更多
In this paper we study the Freidlin-Wentzell's large deviation principle for the following nonlinear fractional stochastic heat equation driven by Gaussian noise∂/∂tu^(ε)=D_(δ)^(α)(t,x)+√εσ(u^(ε)(t,x))W(t,x...In this paper we study the Freidlin-Wentzell's large deviation principle for the following nonlinear fractional stochastic heat equation driven by Gaussian noise∂/∂tu^(ε)=D_(δ)^(α)(t,x)+√εσ(u^(ε)(t,x))W(t,x),(t,x)∈[0,T]×R,where D_(δ)^(α)is a nonlocal fractional differential operator and W is the Gaussian noise which is white in time and behaves as a fractional Brownian motion with Hurst index H satisfying 3-α/4<H<1/2,in the space variable.The weak convergence approach plays an important role.展开更多
Feigning madness without becoming insane is a traditional Chinese stratagem recorded in Thirty-Six Stratagems,one of the most famous military works of ancient China.It can be seen in the military history and the polit...Feigning madness without becoming insane is a traditional Chinese stratagem recorded in Thirty-Six Stratagems,one of the most famous military works of ancient China.It can be seen in the military history and the political history of ancient China.It is a high-level psychological tactic,requiring the users to have extremely strong psychological resilience and great insight.Therefore,adopting the stratagem of feigning madness without becoming insane is the game of smart people.In brief,this stratagem is a kind of psychological defense tactic,helping the users protect themselves and gain enough time to prepare for the counterattack.About this stratagem,in ancient Chinese history,there were many successful examples.At the same time,failed cases are also worth studying.As a matter of fact,this traditional stratagem can be adopted in many different fields such as military,politics,and commerce.Thus,the research about this stratagem will be a good reference for the people of modern times.展开更多
Load deviations between the output of ultra-supercritical(USC)coal-fired power units and automatic generation control(AGC)commands can adversely affect the safe and stable operation of these units and grid load dispat...Load deviations between the output of ultra-supercritical(USC)coal-fired power units and automatic generation control(AGC)commands can adversely affect the safe and stable operation of these units and grid load dispatching.Data-driven diagnostic methods often fail to account for the imbalanced distribution of data samples,leading to reduced classification performance in diagnosing load deviations in USC units.To address the class imbalance issue in USC load deviation datasets,this study proposes a diagnostic method based on the multi-label natural neighbor boundary oversampling technique(MLNaNBDOS).The method is articulated in three phases.Initially,the traditional binary oversampling strategy is improved by constructing a binary multi-label relationship for the load deviations in coal-fired units.Subsequently,an adaptive adjustment of the oversampling factor is implemented to determine the oversampling weight for each sample class.Finally,the generation of new instances is refined by dynamically evaluating the similarity between new cases and natural neighbors through a random factor,ensuring precise control over the instance generation process.In comparisons with nine benchmark methods across three imbalanced USC load deviation datasets,the proposed method demonstrates superior performance on several key evaluation metrics,including Micro-F1,Micro-G-mean,and Hamming Loss,with average values of 0.8497,0.9150,and 0.1503,respectively.These results substantiate the effectiveness of the proposed method in accurately diagnosing the sources of load deviations in USC units.展开更多
The solar wind's interaction with the Moon has traditionally been understood through the Moon's absorption of solar wind particles and the formation of a plasma cavity on its nightside,known as the lunar wake....The solar wind's interaction with the Moon has traditionally been understood through the Moon's absorption of solar wind particles and the formation of a plasma cavity on its nightside,known as the lunar wake.This study reveals unexpected,large-scale perturbations in the solar wind upstream of the Moon,using 11 years of data from the OMNI and ARTEMIS(Acceleration,Reconnection,Turbulence and Electrodynamics of Moon's Interaction with the Sun)missions(2012-2023).We find systematic moonward deviations of~tens of km/s in a direction perpendicular to the solar wind(moonward),at altitudes of up to 1000 km,particularly when the interplanetary magnetic field(IMF)lines are oblique to the solar wind(30°<θ<60°)and connected to the lunar dayside.The longer the duration of the interaction,the greater the moonward deviation.These perturbations can be explained by neither solar wind pickup of the reflected ions,nor lunar wake dynamics.Instead,they appear to correlate with magnetic connectivity between the ARTEMIS probes and the lunar surface,suggesting a more complex solar wind interaction than previously thought.展开更多
文摘【目的】MADS-box转录因子是植物最大的转录因子家族之一,在植物生长发育和胁迫响应中均发挥重要功能。前期通过转录组数据获得一个辣椒热响应基因,该基因编码MADS-box转录因子家族成员CaAGL61(Agamous-like MADS-box protein AGL61)。在此基础上,进一步研究CaAGL61在辣椒耐热性调控中的功能,为深入了解辣椒耐热分子机制提供理论参考,为辣椒耐热性的遗传改良提供基因位点。【方法】通过SMART在线工具预测CaAGL61保守结构域,使用MEGA7构建辣椒和其他植物物种AGL61蛋白的系统发育树,利用实时荧光定量PCR技术探究CaAGL61在辣椒中的表达模式,运用烟草亚细胞定位技术和酵母双杂交自激活系统检测CaAGL61的转录因子特性,利用病毒诱导的基因沉默技术和基因瞬时过表达技术探究CaAGL61表达对辣椒耐热性的影响。【结果】CaAGL61编码179个氨基酸,包含一个MADS结构域,在系统进化方面高度保守。CaAGL61在辣椒花器官中的表达量最高、其次是茎和果实,根中的表达量最低;进一步分析发现CaAGL61的表达量随着花器官的成熟而增加,尤其在授粉坐果期的花药中表达量最高;45℃高温处理显著上调了CaAGL61的表达水平。亚细胞定位显示,CaAGL61定位于细胞核中;酵母转录激活分析表明,CaAGL61具有转录激活活性。CaAGL61沉默植株的耐热性显著增强,热胁迫处理后,与对照相比,CaAGL61沉默植株生长点萎蔫程度减轻,叶片相对电导率降低,丙二醛含量、死细胞和活性氧积累减少,而叶绿素含量升高。相反,CaAGL61瞬时过表达降低了辣椒的耐热性,与对照相比,表现为植株受热胁迫损伤程度更严重,叶片相对电导率升高,丙二醛含量、死细胞和活性氧积累增多,叶绿素含量下降。【结论】鉴定了一个辣椒热响应MADS-box转录因子基因CaAGL61,该基因通过加剧氧化胁迫而负调控辣椒耐热性。
基金Supported by State Grid Zhejiang Electric Power Co.,Ltd.Science and Technology Project Funding(No.B311DS230005).
文摘To address the issue of coordinated control of multiple hydrogen and battery storage units to suppress the grid-injected power deviation of wind farms,an online optimization strategy for Battery-hydrogen hybrid energy storage systems based on measurement feedback is proposed.First,considering the high charge/discharge losses of hydrogen storage and the low energy density of battery storage,an operational optimization objective is established to enable adaptive energy adjustment in the Battery-hydrogen hybrid energy storage system.Next,an online optimization model minimizing the operational cost of the hybrid system is constructed to suppress grid-injected power deviations with satisfying the operational constraints of hydrogen storage and batteries.Finally,utilizing the online measurement of the energy states of hydrogen storage and batteries,an online optimization strategy based on measurement feedback is designed.Case study results show:before and after smoothing the fluctuations in wind power,the time when the power exceeded the upper and lower limits of the grid-injected power accounted for 24.1%and 1.45%of the total time,respectively,the proposed strategy can effectively keep the grid-injected power deviations of wind farms within the allowable range.Hydrogen storage and batteries respectively undertake long-term and short-term charge/discharge tasks,effectively reducing charge/discharge losses of the Battery-hydrogen hybrid energy storage systems and improving its operational efficiency.
基金supported by the Key R&D Program of Zhejiang Province(Nos.2023C01166 and 2024SJCZX0046)the Zhejiang Provincial Natural Science Foundation of China(Nos.LDT23E05013E05 and LD24E050009)the Natural Science Foundation of Ningbo(No.2021J150),China.
文摘Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address this issue,we propose a geometric error cost sensitivity-based accuracy allocation method for five-axis machine tools.A geometric error model consisting of 4l error components is constructed based on homogeneous transformation matrices.Volumetric points with positional and tool direction deviations are randomly sampled to evaluate the accuracy of the machine tool.The sensitivity of each error component at these sampling points is analyzed using the Sobol method.To balance the needs of geometric precision and manufacturing cost,a geometric error cost sensitivity function is developed to estimate the required cost.By allocating error components affecting tool direction deviation first and the remaining components second,this allocation scheme ensures that both deviations meet the requirements.We also perform numerical simulation of a BC-type(B-axis and C-axis type)five-axis machine tool to validate the method.The results show that the new allocation scheme reduces the total geometric error cost by 27.8%compared to a uniform allocation scheme,and yields the same positional and tool direction machining accuracies.
基金Partially supported by NSFC(No.11701304)the K.C.Wong Education Foundation。
文摘In this paper we study the Freidlin-Wentzell's large deviation principle for the following nonlinear fractional stochastic heat equation driven by Gaussian noise∂/∂tu^(ε)=D_(δ)^(α)(t,x)+√εσ(u^(ε)(t,x))W(t,x),(t,x)∈[0,T]×R,where D_(δ)^(α)is a nonlocal fractional differential operator and W is the Gaussian noise which is white in time and behaves as a fractional Brownian motion with Hurst index H satisfying 3-α/4<H<1/2,in the space variable.The weak convergence approach plays an important role.
文摘Feigning madness without becoming insane is a traditional Chinese stratagem recorded in Thirty-Six Stratagems,one of the most famous military works of ancient China.It can be seen in the military history and the political history of ancient China.It is a high-level psychological tactic,requiring the users to have extremely strong psychological resilience and great insight.Therefore,adopting the stratagem of feigning madness without becoming insane is the game of smart people.In brief,this stratagem is a kind of psychological defense tactic,helping the users protect themselves and gain enough time to prepare for the counterattack.About this stratagem,in ancient Chinese history,there were many successful examples.At the same time,failed cases are also worth studying.As a matter of fact,this traditional stratagem can be adopted in many different fields such as military,politics,and commerce.Thus,the research about this stratagem will be a good reference for the people of modern times.
基金supported by the National Natural Science Foundation of China(Grant No.62173050)Shenzhen Municipal Science and Technology Innovation Committee(Grant No.KCXFZ20211020165004006)+3 种基金Natural Science Foundation of Hunan Province of China(Grant No.2023JJ30051)Hunan Provincial Graduate Student Research Innovation Project(Grant No.QL20230214)Major Scientific and Technological Innovation Platform Project of Hunan Province(2024JC1003)Hunan Provincial University Students’Energy Conservation and Emission Reduction Innovation and Entrepreneurship Education Center(Grant No.2019-10).
文摘Load deviations between the output of ultra-supercritical(USC)coal-fired power units and automatic generation control(AGC)commands can adversely affect the safe and stable operation of these units and grid load dispatching.Data-driven diagnostic methods often fail to account for the imbalanced distribution of data samples,leading to reduced classification performance in diagnosing load deviations in USC units.To address the class imbalance issue in USC load deviation datasets,this study proposes a diagnostic method based on the multi-label natural neighbor boundary oversampling technique(MLNaNBDOS).The method is articulated in three phases.Initially,the traditional binary oversampling strategy is improved by constructing a binary multi-label relationship for the load deviations in coal-fired units.Subsequently,an adaptive adjustment of the oversampling factor is implemented to determine the oversampling weight for each sample class.Finally,the generation of new instances is refined by dynamically evaluating the similarity between new cases and natural neighbors through a random factor,ensuring precise control over the instance generation process.In comparisons with nine benchmark methods across three imbalanced USC load deviation datasets,the proposed method demonstrates superior performance on several key evaluation metrics,including Micro-F1,Micro-G-mean,and Hamming Loss,with average values of 0.8497,0.9150,and 0.1503,respectively.These results substantiate the effectiveness of the proposed method in accurately diagnosing the sources of load deviations in USC units.
基金supported by the National Natural Science Foundation of China(Grant No.42474227,42241106,42388101)financial support through the German Ministry for Economy and Technology and the German Center for Aviation and Space(DLR)under contract 50 OC 0302
文摘The solar wind's interaction with the Moon has traditionally been understood through the Moon's absorption of solar wind particles and the formation of a plasma cavity on its nightside,known as the lunar wake.This study reveals unexpected,large-scale perturbations in the solar wind upstream of the Moon,using 11 years of data from the OMNI and ARTEMIS(Acceleration,Reconnection,Turbulence and Electrodynamics of Moon's Interaction with the Sun)missions(2012-2023).We find systematic moonward deviations of~tens of km/s in a direction perpendicular to the solar wind(moonward),at altitudes of up to 1000 km,particularly when the interplanetary magnetic field(IMF)lines are oblique to the solar wind(30°<θ<60°)and connected to the lunar dayside.The longer the duration of the interaction,the greater the moonward deviation.These perturbations can be explained by neither solar wind pickup of the reflected ions,nor lunar wake dynamics.Instead,they appear to correlate with magnetic connectivity between the ARTEMIS probes and the lunar surface,suggesting a more complex solar wind interaction than previously thought.