With respect to the gamma spectrum, the energy resolution improves with increase in energy. The counts of full energy peak change with energy, and this approximately complies with the Gaussian distribution. This study...With respect to the gamma spectrum, the energy resolution improves with increase in energy. The counts of full energy peak change with energy, and this approximately complies with the Gaussian distribution. This study mainly examines a method to deconvolve the LaBr_3:Ce gamma spectrum with a detector response matrix constructing algorithm based on energy resolution calibration.In the algorithm, the full width at half maximum(FWHM)of full energy peak was calculated by the cubic spline interpolation algorithm and calibrated by a square root of a quadratic function that changes with the energy. Additionally, the detector response matrix was constructed to deconvolve the gamma spectrum. Furthermore, an improved SNIP algorithm was proposed to eliminate the background. In the experiment, several independent peaks of ^(152)Eu,^(137)Cs, and ^(60)Co sources were detected by a LaBr_3:Ce scintillator that were selected to calibrate the energy resolution. The Boosted Gold algorithm was applied to deconvolve the gamma spectrum. The results showed that the peak position difference between the experiment and the deconvolution was within ± 2 channels and the relative error of peak area was approximately within 0.96–6.74%. Finally, a ^(133) Ba spectrum was deconvolved to verify the efficiency and accuracy of the algorithm in unfolding the overlapped peaks.展开更多
Negative selection algorithm(NSA)is one of the classic artificial immune algorithm widely used in anomaly detection.However,there are still unsolved shortcomings of NSA that limit its further applications.For example,...Negative selection algorithm(NSA)is one of the classic artificial immune algorithm widely used in anomaly detection.However,there are still unsolved shortcomings of NSA that limit its further applications.For example,the nonselfdetector generation efficiency is low;a large number of nonselfdetector is needed for precise detection;low detection rate with various application data sets.Aiming at those problems,a novel radius adaptive based on center-optimized hybrid detector generation algorithm(RACO-HDG)is put forward.To our best knowledge,radius adaptive based on center optimization is first time analyzed and proposed as an efficient mechanism to improve both detector generation and detection rate without significant computation complexity.RACO-HDG works efficiently in three phases.At first,a small number of self-detectors are generated,different from typical NSAs with a large number of self-sample are generated.Nonself-detectors will be generated from those initial small number of self-detectors to make hybrid detection of self-detectors and nonself-detectors possible.Secondly,without any prior knowledge of the data sets or manual setting,the nonself-detector radius threshold is self-adaptive by optimizing the nonself-detector center and the generation mechanism.In this way,the number of abnormal detectors is decreased sharply,while the coverage area of the nonself-detector is increased otherwise,leading to higher detection performances of RACOHDG.Finally,hybrid detection algorithm is proposed with both self-detectors and nonself-detectors work together to increase detection rate as expected.Abundant simulations and application results show that the proposed RACO-HDG has higher detection rate,lower false alarm rate and higher detection efficiency compared with other excellent algorithms.展开更多
The negative selection algorithm(NSA)is an adaptive technique inspired by how the biological immune system discriminates the self from nonself.It asserts itself as one of the most important algorithms of the artificia...The negative selection algorithm(NSA)is an adaptive technique inspired by how the biological immune system discriminates the self from nonself.It asserts itself as one of the most important algorithms of the artificial immune system.A key element of the NSA is its great dependency on the random detectors in monitoring for any abnormalities.However,these detectors have limited performance.Redundant detectors are generated,leading to difficulties for detectors to effectively occupy the non-self space.To alleviate this problem,we propose the nature-inspired metaheuristic cuckoo search(CS),a stochastic global search algorithm,which improves the random generation of detectors in the NSA.Inbuilt characteristics such as mutation,crossover,and selection operators make the CS attain global convergence.With the use of Lévy flight and a distance measure,efficient detectors are produced.Experimental results show that integrating CS into the negative selection algorithm elevated the detection performance of the NSA,with an average increase of 3.52%detection rate on the tested datasets.The proposed method shows superiority over other models,and detection rates of 98%and 99.29%on Fisher’s IRIS and Breast Cancer datasets,respectively.Thus,the generation of highest detection rates and lowest false alarm rates can be achieved.展开更多
In the open network environment, malicious attacks to the trust model have become increasingly serious. Compared with single node attacks, collusion attacks do more harm to the trust model. To solve this problem, a co...In the open network environment, malicious attacks to the trust model have become increasingly serious. Compared with single node attacks, collusion attacks do more harm to the trust model. To solve this problem, a collusion detector based on the GN algorithm for the trust evaluation model is proposed in the open Internet environment. By analyzing the behavioral characteristics of collusion groups, the concept of flatting is defined and the G-N community mining algorithm is used to divide suspicious communities. On this basis, a collusion community detector method is proposed based on the breaking strength of suspicious communities. Simulation results show that the model has high recognition accuracy in identifying collusion nodes, so as to effectively defend against malicious attacks of collusion nodes.展开更多
Minimum Partial Euclidean Distance (MPED) based K-best algorithm is proposed to detect the best signal for MIMO (Multiple Input Multiple Output) detector. It is based on Breadth-first search method. The proposed algor...Minimum Partial Euclidean Distance (MPED) based K-best algorithm is proposed to detect the best signal for MIMO (Multiple Input Multiple Output) detector. It is based on Breadth-first search method. The proposed algorithm is independent of the number of transmitting/receiving antennas and constellation size. It provides a high throughput and reduced Bit Error Rate (BER) with the performance close to Maximum Likelihood Detection (MLD) method. The main innovations are the nodes that are expanded and visited based on MPED algorithm and it keeps track of finally selecting the best candidates at each cycle. It allows its complexity to scale linearly with the modulation order. Using Quadrature Amplitude Modulation (QAM) the complex domain input signals are modulated and are converted into wavelet packets and these packets are transmitted using Additive White Gaussian Noise (AWGN) channel. Then from the number of received signals the best signal is detected using MPED based K-best algorithm. It provides the exact best node solution with reduced complexity. The pipelined VLSI architecture is the best suited for implementation because the expansion and sorting cores are data driven. The proposed method is implemented targeting Xilinx Virtex 5 device for a 4 × 4, 64-QAM system and it achieves throughput of 1.1 Gbps. The results of resource utilization are tabulated and compared with the existing algorithms.展开更多
The Cooling Storage Ring of the Heavy Ion Research Facility in Lanzhou(HIRFL-CSR)was constructed to study nuclear physics,atomic physics,interdisciplinary science,and related applications.The External Target Facility(...The Cooling Storage Ring of the Heavy Ion Research Facility in Lanzhou(HIRFL-CSR)was constructed to study nuclear physics,atomic physics,interdisciplinary science,and related applications.The External Target Facility(ETF)is located in the main ring of the HIRFL-CSR.The gamma detector of the ETF is built to measure emitted gamma rays with energies below 5 MeV in the center-of-mass frame and is planned to measure light fragments with energies up to 300 MeV.The readout electronics for the gamma detector were designed and commissioned.The readout electronics consist of thirty-two front-end cards,thirty-two readout control units(RCUs),one common readout unit,one synchronization&clock unit,and one sub-trigger unit.By using the real-time peak-detection algorithm implemented in the RCU,the data volume can be significantly reduced.In addition,trigger logic selection algorithms are implemented to improve the selection of useful events and reduce the data size.The test results show that the integral nonlinearity of the readout electronics is less than 1%,and the energy resolution for measuring the 60 Co source is better than 5.5%.This study discusses the design and performance of the readout electronics.展开更多
图像特征提取匹配做为视觉SLAM(Simultaneous Localization and Mapping)的重要组成部分,在井下无人巡检机器人上应用广泛。针对井下环境复杂,光照不足,现有特征提取匹配算法存在匹配率低,进而导致视觉SLAM定位精度低的问题。通过对现有...图像特征提取匹配做为视觉SLAM(Simultaneous Localization and Mapping)的重要组成部分,在井下无人巡检机器人上应用广泛。针对井下环境复杂,光照不足,现有特征提取匹配算法存在匹配率低,进而导致视觉SLAM定位精度低的问题。通过对现有LSD(Line Segment Detector)线特征匹配算法进行改进,采用对比度亮度和对数变换算法对采集的视频图像帧进行图像增强,利用Canny边缘提取算法对增强后的视频图像帧进行图像边缘信息提取后进行LSD线特征提取匹配,与原始算法进行平均匹配率对比分析。结果表明:在连续300帧井下视频图像匹配过程中,改进算法的平均匹配率为99.88%,原始算法的平均匹配率为88.42%,其平均匹配率提升11.46%。说明改进的LSD井下视频图像线特征提取匹配算法具有更高的匹配精度且更适用与井下无人巡检机器人进行无人巡检工作。展开更多
Aiming at parallel distributed constant false alarm rate (CFAR) detection employing K/N fusion rule,an optimization algorithm based on the genetic algorithm with interval encoding is proposed. N-1 local probabilitie...Aiming at parallel distributed constant false alarm rate (CFAR) detection employing K/N fusion rule,an optimization algorithm based on the genetic algorithm with interval encoding is proposed. N-1 local probabilities of false alarm are selected as optimization variables. And the encoding intervals for local false alarm probabilities are sequentially designed by the person-by-person optimization technique according to the constraints. By turning constrained optimization to unconstrained optimization,the problem of increasing iteration times due to the punishment technique frequently adopted in the genetic algorithm is thus overcome. Then this optimization scheme is applied to spacebased synthetic aperture radar (SAR) multi-angle collaborative detection,in which the nominal factor for each local detector is determined. The scheme is verified with simulations of cases including two,three and four independent SAR systems. Besides,detection performances with varying K and N are compared and analyzed.展开更多
It is necessary to rely on the rail gauge to determine whether the object beside the track will affect train operation safety or not.A convenient and fast method based on line segment detector(LSD)and the least square...It is necessary to rely on the rail gauge to determine whether the object beside the track will affect train operation safety or not.A convenient and fast method based on line segment detector(LSD)and the least square curve fitting to identify the rail in the image is proposed in this paper.The image in front of the train can be obtained through the camera on-board.After preprocessing,it will be divided equally along the longitudinal axis.Utilizing the characteristics of the LSD algorithm,the edges are approximated into multiple line segments.After screening the terminals of the line segments,it can generate the mathematical model of the rail in the image based on the least square.Experiments show that the algorithm in this paper can fit the rail curve accurately and has good applicability and robustness.展开更多
基金supported by the National Natural Science Foundation of China(Nos.41374130 and 41604154)
文摘With respect to the gamma spectrum, the energy resolution improves with increase in energy. The counts of full energy peak change with energy, and this approximately complies with the Gaussian distribution. This study mainly examines a method to deconvolve the LaBr_3:Ce gamma spectrum with a detector response matrix constructing algorithm based on energy resolution calibration.In the algorithm, the full width at half maximum(FWHM)of full energy peak was calculated by the cubic spline interpolation algorithm and calibrated by a square root of a quadratic function that changes with the energy. Additionally, the detector response matrix was constructed to deconvolve the gamma spectrum. Furthermore, an improved SNIP algorithm was proposed to eliminate the background. In the experiment, several independent peaks of ^(152)Eu,^(137)Cs, and ^(60)Co sources were detected by a LaBr_3:Ce scintillator that were selected to calibrate the energy resolution. The Boosted Gold algorithm was applied to deconvolve the gamma spectrum. The results showed that the peak position difference between the experiment and the deconvolution was within ± 2 channels and the relative error of peak area was approximately within 0.96–6.74%. Finally, a ^(133) Ba spectrum was deconvolved to verify the efficiency and accuracy of the algorithm in unfolding the overlapped peaks.
基金supported by the National Natural Science Foundation of China(61502423,62072406)the Natural Science Foundation of Zhejiang Provincial(LY19F020025)the Major Special Funding for“Science and Technology Innovation 2025”in Ningbo(2018B10063)。
文摘Negative selection algorithm(NSA)is one of the classic artificial immune algorithm widely used in anomaly detection.However,there are still unsolved shortcomings of NSA that limit its further applications.For example,the nonselfdetector generation efficiency is low;a large number of nonselfdetector is needed for precise detection;low detection rate with various application data sets.Aiming at those problems,a novel radius adaptive based on center-optimized hybrid detector generation algorithm(RACO-HDG)is put forward.To our best knowledge,radius adaptive based on center optimization is first time analyzed and proposed as an efficient mechanism to improve both detector generation and detection rate without significant computation complexity.RACO-HDG works efficiently in three phases.At first,a small number of self-detectors are generated,different from typical NSAs with a large number of self-sample are generated.Nonself-detectors will be generated from those initial small number of self-detectors to make hybrid detection of self-detectors and nonself-detectors possible.Secondly,without any prior knowledge of the data sets or manual setting,the nonself-detector radius threshold is self-adaptive by optimizing the nonself-detector center and the generation mechanism.In this way,the number of abnormal detectors is decreased sharply,while the coverage area of the nonself-detector is increased otherwise,leading to higher detection performances of RACOHDG.Finally,hybrid detection algorithm is proposed with both self-detectors and nonself-detectors work together to increase detection rate as expected.Abundant simulations and application results show that the proposed RACO-HDG has higher detection rate,lower false alarm rate and higher detection efficiency compared with other excellent algorithms.
文摘The negative selection algorithm(NSA)is an adaptive technique inspired by how the biological immune system discriminates the self from nonself.It asserts itself as one of the most important algorithms of the artificial immune system.A key element of the NSA is its great dependency on the random detectors in monitoring for any abnormalities.However,these detectors have limited performance.Redundant detectors are generated,leading to difficulties for detectors to effectively occupy the non-self space.To alleviate this problem,we propose the nature-inspired metaheuristic cuckoo search(CS),a stochastic global search algorithm,which improves the random generation of detectors in the NSA.Inbuilt characteristics such as mutation,crossover,and selection operators make the CS attain global convergence.With the use of Lévy flight and a distance measure,efficient detectors are produced.Experimental results show that integrating CS into the negative selection algorithm elevated the detection performance of the NSA,with an average increase of 3.52%detection rate on the tested datasets.The proposed method shows superiority over other models,and detection rates of 98%and 99.29%on Fisher’s IRIS and Breast Cancer datasets,respectively.Thus,the generation of highest detection rates and lowest false alarm rates can be achieved.
基金supported by the National Natural Science Foundation of China(6140224161572260+3 种基金613730176157226161472192)the Scientific&Technological Support Project of Jiangsu Province(BE2015702)
文摘In the open network environment, malicious attacks to the trust model have become increasingly serious. Compared with single node attacks, collusion attacks do more harm to the trust model. To solve this problem, a collusion detector based on the GN algorithm for the trust evaluation model is proposed in the open Internet environment. By analyzing the behavioral characteristics of collusion groups, the concept of flatting is defined and the G-N community mining algorithm is used to divide suspicious communities. On this basis, a collusion community detector method is proposed based on the breaking strength of suspicious communities. Simulation results show that the model has high recognition accuracy in identifying collusion nodes, so as to effectively defend against malicious attacks of collusion nodes.
文摘Minimum Partial Euclidean Distance (MPED) based K-best algorithm is proposed to detect the best signal for MIMO (Multiple Input Multiple Output) detector. It is based on Breadth-first search method. The proposed algorithm is independent of the number of transmitting/receiving antennas and constellation size. It provides a high throughput and reduced Bit Error Rate (BER) with the performance close to Maximum Likelihood Detection (MLD) method. The main innovations are the nodes that are expanded and visited based on MPED algorithm and it keeps track of finally selecting the best candidates at each cycle. It allows its complexity to scale linearly with the modulation order. Using Quadrature Amplitude Modulation (QAM) the complex domain input signals are modulated and are converted into wavelet packets and these packets are transmitted using Additive White Gaussian Noise (AWGN) channel. Then from the number of received signals the best signal is detected using MPED based K-best algorithm. It provides the exact best node solution with reduced complexity. The pipelined VLSI architecture is the best suited for implementation because the expansion and sorting cores are data driven. The proposed method is implemented targeting Xilinx Virtex 5 device for a 4 × 4, 64-QAM system and it achieves throughput of 1.1 Gbps. The results of resource utilization are tabulated and compared with the existing algorithms.
基金supported by the National Natural Science Foundation of China (Nos. 12222512, 12375193, U2031206, U1831206, and U2032209)the Scientific Instrument Developing Project of the Chinese Academy of Sciences (GJJSTD20210009)+1 种基金the CAS Pioneer Hundred Talent Programthe CAS Light of West China Program
文摘The Cooling Storage Ring of the Heavy Ion Research Facility in Lanzhou(HIRFL-CSR)was constructed to study nuclear physics,atomic physics,interdisciplinary science,and related applications.The External Target Facility(ETF)is located in the main ring of the HIRFL-CSR.The gamma detector of the ETF is built to measure emitted gamma rays with energies below 5 MeV in the center-of-mass frame and is planned to measure light fragments with energies up to 300 MeV.The readout electronics for the gamma detector were designed and commissioned.The readout electronics consist of thirty-two front-end cards,thirty-two readout control units(RCUs),one common readout unit,one synchronization&clock unit,and one sub-trigger unit.By using the real-time peak-detection algorithm implemented in the RCU,the data volume can be significantly reduced.In addition,trigger logic selection algorithms are implemented to improve the selection of useful events and reduce the data size.The test results show that the integral nonlinearity of the readout electronics is less than 1%,and the energy resolution for measuring the 60 Co source is better than 5.5%.This study discusses the design and performance of the readout electronics.
基金New Century Program for Excellent Talents of Minis-try of Education of China (NECT-06-0166)The Eleventh Five-year Scientific and Technological Development Plan of National Defense Pre-study Foundation (A2120060006)
文摘Aiming at parallel distributed constant false alarm rate (CFAR) detection employing K/N fusion rule,an optimization algorithm based on the genetic algorithm with interval encoding is proposed. N-1 local probabilities of false alarm are selected as optimization variables. And the encoding intervals for local false alarm probabilities are sequentially designed by the person-by-person optimization technique according to the constraints. By turning constrained optimization to unconstrained optimization,the problem of increasing iteration times due to the punishment technique frequently adopted in the genetic algorithm is thus overcome. Then this optimization scheme is applied to spacebased synthetic aperture radar (SAR) multi-angle collaborative detection,in which the nominal factor for each local detector is determined. The scheme is verified with simulations of cases including two,three and four independent SAR systems. Besides,detection performances with varying K and N are compared and analyzed.
基金National Natural Science Foundation of China(No.61763023).
文摘It is necessary to rely on the rail gauge to determine whether the object beside the track will affect train operation safety or not.A convenient and fast method based on line segment detector(LSD)and the least square curve fitting to identify the rail in the image is proposed in this paper.The image in front of the train can be obtained through the camera on-board.After preprocessing,it will be divided equally along the longitudinal axis.Utilizing the characteristics of the LSD algorithm,the edges are approximated into multiple line segments.After screening the terminals of the line segments,it can generate the mathematical model of the rail in the image based on the least square.Experiments show that the algorithm in this paper can fit the rail curve accurately and has good applicability and robustness.