期刊文献+
共找到1,006,971篇文章
< 1 2 250 >
每页显示 20 50 100
Establishment of a field visualization detection method for multiplex recombinase polymerase amplification combined with CRISPR/Cas12a in genetically modified crops 被引量:1
1
作者 YAN Jingying NI Liang +2 位作者 SHEN Xingyu LÜ Bingtao LI Yu 《浙江大学学报(农业与生命科学版)》 北大核心 2025年第3期391-401,共11页
With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a c... With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a convenient and visual technique with low equipment requirements and high sensitivity for the field detection of GM plants is still lacking.On the basis of the existing recombinase polymerase amplification(RPA)technique,we developed a multiplex RPA(multi-RPA)method that can simultaneously detect three transgenic elements,including the cauliflower mosaic virus 35S gene(CaMV35S)promoter,neomycin phosphotransferaseⅡgene(NptⅡ)and hygromycin B phosphotransferase gene(Hyg),thus improving the detection rate.Moreover,we coupled this multi-RPA technique with the CRISPR/Cas12a reporter system,which enabled the detection results to be clearly observed by naked eyes under ultraviolet(UV)light(254 nm;which could be achieved by a portable UV flashlight),therefore establishing a multi-RPA visual detection technique.Compared with the traditional test strip detection method,this multi-RPA-CRISPR/Cas12a technique has the higher specificity,higher sensitivity,wider application range and lower cost.Compared with other polymerase chain reaction(PCR)techniques,it also has the advantages of low equipment requirements and visualization,making it a potentially feasible method for the field detection of GM plants. 展开更多
关键词 genetically modified crop recombinase polymerase amplification CRISPR/Cas12a field detection
在线阅读 下载PDF
Multi-scale feature fusion optical remote sensing target detection method 被引量:1
2
作者 BAI Liang DING Xuewen +1 位作者 LIU Ying CHANG Limei 《Optoelectronics Letters》 2025年第4期226-233,共8页
An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyram... An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved. 展开更多
关键词 multi scale feature fusion optical remote sensing feature map improve target detection ability optical remote sensing imagesfirstlythe target detection feature fusionto enrich semantic information spatial information
原文传递
Weld defects detection method based on improved YOLOv5s 被引量:1
3
作者 Runchao Liu Jiyang Qi +1 位作者 Dongliang Shui Tang Ebolo Micheline Hortense 《China Welding》 2025年第2期119-131,共13页
To solve the problem of low detection accuracy for complex weld defects,the paper proposes a weld defects detection method based on improved YOLOv5s.To enhance the ability to focus on key information in feature maps,t... To solve the problem of low detection accuracy for complex weld defects,the paper proposes a weld defects detection method based on improved YOLOv5s.To enhance the ability to focus on key information in feature maps,the scSE attention mechanism is intro-duced into the backbone network of YOLOv5s.A Fusion-Block module and additional layers are added to the neck network of YOLOv5s to improve the effect of feature fusion,which is to meet the needs of complex object detection.To reduce the computation-al complexity of the model,the C3Ghost module is used to replace the CSP2_1 module in the neck network of YOLOv5s.The scSE-ASFF module is constructed and inserted between the neck network and the prediction end,which is to realize the fusion of features between the different layers.To address the issue of imbalanced sample quality in the dataset and improve the regression speed and accuracy of the loss function,the CIoU loss function in the YOLOv5s model is replaced with the Focal-EIoU loss function.Finally,ex-periments are conducted based on the collected weld defect dataset to verify the feasibility of the improved YOLOv5s for weld defects detection.The experimental results show that the precision and mAP of the improved YOLOv5s in detecting complex weld defects are as high as 83.4%and 76.1%,respectively,which are 2.5%and 7.6%higher than the traditional YOLOv5s model.The proposed weld defects detection method based on the improved YOLOv5s in this paper can effectively solve the problem of low weld defects detection accuracy. 展开更多
关键词 Weld defects detection Improved YOLOv5s scSE-ASFF Feature fusion
在线阅读 下载PDF
Development prospects of residual stress detection methods
4
作者 Xin LI Hanjun GAO Qiong WU 《Chinese Journal of Aeronautics》 2025年第7期601-603,共3页
In the aerospace field, residual stress directly affects the strength, fatigue life and dimensional stability of thin-walled structural components, and is a key factor to ensure flight safety and reliability. At prese... In the aerospace field, residual stress directly affects the strength, fatigue life and dimensional stability of thin-walled structural components, and is a key factor to ensure flight safety and reliability. At present, research on residual stress at home and abroad mainly focuses on the optimization of traditional detection technology, stress control of manufacturing process and service performance evaluation, among which research on residual stress detection methods mainly focuses on the improvement of the accuracy, sensitivity, reliability and other performance of existing detection methods, but it still faces many challenges such as extremely small detection range, low efficiency, large error and limited application range. 展开更多
关键词 residual stress flight safety reliability detection methods optimization traditional detection technology residual stress detection methods service performance evaluation IMPROVEMENT stress control
原文传递
Legume allergy:binding epitopes,detection methods,mitigation techniques,diagnosis and immunotherapy strategies
5
作者 Huan Lyu Xiangrui Li +2 位作者 Xinyu Zhang Lu Zeng Qiujin Zhu 《Food Science and Human Wellness》 2025年第10期3821-3839,共19页
Legume foods are not only trendy but also rich in nutrients and offer unique health benefits.Nevertheless,allergies to soy and other legumes have emerged as critical issues in food safety,presenting significant challe... Legume foods are not only trendy but also rich in nutrients and offer unique health benefits.Nevertheless,allergies to soy and other legumes have emerged as critical issues in food safety,presenting significant challenges to the food processing industry and impacting consumer health.The complexity of legume allergens,coupled with inadequate allergen identification methods and the absence of robust detection and evaluation systems,complicates the management of these allergens.Here,we provide a comprehensive and critical review,mentioning various aspects related to legume allergies,including the types of legume allergens,the mechanisms behind these allergies,and the immunoglobulin E(Ig E)-binding epitopes involved,summarizing and discussing the detection techniques and the impact of different processing techniques on sensitization to legume proteins.Furthermore,this paper provides an overview of research advances in diagnostic and therapeutic strategies for legume allergens and discusses current challenges and prospects for studying legume allergens. 展开更多
关键词 Legume allergen ALLERGENICITY Immunoglobulin E-binding epitope detection method Allergenicity reduction
在线阅读 下载PDF
NEA Detection Method with Neural Network in Sidereal Tracking
6
作者 Yijun Tang Yunxiao Jiang +9 位作者 Zhen Zhang Chenchen Ying Songqi Zhang Liangcheng Liao Junjie Ma Bo Yan Chunhai Bai Guojie Feng Xiaoming Zhang Xiaojun Jiang 《Research in Astronomy and Astrophysics》 2025年第9期35-49,共15页
Near-Earth Asteroids posed a threat to human civilization,making their monitoring crucial.As the demand for asteroid detection technology increased,precise detection of these celestial bodies became an urgent task to ... Near-Earth Asteroids posed a threat to human civilization,making their monitoring crucial.As the demand for asteroid detection technology increased,precise detection of these celestial bodies became an urgent task to understand their characteristics and assess potential impact risks.To improve asteroid detection accuracy and efficiency,we proposed an advanced image processing method and a deep learning network for automatic asteroid detection.Specifically,we aligned star clusters and overlaid images to exploit asteroid motion rates,transforming them into object-like trajectories and improving the signal-to-noise ratio.This approach created the Asteroid Trajectory Image Data set under various conditions.We modified CenterNet2 network to develop AstroCenterNet by integrating Multi-channel Histogram Truncation for feature enhancement,using the SimAM attention mechanism to expand contextual information and suppress noise,and refining Feature Pyramid Network to improve low-level feature detection.Our results demonstrated a detection accuracy of 98.4%,a recall of 97.6%,a mean Average Precision of 94.01%,a false alarm rate of 1.6%,and a processing speed of approximately 17.86 frames per second,indicating that our method achieves high precision and efficiency. 展开更多
关键词 methods data analysis-techniques image processing-minor planets asteroids general-planets and satellites detection
在线阅读 下载PDF
Novel chromogenic medium-based method for the rapid detection of Helicobacter pylori drug resistance
7
作者 Ai-Xing Guan Shuang-Yan Yang +5 位作者 Tong Wu Wen-Ting Zhou Hao Chen Zan-Song Huang Pei-Pei Luo Yan-Qiang Huang 《World Journal of Gastroenterology》 2025年第32期86-99,共14页
BACKGROUND Helicobacter pylori(H.pylori),a globally prevalent pathogen,is exhibiting increasing rates of antimicrobial resistance.However,clinical implementation of pre-treatment susceptibility testing remains limited... BACKGROUND Helicobacter pylori(H.pylori),a globally prevalent pathogen,is exhibiting increasing rates of antimicrobial resistance.However,clinical implementation of pre-treatment susceptibility testing remains limited due to the organism’s fastidious growth requirements and prolonged culture time.AIM To propose a novel detection method utilizing antibiotic-supplemented media to inhibit susceptible strains,while resistant isolates were identified through urease-mediated hydrolysis of urea,inducing a phenol red color change for visual confirmation.METHODS Colombia agar was supplemented with urea,phenol red,and nickel chloride,and the final pH was adjusted to 7.35.Antibiotic-selective media were prepared by incorporating amoxicillin(0.5μg/mL),clarithromycin(2μg/mL),metronidazole(8μg/mL),or levofloxacin(2μg/mL)into separate batches.Gastric antral biopsies were homogenized and inoculated at 1.0×105 CFU onto the media,and then incubated under microaerobic conditions at 37°C for 28-36 hours.Resistance was determined based on a color change from yellow to pink,and the results were validated via broth microdilution according to Clinical and Laboratory Standards Institute guidelines.RESULTS After 28-36 hours of incubation,the drug-resistant H.pylori isolates induced a light red color change in the medium.Conversely,susceptible strains(H.pylori 26695 and G27)produced no visible color change.Compared with the conventional 11-day protocol,the novel method significantly reduced detection time.Among 201 clinical isolates,182 were successfully evaluated using the new method,resulting in a 90.5%detection rate.This was consistent with the 95.5%agreement rate observed when compared with microdilution-based susceptibility testing.The success rate of the novel approach was significantly higher than that of the comparative method(P<0.01).The accuracy of the new method was comparable to that of the dilution method.CONCLUSION The novel detection method can rapidly detect H.pylori drug resistance within 28-36 hours.With its operational simplicity and high diagnostic performance,it holds strong potential for clinical application in the management of H.pylori antimicrobial resistance. 展开更多
关键词 Helicobacter pylori Drug resistance Antibiotic susceptibility testing Chromogenic medium Rapid detection method
暂未订购
An Automatic Damage Detection Method Based on Adaptive Theory-Assisted Reinforcement Learning
8
作者 Chengwen Zhang Qing Chun Yijie Lin 《Engineering》 2025年第7期188-202,共15页
Current damage detection methods based on model updating and sensitivity Jacobian matrixes show a low convergence ratio and computational efficiency for online calculations.The aim of this paper is to construct a real... Current damage detection methods based on model updating and sensitivity Jacobian matrixes show a low convergence ratio and computational efficiency for online calculations.The aim of this paper is to construct a real-time automated damage detection method by developing a theory-assisted adaptive mutiagent twin delayed deep deterministic(TA2-MATD3)policy gradient algorithm.First,the theoretical framework of reinforcement-learning-driven damage detection is established.To address the disadvantages of traditional mutiagent twin delayed deep deterministic(MATD3)method,the theory-assisted mechanism and the adaptive experience playback mechanism are introduced.Moreover,a historical residential house built in 1889 was taken as an example,using its 12-month structural health monitoring data.TA2-MATD3 was compared with existing damage detection methods in terms of the convergence ratio,online computing efficiency,and damage detection accuracy.The results show that the computational efficiency of TA2-MATD3 is approximately 117–160 times that of the traditional methods.The convergence ratio of damage detection on the training set is approximately 97%,and that on the test set is in the range of 86.2%–91.9%.In addition,the main apparent damages found in the field survey were identified by TA2-MATD3.The results indicate that the proposed method can significantly improve the online computing efficiency and damage detection accuracy.This research can provide novel perspectives for the use of reinforcement learning methods to conduct damage detection in online structural health monitoring. 展开更多
关键词 Reinforcement learning Theory-assisted Damage detection Newton’s method Model updating Architectural heritage
在线阅读 下载PDF
Stepwise inversion method using second-order derivatives of elastic impedance for fracture detection in orthorhombic medium
9
作者 Wei Xiang Xing-Yao Yin +2 位作者 Kun Li Zheng-Qian Ma Ya-Ming Yang 《Petroleum Science》 2025年第8期3229-3246,共18页
Reservoirs with a group of vertical fractures in a vertical transversely isotropic(VTI)background are considered as orthorhombic(ORT)medium.However,fracture detection in ORT medium using seismic inversion methods rema... Reservoirs with a group of vertical fractures in a vertical transversely isotropic(VTI)background are considered as orthorhombic(ORT)medium.However,fracture detection in ORT medium using seismic inversion methods remains challenging,as it requires the estimation of more than eight parameters.Assuming the reservoir to be a weakly anisotropic ORT medium with small contrasts in the background elastic parameters,a new azimuthal elastic impedance equation was first derived using parameter combinations and mathematical approximations.This equation exhibited almost the same accuracy as the original equation and contained only six model parameters:the compression modulus,anisotropic shear modulus,anisotropic compression modulus,density,normal fracture weakness,and tangential fracture weakness.Subsequently,a stepwise inversion method using second-order derivatives of the elastic impedance was developed to estimate these parameters.Moreover,the Thomsen anisotropy parameter,epsilon,was estimated from the inversion results using the ratio of the anisotropic compression modulus to the compression modulus.Synthetic examples with moderate noise and field data examples confirm the feasibility and effectiveness of the inversion method.The proposed method exhibited accuracy similar to that of previous inversion strategies and could predict richer vertical fracture information.Ultimately,the method was applied to a three-dimensional work area,and the predictions were consistent with logging and geological a priori information,confirming the effectiveness of this method.Summarily,the proposed stepwise inversion method can alleviate the uncertainty of multi-parameter inversion in ORT medium,thereby improving the reliability of fracture detection. 展开更多
关键词 Orthorhombic medium Fracture detection Stepwise inversion method Azimuthal elastic impedance Thomsen anisotropy parameter
原文传递
YOLO-Fastest-IR:Ultra-lightweight thermal infrared face detection method for infrared thermal camera
10
作者 LI Xi-Cai ZHU Jia-He +1 位作者 DONG Peng-Xiang WANG Yuan-Qing 《红外与毫米波学报》 北大核心 2025年第5期790-800,共11页
This paper presents a high-speed and robust dual-band infrared thermal camera based on an ARM CPU.The system consists of a low-resolution long-wavelength infrared detector,a digital temperature and humid⁃ity sensor,an... This paper presents a high-speed and robust dual-band infrared thermal camera based on an ARM CPU.The system consists of a low-resolution long-wavelength infrared detector,a digital temperature and humid⁃ity sensor,and a CMOS sensor.In view of the significant contrast between face and background in thermal infra⁃red images,this paper explores a suitable accuracy-latency tradeoff for thermal face detection and proposes a tiny,lightweight detector named YOLO-Fastest-IR.Four YOLO-Fastest-IR models(IR0 to IR3)with different scales are designed based on YOLO-Fastest.To train and evaluate these lightweight models,a multi-user low-resolution thermal face database(RGBT-MLTF)was collected,and the four networks were trained.Experiments demon⁃strate that the lightweight convolutional neural network performs well in thermal infrared face detection tasks.The proposed algorithm outperforms existing face detection methods in both positioning accuracy and speed,making it more suitable for deployment on mobile platforms or embedded devices.After obtaining the region of interest(ROI)in the infrared(IR)image,the RGB camera is guided by the thermal infrared face detection results to achieve fine positioning of the RGB face.Experimental results show that YOLO-Fastest-IR achieves a frame rate of 92.9 FPS on a Raspberry Pi 4B and successfully detects 97.4%of faces in the RGBT-MLTF test set.Ultimate⁃ly,an infrared temperature measurement system with low cost,strong robustness,and high real-time perfor⁃mance was integrated,achieving a temperature measurement accuracy of 0.3℃. 展开更多
关键词 artificial intelligence infrared face detection ultra-lightweight network infrared thermal camera YOLO-Fastest-IR
在线阅读 下载PDF
Flatness detection method of splicing detector based on channel spectral dispersion
11
作者 ZHAO Hong-chao ZHANG Xiao-qian AN Qi-chang 《中国光学(中英文)》 北大核心 2025年第4期889-898,共10页
For segmented detectors,surface flatness is critical as it directly influences both energy resolution and image clarity.Additionally,the limited adjustment range of the segmented detectors necessitates precise benchma... For segmented detectors,surface flatness is critical as it directly influences both energy resolution and image clarity.Additionally,the limited adjustment range of the segmented detectors necessitates precise benchmark construction.This paper proposes an architecture for detecting detector flatness based on channel spectral dispersion.By measuring the dispersion fringes for coplanar adjustment,the final adjustment residual is improved to better than 300 nm.This result validates the feasibility of the proposed technology and provides significant technical support for the development of next-generation large-aperture sky survey equipment. 展开更多
关键词 large aperture telescope segmented detector surface wavefront detection channel spectral dispersion
在线阅读 下载PDF
Investigation of Attention Mechanism-Enhanced Method for the Detection of Pavement Cracks
12
作者 Tao Jin Siqi Gu +2 位作者 Zhekun Shou Hong Shi Min Zhang 《Structural Durability & Health Monitoring》 2025年第4期903-918,共16页
The traditional You Only Look Once(YOLO)series network models often fail to extract satisfactory features for road detection,due to the limited number of defect images in the dataset.Additionally,most open-source road... The traditional You Only Look Once(YOLO)series network models often fail to extract satisfactory features for road detection,due to the limited number of defect images in the dataset.Additionally,most open-source road crack datasets contain idealized cracks that are not suitable for detecting early-stage pavement cracks with fine widths and subtle features.To address these issues,this study collected a large number of original road surface images using road detection vehicles.A large-capacity crack dataset was then constructed,with various shapes of cracks categorized as either cracks or fractures.To improve the training performance of the YOLOv5 algorithm,which showed unsatisfactory results on the original dataset,this study used median filtering to preprocess the crack images.The preprocessed images were combined to form the training set.Moreover,the Coordinate Attention(CA)attention module was integrated to further enhance the model’s training performance.The final detection model achieved a recognition accuracy of 88.9%and a recall rate of 86.1%for detecting cracks.These findings demonstrate that the use of image preprocessing technology and the introduction of the CA attention mechanism can effectively detect early-stage pavement cracks that have low contrast with the background. 展开更多
关键词 Road detection vehicle pavement crack detection deep learning attention mechanism
在线阅读 下载PDF
A Real-Time Detection Method for Fashion Necklines Based on Deep Learning
13
作者 CHEN Caixia JIANG Linxin 《Journal of Donghua University(English Edition)》 2025年第3期301-314,共14页
Accurate detection of fashion design attributes is essential for trend analyses and recommendation systems.Among these attributes,the neckline style plays a key role in shaping garment aesthetics.However,the presence ... Accurate detection of fashion design attributes is essential for trend analyses and recommendation systems.Among these attributes,the neckline style plays a key role in shaping garment aesthetics.However,the presence of complex backgrounds and varied body postures in real-world fashion images presents challenges for reliable neckline detection.To address this problem,this research builds a comprehensive fashion neckline database from online shop images and proposes an efficient fashion neckline detection model based on the YOLOv8 architecture(FN-YOLO).First,the proposed model incorporates a BiFormer attention mechanism into the backbone,enhancing its feature extraction capability.Second,a lightweight multi-level asymmetry detector head(LADH)is designed to replace the original head,effectively reducing the computational complexity and accelerating the detection speed.Last,the original loss function is replaced with Wise-IoU,which improves the localization accuracy of the detection box.The experimental results demonstrate that FN-YOLO achieves a mean average precision(mAP)of 81.7%,showing an absolute improvement of 3.9%over the original YOLOv8 model,and a detection speed of 215.6 frame/s,confirming its suitability for real-time applications in fashion neckline detection. 展开更多
关键词 fashion neckline detection deep learning detection and classification real time YOLOv8
在线阅读 下载PDF
A novel detection method for warhead fragment targets in optical images under dynamic strong interference environments
14
作者 Guoyi Zhang Hongxiang Zhang +4 位作者 Zhihua Shen Deren Kong Chenhao Ning Fei Shang Xiaohu Zhang 《Defence Technology(防务技术)》 2025年第1期252-270,共19页
A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,... A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing. 展开更多
关键词 Damage parameter testing Warhead fragment target detection High-speed imaging systems Dynamic strong interference disturbance suppression Variational bayesian inference Motion target detection Faint streak-like target detection
在线阅读 下载PDF
Research on the strength detection methods of railway tunnel linings
15
作者 Weiyi Yang 《Railway Sciences》 2025年第5期638-646,共9页
Purpose–For the commonly used concrete mix for railway tunnel linings,concrete model specimens were made,and springback and core drilling tests were conducted at different ages.The springback strength was measured to... Purpose–For the commonly used concrete mix for railway tunnel linings,concrete model specimens were made,and springback and core drilling tests were conducted at different ages.The springback strength was measured to the compressive strength of the core sample with a diameter of 100mm and a height-to-diameter ratio of 1:1.By comparing the measured strength values,the relationship between the measured values under different strength measurement methods was analyzed.Design/methodology/approach–A comparative test of the core drilling method and the rebound method was conducted on the side walls of tunnel linings in some under-construction railways to study the feasibility of the rebound method in engineering quality supervision and inspection.Findings–Tests showed that the rebound strength was positively correlated with the core drill strength.The core drill test strength was significantly higher than the rebound test strength,and the strength still increased after 56 days of age.The rebound method is suitable for the general survey of concrete strength during the construction process and is not suitable for direct supervision and inspection.Originality/value–By studying the correlation of test strength of tunnel lining concrete using two methods,the differences in test results of different methods are proposed to provide a reference for the test and evaluation of tunnel lining strength in railway engineering. 展开更多
关键词 Tunnel lining CONCRETE STRENGTH Rebound method Core drilling method
在线阅读 下载PDF
A Multi-Scale Attention-Based Pedestrian Detection Method for Roadways Using the YOLOv5 Framework
16
作者 Ruihan Wang Boling Liu Tingyu Liao 《Journal of Electronic Research and Application》 2025年第1期224-232,共9页
Due to multi-scale variations and occlusion problems,accurate traffic road pedestrian detection faces great challenges.This paper proposes an improved pedestrian detection method called Multi Scales Attention-YOLOv5x(... Due to multi-scale variations and occlusion problems,accurate traffic road pedestrian detection faces great challenges.This paper proposes an improved pedestrian detection method called Multi Scales Attention-YOLOv5x(MSA-YOLOv5x)based on the YOLOv5x framework.Firstly,by replacing the first convolutional operation of the backbone network with the Focus module,this method expands the number of image input channels to enhance feature expressiveness.Secondly,we construct C3_CBAM module instead of the original C3 module for better feature fusion.In this way,the learning process could achieve more multi-scale features and occluded pedestrian target features through channel attention and spatial attention.Additionally,a new feature pyramid detection layer and a new detection channel are embedded in the feature fusion part for enhancing multi-scale pedestrian detection accuracy.Compared with the baseline methods,experimental results on a public dataset demonstrate that the proposed method achieves optimal detection accuracy for traffic road pedestrian detection. 展开更多
关键词 YOLOv5 PEDESTRIAN detection FEATURE FUSION
在线阅读 下载PDF
Advances in the detection methods for assessing the viability of cryopreserved samples
17
作者 Yan Hao Zhicheng Liu +3 位作者 Heming Sun Wang Zhai Wenyu Sun Long Mu 《Frigid Zone Medicine》 2025年第2期113-118,共6页
Since the beginning of the 21st century,modern medical technology has advanced rapidly,and the cryomedicine has also seen significant progress.Notable developments include the application of cryomedicine in assisted r... Since the beginning of the 21st century,modern medical technology has advanced rapidly,and the cryomedicine has also seen significant progress.Notable developments include the application of cryomedicine in assisted reproduction and the cryopreservation of sperm,eggs and embryos,as well as the preservation of skin,fingers,and other isolated tissues.However,cryopreservation of large and complex tissues or organs remains highly challenging.In addition to the damage caused by the freezing and rewarming processes and the inherent complexity of tissues and organs,there is an urgent need to address issues related to damage detection and the investigation of injury mechanisms.It provides a retrospective analysis of existing methods for assessing tissue and organ viability.Although current techniques can detect damage to some extent,they tend to be relatively simple,time-consuming,and limited in their ability to provide timely and comprehensive assessments of viability.By summarizing and evaluating these approaches,our study aims to contribute to the improvement of viability detection methods and to promote further development in this critical area. 展开更多
关键词 cryomedicine REWARMING tissues and organs VIABILITY detection
原文传递
SA-WGAN Based Data Enhancement Method for Industrial Internet Intrusion Detection
18
作者 Yuan Feng Yajie Si +2 位作者 Jianwei Zhang Zengyu Cai Hongying Zhao 《Computers, Materials & Continua》 2025年第9期4431-4449,共19页
With the rapid development of the industrial Internet,the network security environment has become increasingly complex and variable.Intrusion detection,a core technology for ensuring the security of industrial control... With the rapid development of the industrial Internet,the network security environment has become increasingly complex and variable.Intrusion detection,a core technology for ensuring the security of industrial control systems,faces the challenge of unbalanced data samples,particularly the low detection rates for minority class attack samples.Therefore,this paper proposes a data enhancement method for intrusion detection in the industrial Internet based on a Self-Attention Wasserstein Generative Adversarial Network(SA-WGAN)to address the low detection rates of minority class attack samples in unbalanced intrusion detection scenarios.The proposed method integrates a selfattention mechanism with a Wasserstein Generative Adversarial Network(WGAN).The self-attention mechanism automatically learns important features from the input data and assigns different weights to emphasize the key features related to intrusion behaviors,providing strong guidance for subsequent data generation.The WGAN generates new data samples through adversarial training to expand the original dataset.In the SA-WGAN framework,the WGAN directs the data generation process based on the key features extracted by the self-attention mechanism,ensuring that the generated samples exhibit both diversity and similarity to real data.Experimental results demonstrate that the SA-WGAN-based data enhancement method significantly improves detection performance for attack samples from minority classes,addresses issues of insufficient data and category imbalance,and enhances the generalization ability and overall performance of the intrusion detection model. 展开更多
关键词 Data enhancement intrusion detection industrial internet WGAN
在线阅读 下载PDF
Deepfake Detection Method Based on Spatio-Temporal Information Fusion
19
作者 Xinyi Wang Wanru Song +1 位作者 Chuanyan Hao Feng Liu 《Computers, Materials & Continua》 2025年第5期3351-3368,共18页
As Deepfake technology continues to evolve,the distinction between real and fake content becomes increasingly blurred.Most existing Deepfake video detectionmethods rely on single-frame facial image features,which limi... As Deepfake technology continues to evolve,the distinction between real and fake content becomes increasingly blurred.Most existing Deepfake video detectionmethods rely on single-frame facial image features,which limits their ability to capture temporal differences between frames.Current methods also exhibit limited generalization capabilities,struggling to detect content generated by unknown forgery algorithms.Moreover,the diversity and complexity of forgery techniques introduced by Artificial Intelligence Generated Content(AIGC)present significant challenges for traditional detection frameworks,whichmust balance high detection accuracy with robust performance.To address these challenges,we propose a novel Deepfake detection framework that combines a two-stream convolutional network with a Vision Transformer(ViT)module to enhance spatio-temporal feature representation.The ViT model extracts spatial features from the forged video,while the 3D convolutional network captures temporal features.The 3D convolution enables cross-frame feature extraction,allowing the model to detect subtle facial changes between frames.The confidence scores from both the ViT and 3D convolution submodels are fused at the decision layer,enabling themodel to effectively handle unknown forgery techniques.Focusing on Deepfake videos and GAN-generated images,the proposed approach is evaluated on two widely used public face forgery datasets.Compared to existing state-of-theartmethods,it achieves higher detection accuracy and better generalization performance,offering a robust solution for deepfake detection in real-world scenarios. 展开更多
关键词 Deepfake detection vision transformer spatio-temporal information
在线阅读 下载PDF
A rapid soil DNA extraction method applied to field detection
20
作者 YAN Jingying NI Liang +1 位作者 LI Kunfeng SHEN Xingyu 《浙江大学学报(农业与生命科学版)》 北大核心 2025年第4期586-595,共10页
Soil DNA extraction,such as microbial community analysis and gene drift detection,is an important basis for multiple analyses in different fields.Nevertheless,the soil DNA extraction methods for field detection are st... Soil DNA extraction,such as microbial community analysis and gene drift detection,is an important basis for multiple analyses in different fields.Nevertheless,the soil DNA extraction methods for field detection are still lacking.This study established a rapid soil DNA extraction(RSDE)method that can be used in field detection.In this method,we first utilized the optimized lysate to isolate DNA from soil and then used a filtration membrane and a DNA adsorption membrane to purify the DNA via the column method.Moreover,we used the pressure from the syringe instead of the conventional centrifugal force of the centrifuge to assist the sample filtration,resulting in very low requirements for this method,with an extraction time of less than 20 min.Furthermore,we demonstrated that the RSDE method was applicable for DNA extraction from different types of soils,with the demand for soil samples as low as 0.1 g and that the amount of obtained DNA was,to some extent,greater than that obtained by a commercial kit.Further analysis revealed that this extracted genomic DNA can be used directly for polymerase chain reaction(PCR)analysis,including ordinary PCR,real-time fluorescent quantitative PCR,and recombinase polymerase amplification(RPA)-CRISPR/Cas12a visual assays.In addition,we demonstrated that this method can be used to extract DNA from residual plant roots in addition to soil microbes,which lays a foundation for the comprehensive analysis of soil plants and microorganisms.In summary,the RSDE method proposed in this study may have wide application prospects. 展开更多
关键词 soil DNA DNA extraction field detection polymerase chain reaction recombinase polymerase amplification(RPA)-CRISPR/Cas12a
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部