期刊文献+
共找到4,209篇文章
< 1 2 211 >
每页显示 20 50 100
Application of Radial Basis Function Network in Sensor Failure Detection
1
作者 钮永胜 赵新民 《Journal of Beijing Institute of Technology》 EI CAS 1999年第2期70-76,共7页
Aim To detect sensor failure in control system using a single sensor signal. Methods A neural predictor was designed based on a radial basis function network(RBFN), and the neural predictor learned the sensor sig... Aim To detect sensor failure in control system using a single sensor signal. Methods A neural predictor was designed based on a radial basis function network(RBFN), and the neural predictor learned the sensor signal on line with a hybrid algorithm composed of n means clustering and Kalman filter and then gave the estimation of the sensor signal at the next step. If the difference between the estimation and the actural values of the sensor signal exceeded a threshold, the sensor could be declared to have a failure. The choice of the failure detection threshold depends on the noise variance and the possible prediction error of neural predictor. Results and Conclusion\ The computer simulation results show the proposed method can detect sensor failure correctly for a gyro in an automotive engine. 展开更多
关键词 sensor failure failure detection radial basis function network(BRFN) on line learning
在线阅读 下载PDF
Crack detection using a frequency response function in offshore platforms 被引量:4
2
作者 ZHANG Zhao-de CHEN Shuai 《Journal of Marine Science and Application》 2007年第3期1-5,共5页
Structural cracks can change the frequency response function (FRF) of an offshore platform. Thus, FRF shifts can be used to detect cracks. When a crack at a specific location and magnitude occurs in an offshore struct... Structural cracks can change the frequency response function (FRF) of an offshore platform. Thus, FRF shifts can be used to detect cracks. When a crack at a specific location and magnitude occurs in an offshore structure, changes in the FRF can be measured. In this way, shifts in FRF can be used to detect cracks. An experimental model was constructed to verify the FRF method. The relationship between FRF and cracks was found to be non-linear. The effect of multiple cracks on FRF was analyzed, and the shift due to multiple cracks was found to be much more than the summation of FRF shifts due to each of the cracks. Then the effects of noise and changes in the mass of the jacket on FRF were evaluated. The results show that significant damage to a beam can be detected by dramatic changes in the FRF, even when 10% random noise exists. FRF can also be used to approximately locate the breakage, but it can neither be efficiently used to predict the location of breakage nor the existence of small hairline cracks. The FRF shift caused by a 7% mass change is much less than the FRF shift caused by the breakage of any beam, but is larger than that caused by any early cracks. 展开更多
关键词 offshore platform crack detection numerical simulation frequency response function
在线阅读 下载PDF
Probability of detection and anomaly distribution modeling for surface defects in tenon-groove structures of aeroengine disks 被引量:1
3
作者 Hongzhuo LIU Disi YANG +3 位作者 Han YAN Zixu GUO Dawei HUANG Xiaojun YAN 《Chinese Journal of Aeronautics》 2025年第10期363-383,共21页
To ensure the structural integrity of life-limiting component of aeroengines,Probabilistic Damage Tolerance(PDT)assessment is applied to evaluate the failure risk as required by airworthiness regulations and military ... To ensure the structural integrity of life-limiting component of aeroengines,Probabilistic Damage Tolerance(PDT)assessment is applied to evaluate the failure risk as required by airworthiness regulations and military standards.The PDT method holds the view that there exist defects such as machining scratches and service cracks in the tenon-groove structures of aeroengine disks.However,it is challenging to conduct PDT assessment due to the scarcity of effective Probability of Detection(POD)model and anomaly distribution model.Through a series of Nondestructive Testing(NDT)experiments,the POD model of real cracks in tenon-groove structures is constructed for the first time by employing the Transfer Function Method(TFM).A novel anomaly distribution model is derived through the utilization of the POD model,instead of using the infeasible field data accumulation method.Subsequently,a framework for calculating the Probability of Failure(POF)of the tenon-groove structures is established,and the aforementioned two models exert a significant influence on the results of POF. 展开更多
关键词 Aeroengine disks Anomaly distribution Probabilistic damage tolerance Probability of detection(POD) Structural integrity Tenon-groove structures Transfer functions
原文传递
Highly selective QCM sensor based on functionalized hierarchical hollow TiO_(2)nanospheres for detecting ppb-level 3-hydroxy-2-butanone biomarker at room temperature 被引量:1
4
作者 Siqi Sun Cheng Zhao +6 位作者 Zhaohuan Zhang Ding Wang Xinru Yin Jingting Han Jinlei Wei Yong Zhao Yongheng Zhu 《Chinese Chemical Letters》 2025年第5期740-745,共6页
Listeria monocytogenes(LM)is a dangerous foodborne pathogen for humans.One emerging and validated method of indirectly assessing LM in food is detecting 3-hydroxy-2-butanone(3H2B)gas.In this study,the synthesis of 3-(... Listeria monocytogenes(LM)is a dangerous foodborne pathogen for humans.One emerging and validated method of indirectly assessing LM in food is detecting 3-hydroxy-2-butanone(3H2B)gas.In this study,the synthesis of 3-(2-aminoethylamino)propyltrimethoxysilane(AAPTMS)functionalized hierarchical hollow TiO_(2)nanospheres was achieved via precise controlling of solvothermal reaction temperature and post-grafting route.The sensors based on as-prepared materials exhibited excellent sensitivity(480 Hz@50 ppm),low detection limit(100 ppb),and outstanding selectivity.Moreover,the evaluation of LM with high sensitivity and specificity was achieved using the sensors.Such stable three-dimensional spheres,whose distinctive hierarchical and hollow nanostructure simultaneously improved both sensitivity and response/recovery speed dramatically,were spontaneously assembled by nanosheets.Meanwhile,the moderate loadings of AAPTMS significantly improved the selectivity of sensors.Then,the gas-sensing mechanism was explored by utilizing thermodynamic investigation,Gaussian 16 software,and in situ diffuse reflectance infrared transform spectroscopy,illustrating the weak chemisorption between the-NHgroup and 3H2B molecules.These portable sensors are promising for real-time assessment of LM at room temperature,which will make a magnificent contribution to food safety. 展开更多
关键词 Hierarchical hollow TiO_(2)nanospheres AAPTMS functionalization Gas sensor 3-Hydroxy-2-butanone detection Sensing mechanism
原文传递
Research on YOLO algorithm for lightweight PCB defect detection based on MobileViT 被引量:1
5
作者 LIU Yuchen LIU Fuzheng JIANG Mingshun 《Optoelectronics Letters》 2025年第8期483-490,共8页
Current you only look once(YOLO)-based algorithm model is facing the challenge of overwhelming parameters and calculation complexity under the printed circuit board(PCB)defect detection application scenario.In order t... Current you only look once(YOLO)-based algorithm model is facing the challenge of overwhelming parameters and calculation complexity under the printed circuit board(PCB)defect detection application scenario.In order to solve this problem,we propose a new method,which combined the lightweight network mobile vision transformer(Mobile Vi T)with the convolutional block attention module(CBAM)mechanism and the new regression loss function.This method needed less computation resources,making it more suitable for embedded edge detection devices.Meanwhile,the new loss function improved the positioning accuracy of the bounding box and enhanced the robustness of the model.In addition,experiments on public datasets demonstrate that the improved model achieves an average accuracy of 87.9%across six typical defect detection tasks,while reducing computational costs by nearly 90%.It significantly reduces the model's computational requirements while maintaining accuracy,ensuring reliable performance for edge deployment. 展开更多
关键词 YOLO lightweight network mobile vision transformer mobile Lightweight Network convolutional block attention module cbam mechanism MobileViT CBAM PCB Defect detection Regression Loss function
原文传递
An algorithm for moving target detection in IR image based on grayscale distribution and kernel function 被引量:6
6
作者 王鲁平 张路平 +1 位作者 赵明 李飚 《Journal of Central South University》 SCIE EI CAS 2014年第11期4270-4278,共9页
A fast algorithm based on the grayscale distribution of infrared target and the weighted kernel function was proposed for the moving target detection(MTD) in dynamic scene of image series. This algorithm is used to de... A fast algorithm based on the grayscale distribution of infrared target and the weighted kernel function was proposed for the moving target detection(MTD) in dynamic scene of image series. This algorithm is used to deal with issues like the large computational complexity, the fluctuation of grayscale, and the noise in infrared images. Four characteristic points were selected by analyzing the grayscale distribution in infrared image, of which the series was quickly matched with an affine transformation model. The image was then divided into 32×32 squares and the gray-weighted kernel(GWK) for each square was calculated. At last, the MTD was carried out according to the variation of the four GWKs. The results indicate that the MTD can be achieved in real time using the algorithm with the fluctuations of grayscale and noise can be effectively suppressed. The detection probability is greater than 90% with the false alarm rate lower than 5% when the calculation time is less than 40 ms. 展开更多
关键词 moving target detection gray-weighted kernel function dynamic background
在线阅读 下载PDF
Application of Weighted Cross-Entropy Loss Function in Intrusion Detection 被引量:3
7
作者 Ziyun Zhou Hong Huang Binhao Fang 《Journal of Computer and Communications》 2021年第11期1-21,共21页
The deep learning model is overfitted and the accuracy of the test set is reduced when the deep learning model is trained in the network intrusion detection parameters, due to the traditional loss function convergence... The deep learning model is overfitted and the accuracy of the test set is reduced when the deep learning model is trained in the network intrusion detection parameters, due to the traditional loss function convergence problem. Firstly, we utilize a network model architecture combining Gelu activation function and deep neural network;Secondly, the cross-entropy loss function is improved to a weighted cross entropy loss function, and at last it is applied to intrusion detection to improve the accuracy of intrusion detection. In order to compare the effect of the experiment, the KDDcup99 data set, which is commonly used in intrusion detection, is selected as the experimental data and use accuracy, precision, recall and F1-score as evaluation parameters. The experimental results show that the model using the weighted cross-entropy loss function combined with the Gelu activation function under the deep neural network architecture improves the evaluation parameters by about 2% compared with the ordinary cross-entropy loss function model. Experiments prove that the weighted cross-entropy loss function can enhance the model’s ability to discriminate samples. 展开更多
关键词 Cross-Entropy Loss function Visualization Analysis Intrusion detection KDD Data Set ACCURACY
在线阅读 下载PDF
Functionalization of cellulose carbon dots with different elements(N,B and S)for mercury ion detection and anti-counterfeit applications 被引量:1
8
作者 Xiaoning Li Quanyu Shi +5 位作者 Meng Li Ningxin Song Yumeng Xiao Huining Xiao Tony D.James Lei Feng 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第7期355-359,共5页
Mercury ion(Hg^(2+)),as one of the most toxic heavy metal ions,accumulates easily in the environment,which can generate potential hazards to the ecosystem and human health.To effectively detect and remove Hg^(2+),we f... Mercury ion(Hg^(2+)),as one of the most toxic heavy metal ions,accumulates easily in the environment,which can generate potential hazards to the ecosystem and human health.To effectively detect and remove Hg^(2+),we fabricated four types of carbon dots(CDs)using carboxymethyl nanocellulose as a carbon source doped with different elements using a hydrothermal method.All the CDs exhibited a strong fluorescence emission,excitation-dependent emission and possessed good water dispersibility.Moreover,the four fluorescent CDs were used for Hg^(2+)recognition in aqueous solution,where the CDs-N exhibited better sensitivity and selectivity for Hg^(2+)detection,with a low limit of detection of 8.29×10^(-6)mol/L.It was determined that the fluorescence quenching could be ascribed to a photoinduced charge-transfer processes between Hg^(2+)and the CDs.In addition,the CDs-N were used as a smart invisible ink for anticounterfeiting,information encryption and decryption.Furthermore,the CDs-N were immersed into a cellulose(CMC)-based hydrogel network to prepare fluorescent hydrogels capable of simultaneously detecting and adsorbing Hg^(2+).We anticipate that this research will open possibilities for a green method to synthesize fluorescent CDs for metal ion detection and fluorescent ink production. 展开更多
关键词 Carbon dots functional groups Hg^(2+)detection Mechanism ANTI-COUNTERFEITING
原文传递
DAFPN-YOLO: An Improved UAV-Based Object Detection Algorithm Based on YOLOv8s
9
作者 Honglin Wang Yaolong Zhang Cheng Zhu 《Computers, Materials & Continua》 2025年第5期1929-1949,共21页
UAV-based object detection is rapidly expanding in both civilian and military applications,including security surveillance,disaster assessment,and border patrol.However,challenges such as small objects,occlusions,comp... UAV-based object detection is rapidly expanding in both civilian and military applications,including security surveillance,disaster assessment,and border patrol.However,challenges such as small objects,occlusions,complex backgrounds,and variable lighting persist due to the unique perspective of UAV imagery.To address these issues,this paper introduces DAFPN-YOLO,an innovative model based on YOLOv8s(You Only Look Once version 8s).Themodel strikes a balance between detection accuracy and speed while reducing parameters,making itwell-suited for multi-object detection tasks from drone perspectives.A key feature of DAFPN-YOLO is the enhanced Drone-AFPN(Adaptive Feature Pyramid Network),which adaptively fuses multi-scale features to optimize feature extraction and enhance spatial and small-object information.To leverage Drone-AFPN’smulti-scale capabilities fully,a dedicated 160×160 small-object detection head was added,significantly boosting detection accuracy for small targets.In the backbone,the C2f_Dual(Cross Stage Partial with Cross-Stage Feature Fusion Dual)module and SPPELAN(Spatial Pyramid Pooling with Enhanced LocalAttentionNetwork)modulewere integrated.These components improve feature extraction and information aggregationwhile reducing parameters and computational complexity,enhancing inference efficiency.Additionally,Shape-IoU(Shape Intersection over Union)is used as the loss function for bounding box regression,enabling more precise shape-based object matching.Experimental results on the VisDrone 2019 dataset demonstrate the effectiveness ofDAFPN-YOLO.Compared to YOLOv8s,the proposedmodel achieves a 5.4 percentage point increase inmAP@0.5,a 3.8 percentage point improvement in mAP@0.5:0.95,and a 17.2%reduction in parameter count.These results highlight DAFPN-YOLO’s advantages in UAV-based object detection,offering valuable insights for applying deep learning to UAV-specific multi-object detection tasks. 展开更多
关键词 YOLOv8 UAV-based object detection AFPN small-object detection head SPPELAN DualConv loss function
在线阅读 下载PDF
An Improved Lightweight Safety Helmet Detection Algorithm for YOLOv8
10
作者 Lieping Zhang Hao Ma +2 位作者 Jiancheng Huang Cui Zhang Xiaolin Gao 《Computers, Materials & Continua》 2025年第5期2245-2265,共21页
Detecting individuals wearing safety helmets in complex environments faces several challenges.These factors include limited detection accuracy and frequent missed or false detections.Additionally,existing algorithms o... Detecting individuals wearing safety helmets in complex environments faces several challenges.These factors include limited detection accuracy and frequent missed or false detections.Additionally,existing algorithms often have excessive parameter counts,complex network structures,and high computational demands.These challenges make it difficult to deploy such models efficiently on resource-constrained devices like embedded systems.Aiming at this problem,this research proposes an optimized and lightweight solution called FGP-YOLOv8,an improved version of YOLOv8n.The YOLOv8 backbone network is replaced with the FasterNet model to reduce parameters and computational demands while local convolution layers are added.This modification minimizes computational costs with only a minor impact on accuracy.A new GSTA(GSConv-Triplet Attention)module is introduced to enhance feature fusion and reduce computational complexity.This is achieved using attention weights generated from dimensional interactions within the feature map.Additionally,the ParNet-C2f module replaces the original C2f(CSP Bottleneck with 2 Convolutions)module,improving feature extraction for safety helmets of various shapes and sizes.The CIoU(Complete-IoU)is replaced with the WIoU(Wise-IoU)to boost performance further,enhancing detection accuracy and generalization capabilities.Experimental results validate the improvements.The proposedmodel reduces the parameter count by 19.9% and the computational load by 18.5%.At the same time,mAP(mean average precision)increases by 2.3%,and precision improves by 1.2%.These results demonstrate the model’s robust performance in detecting safety helmets across diverse environments. 展开更多
关键词 YOLO safety helmet detection complex environments LIGHTWEIGHT WIoU loss function
在线阅读 下载PDF
ACSF-ED: Adaptive Cross-Scale Fusion Encoder-Decoder for Spatio-Temporal Action Detection
11
作者 Wenju Wang Zehua Gu +2 位作者 Bang Tang Sen Wang Jianfei Hao 《Computers, Materials & Continua》 2025年第2期2389-2414,共26页
Current spatio-temporal action detection methods lack sufficient capabilities in extracting and comprehending spatio-temporal information. This paper introduces an end-to-end Adaptive Cross-Scale Fusion Encoder-Decode... Current spatio-temporal action detection methods lack sufficient capabilities in extracting and comprehending spatio-temporal information. This paper introduces an end-to-end Adaptive Cross-Scale Fusion Encoder-Decoder (ACSF-ED) network to predict the action and locate the object efficiently. In the Adaptive Cross-Scale Fusion Spatio-Temporal Encoder (ACSF ST-Encoder), the Asymptotic Cross-scale Feature-fusion Module (ACCFM) is designed to address the issue of information degradation caused by the propagation of high-level semantic information, thereby extracting high-quality multi-scale features to provide superior features for subsequent spatio-temporal information modeling. Within the Shared-Head Decoder structure, a shared classification and regression detection head is constructed. A multi-constraint loss function composed of one-to-one, one-to-many, and contrastive denoising losses is designed to address the problem of insufficient constraint force in predicting results with traditional methods. This loss function enhances the accuracy of model classification predictions and improves the proximity of regression position predictions to ground truth objects. The proposed method model is evaluated on the popular dataset UCF101-24 and JHMDB-21. Experimental results demonstrate that the proposed method achieves an accuracy of 81.52% on the Frame-mAP metric, surpassing current existing methods. 展开更多
关键词 Spatio-temporal action detection encoder-decoder cross-scale fusion multi-constraint loss function
在线阅读 下载PDF
Rail Line Detection Algorithm Based on Improved CLRNet
12
作者 ZHOU Bowei XING Guanyu LIU Yanli 《Journal of Shanghai Jiaotong university(Science)》 2025年第5期923-934,共12页
In smart driving for rail transit,a reliable obstacle detection system is an important guarantee for the safety of trains.Therein,the detection of the rail area directly affects the accuracy of the system to identify ... In smart driving for rail transit,a reliable obstacle detection system is an important guarantee for the safety of trains.Therein,the detection of the rail area directly affects the accuracy of the system to identify dangerous targets.Both the rail line and the lane are presented as thin line shapes in the image,but the rail scene is more complex,and the color of the rail line is more difficult to distinguish from the background.By comparison,there are already many deep learning-based lane detection algorithms,but there is a lack of public datasets and targeted deep learning detection algorithms for rail line detection.To address this,this paper constructs a rail image dataset RailwayLine and labels the rail line for the training and testing of models.This dataset contains rich rail images including single-rail,multi-rail,straight rail,curved rail,crossing rails,occlusion,blur,and different lighting conditions.To address the problem of the lack of deep learning-based rail line detection algorithms,we improve the CLRNet algorithm which has an excellent performance in lane detection,and propose the CLRNet-R algorithm for rail line detection.To address the problem of the rail line being thin and occupying fewer pixels in the image,making it difficult to distinguish from complex backgrounds,we introduce an attention mechanism to enhance global feature extraction ability and add a semantic segmentation head to enhance the features of the rail region by the binary probability of rail lines.To address the poor curve recognition performance and unsmooth output lines in the original CLRNet algorithm,we improve the weight allocation for line intersection-over-union calculation in the original framework and propose two loss functions based on local slopes to optimize the model’s local sampling point training constraints,improving the model’s fitting performance on curved rails and obtaining smooth and stable rail line detection results.Through experiments,this paper demonstrates that compared with other mainstream lane detection algorithms,the algorithm proposed in this paper has a better performance for rail line detection. 展开更多
关键词 rail line detection attention mechanism semantic segmentation loss function CLRNet algorithm
原文传递
Multi-scale fire target detection algorithm using YOLO-fire
13
作者 FAN Weiqiang DING Jiayan +3 位作者 PENG Bin LIU Dong GAO Shuoheng JIA Changzhuo 《Journal of Measurement Science and Instrumentation》 2025年第4期625-636,共12页
Accurate and real-time fire detection is crucial for industrial production and daily life.However,the variable form of fire and the significant differences in visual characteristics across its different stages pose gr... Accurate and real-time fire detection is crucial for industrial production and daily life.However,the variable form of fire and the significant differences in visual characteristics across its different stages pose great challenges to precise fire prevention and control.To address this issue,a multi-scale fire target detection algorithm using YOLO-fire was proposed by improving the YOLOv8 model.This model introduced new layer structures and attention mechanism,replaced new feature fusion modules and loss functions.By introducing a small-target detection P2 layer,the model’s ability to detect early-stage fires is improved.The coordinate attention mechanism is integrated into the layer structures of multi-scale target detection,enhancing the capture of target location information and channel relationships,thereby focusing more on the target regions.The Neck network structure was optimized by adopting a BiFPN_F strategy for different feature layers,which strengthened the cross-scale representation of fire features and controlled the parameter count of the designed model.The WIoU loss function was employed to optimize the regression process,improving fire source localization accuracy in complex scenarios,enhancing model robustness,and increasing detection precision.Experimental results on fire datasets demonstrated that YOLO-fire could effectively detect multi-scale fire targets in various scenarios.Compared to the baseline model(YOLOv8n),YOLO-fire achieves improvements of 1.37%in accuracy,1.25%in mAP50-95,and 0.35%in F1-score,while reducing parameters by 3.79%.Furthermore,compared to current mainstream target detection algorithms,YOLO-Fire achieved optimal detection performance while reducing network parameters and computational complexity.This research provided effective technical support for fire safety prevention and control in related fields. 展开更多
关键词 fire detection early-stage fire feature fusion attention mechanism loss function network structure YOLOv8
在线阅读 下载PDF
LR-Net:Lossless Feature Fusion and Revised SIoU for Small Object Detection
14
作者 Gang Li Ru Wang +5 位作者 Yang Zhang Chuanyun Xu Xinyu Fan Zheng Zhou Pengfei Lv Zihan Ruan 《Computers, Materials & Continua》 2025年第11期3267-3288,共22页
Currently,challenges such as small object size and occlusion lead to a lack of accuracy and robustness in small object detection.Since small objects occupy only a few pixels in an image,the extracted features are limi... Currently,challenges such as small object size and occlusion lead to a lack of accuracy and robustness in small object detection.Since small objects occupy only a few pixels in an image,the extracted features are limited,and mainstream downsampling convolution operations further exacerbate feature loss.Additionally,due to the occlusionprone nature of small objects and their higher sensitivity to localization deviations,conventional Intersection over Union(IoU)loss functions struggle to achieve stable convergence.To address these limitations,LR-Net is proposed for small object detection.Specifically,the proposed Lossless Feature Fusion(LFF)method transfers spatial features into the channel domain while leveraging a hybrid attentionmechanism to focus on critical features,mitigating feature loss caused by downsampling.Furthermore,RSIoU is proposed to enhance the convergence performance of IoU-based losses for small objects.RSIoU corrects the inherent convergence direction issues in SIoU and proposes a penalty term as a Dynamic Focusing Mechanism parameter,enabling it to dynamically emphasize the loss contribution of small object samples.Ultimately,RSIoU significantly improves the convergence performance of the loss function for small objects,particularly under occlusion scenarios.Experiments demonstrate that LR-Net achieves significant improvements across variousmetrics onmultiple datasets compared with YOLOv8n,achieving a 3.7% increase in mean Average Precision(AP)on the VisDrone2019 dataset,along with improvements of 3.3% on the AI-TOD dataset and 1.2% on the COCO dataset. 展开更多
关键词 Small object detection lossless feature fusion attention mechanisms loss function penalty term
在线阅读 下载PDF
Bayesian-based ant colony optimization algorithm for edge detection
15
作者 YU Yongbin ZHONG Yuanjingyang +6 位作者 FENG Xiao WANG Xiangxiang FAVOUR Ekong ZHOU Chen CHENG Man WANG Hao WANG Jingya 《Journal of Systems Engineering and Electronics》 2025年第4期892-902,共11页
Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of t... Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task. 展开更多
关键词 ant colony optimization(ACO) Bayesian algorithm edge detection transfer function.
在线阅读 下载PDF
Neutron response functions and detection efficiency of a spherical proton recoil proportional counter 被引量:2
16
作者 Wang Xinhua He Tie +4 位作者 Guo Haiping An Li Zhen Pu Mou Yunfeng Yang Jian 《Nuclear Science and Techniques》 SCIE CAS CSCD 2010年第6期330-333,共4页
The neutron response function and detection efficiency of a spherical proton recoil proportional counter (SP) play key roles in precise measurement of neutron spectra of the interior materials.In this paper,the respon... The neutron response function and detection efficiency of a spherical proton recoil proportional counter (SP) play key roles in precise measurement of neutron spectra of the interior materials.In this paper,the response functions and detection efficiency of three SPs developed at CAEP are simulated by Geant4.The simulated spectra are compared with pulse-height spectra measured at 0.165,0.575,1.4,and 14.1 MeV of incident neutrons.And the calculated detector efficiencies agree within 5%with the data obtained by neutron activation. 展开更多
关键词 正比计数器 响应函数 探测效率 反冲质子 中子谱 球形 GEANT4 检测效率
在线阅读 下载PDF
Asynchronously fault detection for flight vehicles with unstable modes via MDLF and MDADT method
17
作者 Sheng Luo Xin Liu +2 位作者 Yanfei Cheng Shiyu Shuai Haoyu Cheng 《Defence Technology(防务技术)》 2025年第7期417-436,共20页
This research focuses on detecting faults in flight vehicles with unstable subsystems operating asynchronously.By accounting for asynchronous switching,a switched model is established,and filters for fault detection(F... This research focuses on detecting faults in flight vehicles with unstable subsystems operating asynchronously.By accounting for asynchronous switching,a switched model is established,and filters for fault detection(FD)in unstable subsystems are developed.The FD challenge is then transformed into an H∞filtering issue.Utilizing the multiple discontinuous Lyapunov function(MDLF)approach and the mode-dependent average dwell time(MDADT)method,sufficient conditions are derived to ensure stability during both fast and slow switching.Furthermore,the existence and solutions for FD filters are provided through linear matrix inequalities(LMIs).The simulation outcomes demonstrated the excellent performance of the developed method in studied cases. 展开更多
关键词 Fault detection Asynchronous switching H∞filtering Multiple discontinuous lyapunov function Mode-dependent average dwell time Linear matrix inequalities(LMIs)
在线阅读 下载PDF
An Improved Copula-Based Test Selection Design Strategy for Fault Detection and Isolation Based on PSO
18
作者 Xiuli Wang Dongdong Xie +2 位作者 Yang Li Chun Liu Xinyu Hu 《Instrumentation》 2025年第1期48-59,共12页
Test selection design(TSD)is an important technique for improving product maintainability,reliability and reducing lifecycle costs.In recent years,although some researchers have addressed the design problem of test se... Test selection design(TSD)is an important technique for improving product maintainability,reliability and reducing lifecycle costs.In recent years,although some researchers have addressed the design problem of test selection,the correlation between test outcomes has not been sufficiently considered in test metrics modeling.This study proposes a new approach that combines copula and D-Vine copula to address the correlation issue in TSD.First,the copula is utilized to model FIR on the joint distribution.Furthermore,the D-Vine copula is applied to model the FDR and FAR.Then,a particle swarm optimization is employed to select the optimal testing scheme.Finally,the efficacy of the proposed method is validated through experimentation on a negative feedback circuit. 展开更多
关键词 Design of testability fault detection and isolation(FDI) copula function vine copula model particle swarm optimization(PSO)
原文传递
Machine Learning-Based Detection and Selective Mitigation of Denial-of-Service Attacks in Wireless Sensor Networks
19
作者 Soyoung Joo So-Hyun Park +2 位作者 Hye-Yeon Shim Ye-Sol Oh Il-Gu Lee 《Computers, Materials & Continua》 2025年第2期2475-2494,共20页
As the density of wireless networks increases globally, the vulnerability of overlapped dense wireless communications to interference by hidden nodes and denial-of-service (DoS) attacks is becoming more apparent. Ther... As the density of wireless networks increases globally, the vulnerability of overlapped dense wireless communications to interference by hidden nodes and denial-of-service (DoS) attacks is becoming more apparent. There exists a gap in research on the detection and response to attacks on Medium Access Control (MAC) mechanisms themselves, which would lead to service outages between nodes. Classifying exploitation and deceptive jamming attacks on control mechanisms is particularly challengingdue to their resemblance to normal heavy communication patterns. Accordingly, this paper proposes a machine learning-based selective attack mitigation model that detects DoS attacks on wireless networks by monitoring packet log data. Based on the type of detected attack, it implements effective corresponding mitigation techniques to restore performance to nodes whose availability has been compromised. Experimental results reveal that the accuracy of the proposed model is 14% higher than that of a baseline anomaly detection model. Further, the appropriate mitigation techniques selected by the proposed system based on the attack type improve the average throughput by more than 440% compared to the case without a response. 展开更多
关键词 Distributed coordinated function mechanism jamming attack machine learning-based attack detection selective attack mitigation model selective attack mitigation model selfish attack
在线阅读 下载PDF
Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions
20
作者 Jing Huang Honghui Cai +3 位作者 Qian Zhao Yunpeng Zhou Haibo Liu Jing Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期108-117,共10页
A fluorescent active organic–inorganic hybrid material Py N-SBA-15 was synthesized by implementing pyrene derivatives into mesoporous SBA-15 silica.Py N-SBA-15 had detection and removal functionalities toward Al^(3+)... A fluorescent active organic–inorganic hybrid material Py N-SBA-15 was synthesized by implementing pyrene derivatives into mesoporous SBA-15 silica.Py N-SBA-15 had detection and removal functionalities toward Al^(3+),Cu^(2+),and Hg^(2+).On the one hand,Py N-SBA-15 was used as a fluorescence sensor and displayed high sensitivity toward Al^(3+),Cu^(2+),and Hg^(2+)cations (limit of detection:8.0×10^(-7),1.1×10^(-7),and 2.9×10^(-6)mol·L^(–1),respectively) among various analytes with“turn-off”response.On the other hand,the adsorption studies for these toxic analytes (Cu^(2+),Hg^(2+),and Al^(3+)) showed that the ion removal capacity could reach up to 45,581,and 85 mg·g^(-1),respectively.Moreover,the Langmuir isotherm models were better fitted with the adsorption data,indicating that the adsorption was mono-layer adsorption.Kinetic analysis revealed that the adsorption process was well described by the pseudo-second-order kinetic model for Cu^(2+)and Hg^(2+)and pseudo-first-order kinetic model for Al^(3+).The prepared silica material could be reused in four recycles without significantly decreasing its adsorption capacity.Therefore,the Py N-SBA-15 material can serve as a promising candidate for the simultaneous rapid detection and efficient adsorption of metal ions. 展开更多
关键词 Dual function Nanomaterials Mesoporous silica Metal ions detection and adsorption
在线阅读 下载PDF
上一页 1 2 211 下一页 到第
使用帮助 返回顶部