Aim To detect sensor failure in control system using a single sensor signal. Methods A neural predictor was designed based on a radial basis function network(RBFN), and the neural predictor learned the sensor sig...Aim To detect sensor failure in control system using a single sensor signal. Methods A neural predictor was designed based on a radial basis function network(RBFN), and the neural predictor learned the sensor signal on line with a hybrid algorithm composed of n means clustering and Kalman filter and then gave the estimation of the sensor signal at the next step. If the difference between the estimation and the actural values of the sensor signal exceeded a threshold, the sensor could be declared to have a failure. The choice of the failure detection threshold depends on the noise variance and the possible prediction error of neural predictor. Results and Conclusion\ The computer simulation results show the proposed method can detect sensor failure correctly for a gyro in an automotive engine.展开更多
Structural cracks can change the frequency response function (FRF) of an offshore platform. Thus, FRF shifts can be used to detect cracks. When a crack at a specific location and magnitude occurs in an offshore struct...Structural cracks can change the frequency response function (FRF) of an offshore platform. Thus, FRF shifts can be used to detect cracks. When a crack at a specific location and magnitude occurs in an offshore structure, changes in the FRF can be measured. In this way, shifts in FRF can be used to detect cracks. An experimental model was constructed to verify the FRF method. The relationship between FRF and cracks was found to be non-linear. The effect of multiple cracks on FRF was analyzed, and the shift due to multiple cracks was found to be much more than the summation of FRF shifts due to each of the cracks. Then the effects of noise and changes in the mass of the jacket on FRF were evaluated. The results show that significant damage to a beam can be detected by dramatic changes in the FRF, even when 10% random noise exists. FRF can also be used to approximately locate the breakage, but it can neither be efficiently used to predict the location of breakage nor the existence of small hairline cracks. The FRF shift caused by a 7% mass change is much less than the FRF shift caused by the breakage of any beam, but is larger than that caused by any early cracks.展开更多
To ensure the structural integrity of life-limiting component of aeroengines,Probabilistic Damage Tolerance(PDT)assessment is applied to evaluate the failure risk as required by airworthiness regulations and military ...To ensure the structural integrity of life-limiting component of aeroengines,Probabilistic Damage Tolerance(PDT)assessment is applied to evaluate the failure risk as required by airworthiness regulations and military standards.The PDT method holds the view that there exist defects such as machining scratches and service cracks in the tenon-groove structures of aeroengine disks.However,it is challenging to conduct PDT assessment due to the scarcity of effective Probability of Detection(POD)model and anomaly distribution model.Through a series of Nondestructive Testing(NDT)experiments,the POD model of real cracks in tenon-groove structures is constructed for the first time by employing the Transfer Function Method(TFM).A novel anomaly distribution model is derived through the utilization of the POD model,instead of using the infeasible field data accumulation method.Subsequently,a framework for calculating the Probability of Failure(POF)of the tenon-groove structures is established,and the aforementioned two models exert a significant influence on the results of POF.展开更多
Listeria monocytogenes(LM)is a dangerous foodborne pathogen for humans.One emerging and validated method of indirectly assessing LM in food is detecting 3-hydroxy-2-butanone(3H2B)gas.In this study,the synthesis of 3-(...Listeria monocytogenes(LM)is a dangerous foodborne pathogen for humans.One emerging and validated method of indirectly assessing LM in food is detecting 3-hydroxy-2-butanone(3H2B)gas.In this study,the synthesis of 3-(2-aminoethylamino)propyltrimethoxysilane(AAPTMS)functionalized hierarchical hollow TiO_(2)nanospheres was achieved via precise controlling of solvothermal reaction temperature and post-grafting route.The sensors based on as-prepared materials exhibited excellent sensitivity(480 Hz@50 ppm),low detection limit(100 ppb),and outstanding selectivity.Moreover,the evaluation of LM with high sensitivity and specificity was achieved using the sensors.Such stable three-dimensional spheres,whose distinctive hierarchical and hollow nanostructure simultaneously improved both sensitivity and response/recovery speed dramatically,were spontaneously assembled by nanosheets.Meanwhile,the moderate loadings of AAPTMS significantly improved the selectivity of sensors.Then,the gas-sensing mechanism was explored by utilizing thermodynamic investigation,Gaussian 16 software,and in situ diffuse reflectance infrared transform spectroscopy,illustrating the weak chemisorption between the-NHgroup and 3H2B molecules.These portable sensors are promising for real-time assessment of LM at room temperature,which will make a magnificent contribution to food safety.展开更多
Current you only look once(YOLO)-based algorithm model is facing the challenge of overwhelming parameters and calculation complexity under the printed circuit board(PCB)defect detection application scenario.In order t...Current you only look once(YOLO)-based algorithm model is facing the challenge of overwhelming parameters and calculation complexity under the printed circuit board(PCB)defect detection application scenario.In order to solve this problem,we propose a new method,which combined the lightweight network mobile vision transformer(Mobile Vi T)with the convolutional block attention module(CBAM)mechanism and the new regression loss function.This method needed less computation resources,making it more suitable for embedded edge detection devices.Meanwhile,the new loss function improved the positioning accuracy of the bounding box and enhanced the robustness of the model.In addition,experiments on public datasets demonstrate that the improved model achieves an average accuracy of 87.9%across six typical defect detection tasks,while reducing computational costs by nearly 90%.It significantly reduces the model's computational requirements while maintaining accuracy,ensuring reliable performance for edge deployment.展开更多
A fast algorithm based on the grayscale distribution of infrared target and the weighted kernel function was proposed for the moving target detection(MTD) in dynamic scene of image series. This algorithm is used to de...A fast algorithm based on the grayscale distribution of infrared target and the weighted kernel function was proposed for the moving target detection(MTD) in dynamic scene of image series. This algorithm is used to deal with issues like the large computational complexity, the fluctuation of grayscale, and the noise in infrared images. Four characteristic points were selected by analyzing the grayscale distribution in infrared image, of which the series was quickly matched with an affine transformation model. The image was then divided into 32×32 squares and the gray-weighted kernel(GWK) for each square was calculated. At last, the MTD was carried out according to the variation of the four GWKs. The results indicate that the MTD can be achieved in real time using the algorithm with the fluctuations of grayscale and noise can be effectively suppressed. The detection probability is greater than 90% with the false alarm rate lower than 5% when the calculation time is less than 40 ms.展开更多
The deep learning model is overfitted and the accuracy of the test set is reduced when the deep learning model is trained in the network intrusion detection parameters, due to the traditional loss function convergence...The deep learning model is overfitted and the accuracy of the test set is reduced when the deep learning model is trained in the network intrusion detection parameters, due to the traditional loss function convergence problem. Firstly, we utilize a network model architecture combining Gelu activation function and deep neural network;Secondly, the cross-entropy loss function is improved to a weighted cross entropy loss function, and at last it is applied to intrusion detection to improve the accuracy of intrusion detection. In order to compare the effect of the experiment, the KDDcup99 data set, which is commonly used in intrusion detection, is selected as the experimental data and use accuracy, precision, recall and F1-score as evaluation parameters. The experimental results show that the model using the weighted cross-entropy loss function combined with the Gelu activation function under the deep neural network architecture improves the evaluation parameters by about 2% compared with the ordinary cross-entropy loss function model. Experiments prove that the weighted cross-entropy loss function can enhance the model’s ability to discriminate samples.展开更多
Mercury ion(Hg^(2+)),as one of the most toxic heavy metal ions,accumulates easily in the environment,which can generate potential hazards to the ecosystem and human health.To effectively detect and remove Hg^(2+),we f...Mercury ion(Hg^(2+)),as one of the most toxic heavy metal ions,accumulates easily in the environment,which can generate potential hazards to the ecosystem and human health.To effectively detect and remove Hg^(2+),we fabricated four types of carbon dots(CDs)using carboxymethyl nanocellulose as a carbon source doped with different elements using a hydrothermal method.All the CDs exhibited a strong fluorescence emission,excitation-dependent emission and possessed good water dispersibility.Moreover,the four fluorescent CDs were used for Hg^(2+)recognition in aqueous solution,where the CDs-N exhibited better sensitivity and selectivity for Hg^(2+)detection,with a low limit of detection of 8.29×10^(-6)mol/L.It was determined that the fluorescence quenching could be ascribed to a photoinduced charge-transfer processes between Hg^(2+)and the CDs.In addition,the CDs-N were used as a smart invisible ink for anticounterfeiting,information encryption and decryption.Furthermore,the CDs-N were immersed into a cellulose(CMC)-based hydrogel network to prepare fluorescent hydrogels capable of simultaneously detecting and adsorbing Hg^(2+).We anticipate that this research will open possibilities for a green method to synthesize fluorescent CDs for metal ion detection and fluorescent ink production.展开更多
UAV-based object detection is rapidly expanding in both civilian and military applications,including security surveillance,disaster assessment,and border patrol.However,challenges such as small objects,occlusions,comp...UAV-based object detection is rapidly expanding in both civilian and military applications,including security surveillance,disaster assessment,and border patrol.However,challenges such as small objects,occlusions,complex backgrounds,and variable lighting persist due to the unique perspective of UAV imagery.To address these issues,this paper introduces DAFPN-YOLO,an innovative model based on YOLOv8s(You Only Look Once version 8s).Themodel strikes a balance between detection accuracy and speed while reducing parameters,making itwell-suited for multi-object detection tasks from drone perspectives.A key feature of DAFPN-YOLO is the enhanced Drone-AFPN(Adaptive Feature Pyramid Network),which adaptively fuses multi-scale features to optimize feature extraction and enhance spatial and small-object information.To leverage Drone-AFPN’smulti-scale capabilities fully,a dedicated 160×160 small-object detection head was added,significantly boosting detection accuracy for small targets.In the backbone,the C2f_Dual(Cross Stage Partial with Cross-Stage Feature Fusion Dual)module and SPPELAN(Spatial Pyramid Pooling with Enhanced LocalAttentionNetwork)modulewere integrated.These components improve feature extraction and information aggregationwhile reducing parameters and computational complexity,enhancing inference efficiency.Additionally,Shape-IoU(Shape Intersection over Union)is used as the loss function for bounding box regression,enabling more precise shape-based object matching.Experimental results on the VisDrone 2019 dataset demonstrate the effectiveness ofDAFPN-YOLO.Compared to YOLOv8s,the proposedmodel achieves a 5.4 percentage point increase inmAP@0.5,a 3.8 percentage point improvement in mAP@0.5:0.95,and a 17.2%reduction in parameter count.These results highlight DAFPN-YOLO’s advantages in UAV-based object detection,offering valuable insights for applying deep learning to UAV-specific multi-object detection tasks.展开更多
Detecting individuals wearing safety helmets in complex environments faces several challenges.These factors include limited detection accuracy and frequent missed or false detections.Additionally,existing algorithms o...Detecting individuals wearing safety helmets in complex environments faces several challenges.These factors include limited detection accuracy and frequent missed or false detections.Additionally,existing algorithms often have excessive parameter counts,complex network structures,and high computational demands.These challenges make it difficult to deploy such models efficiently on resource-constrained devices like embedded systems.Aiming at this problem,this research proposes an optimized and lightweight solution called FGP-YOLOv8,an improved version of YOLOv8n.The YOLOv8 backbone network is replaced with the FasterNet model to reduce parameters and computational demands while local convolution layers are added.This modification minimizes computational costs with only a minor impact on accuracy.A new GSTA(GSConv-Triplet Attention)module is introduced to enhance feature fusion and reduce computational complexity.This is achieved using attention weights generated from dimensional interactions within the feature map.Additionally,the ParNet-C2f module replaces the original C2f(CSP Bottleneck with 2 Convolutions)module,improving feature extraction for safety helmets of various shapes and sizes.The CIoU(Complete-IoU)is replaced with the WIoU(Wise-IoU)to boost performance further,enhancing detection accuracy and generalization capabilities.Experimental results validate the improvements.The proposedmodel reduces the parameter count by 19.9% and the computational load by 18.5%.At the same time,mAP(mean average precision)increases by 2.3%,and precision improves by 1.2%.These results demonstrate the model’s robust performance in detecting safety helmets across diverse environments.展开更多
Current spatio-temporal action detection methods lack sufficient capabilities in extracting and comprehending spatio-temporal information. This paper introduces an end-to-end Adaptive Cross-Scale Fusion Encoder-Decode...Current spatio-temporal action detection methods lack sufficient capabilities in extracting and comprehending spatio-temporal information. This paper introduces an end-to-end Adaptive Cross-Scale Fusion Encoder-Decoder (ACSF-ED) network to predict the action and locate the object efficiently. In the Adaptive Cross-Scale Fusion Spatio-Temporal Encoder (ACSF ST-Encoder), the Asymptotic Cross-scale Feature-fusion Module (ACCFM) is designed to address the issue of information degradation caused by the propagation of high-level semantic information, thereby extracting high-quality multi-scale features to provide superior features for subsequent spatio-temporal information modeling. Within the Shared-Head Decoder structure, a shared classification and regression detection head is constructed. A multi-constraint loss function composed of one-to-one, one-to-many, and contrastive denoising losses is designed to address the problem of insufficient constraint force in predicting results with traditional methods. This loss function enhances the accuracy of model classification predictions and improves the proximity of regression position predictions to ground truth objects. The proposed method model is evaluated on the popular dataset UCF101-24 and JHMDB-21. Experimental results demonstrate that the proposed method achieves an accuracy of 81.52% on the Frame-mAP metric, surpassing current existing methods.展开更多
In smart driving for rail transit,a reliable obstacle detection system is an important guarantee for the safety of trains.Therein,the detection of the rail area directly affects the accuracy of the system to identify ...In smart driving for rail transit,a reliable obstacle detection system is an important guarantee for the safety of trains.Therein,the detection of the rail area directly affects the accuracy of the system to identify dangerous targets.Both the rail line and the lane are presented as thin line shapes in the image,but the rail scene is more complex,and the color of the rail line is more difficult to distinguish from the background.By comparison,there are already many deep learning-based lane detection algorithms,but there is a lack of public datasets and targeted deep learning detection algorithms for rail line detection.To address this,this paper constructs a rail image dataset RailwayLine and labels the rail line for the training and testing of models.This dataset contains rich rail images including single-rail,multi-rail,straight rail,curved rail,crossing rails,occlusion,blur,and different lighting conditions.To address the problem of the lack of deep learning-based rail line detection algorithms,we improve the CLRNet algorithm which has an excellent performance in lane detection,and propose the CLRNet-R algorithm for rail line detection.To address the problem of the rail line being thin and occupying fewer pixels in the image,making it difficult to distinguish from complex backgrounds,we introduce an attention mechanism to enhance global feature extraction ability and add a semantic segmentation head to enhance the features of the rail region by the binary probability of rail lines.To address the poor curve recognition performance and unsmooth output lines in the original CLRNet algorithm,we improve the weight allocation for line intersection-over-union calculation in the original framework and propose two loss functions based on local slopes to optimize the model’s local sampling point training constraints,improving the model’s fitting performance on curved rails and obtaining smooth and stable rail line detection results.Through experiments,this paper demonstrates that compared with other mainstream lane detection algorithms,the algorithm proposed in this paper has a better performance for rail line detection.展开更多
Accurate and real-time fire detection is crucial for industrial production and daily life.However,the variable form of fire and the significant differences in visual characteristics across its different stages pose gr...Accurate and real-time fire detection is crucial for industrial production and daily life.However,the variable form of fire and the significant differences in visual characteristics across its different stages pose great challenges to precise fire prevention and control.To address this issue,a multi-scale fire target detection algorithm using YOLO-fire was proposed by improving the YOLOv8 model.This model introduced new layer structures and attention mechanism,replaced new feature fusion modules and loss functions.By introducing a small-target detection P2 layer,the model’s ability to detect early-stage fires is improved.The coordinate attention mechanism is integrated into the layer structures of multi-scale target detection,enhancing the capture of target location information and channel relationships,thereby focusing more on the target regions.The Neck network structure was optimized by adopting a BiFPN_F strategy for different feature layers,which strengthened the cross-scale representation of fire features and controlled the parameter count of the designed model.The WIoU loss function was employed to optimize the regression process,improving fire source localization accuracy in complex scenarios,enhancing model robustness,and increasing detection precision.Experimental results on fire datasets demonstrated that YOLO-fire could effectively detect multi-scale fire targets in various scenarios.Compared to the baseline model(YOLOv8n),YOLO-fire achieves improvements of 1.37%in accuracy,1.25%in mAP50-95,and 0.35%in F1-score,while reducing parameters by 3.79%.Furthermore,compared to current mainstream target detection algorithms,YOLO-Fire achieved optimal detection performance while reducing network parameters and computational complexity.This research provided effective technical support for fire safety prevention and control in related fields.展开更多
Currently,challenges such as small object size and occlusion lead to a lack of accuracy and robustness in small object detection.Since small objects occupy only a few pixels in an image,the extracted features are limi...Currently,challenges such as small object size and occlusion lead to a lack of accuracy and robustness in small object detection.Since small objects occupy only a few pixels in an image,the extracted features are limited,and mainstream downsampling convolution operations further exacerbate feature loss.Additionally,due to the occlusionprone nature of small objects and their higher sensitivity to localization deviations,conventional Intersection over Union(IoU)loss functions struggle to achieve stable convergence.To address these limitations,LR-Net is proposed for small object detection.Specifically,the proposed Lossless Feature Fusion(LFF)method transfers spatial features into the channel domain while leveraging a hybrid attentionmechanism to focus on critical features,mitigating feature loss caused by downsampling.Furthermore,RSIoU is proposed to enhance the convergence performance of IoU-based losses for small objects.RSIoU corrects the inherent convergence direction issues in SIoU and proposes a penalty term as a Dynamic Focusing Mechanism parameter,enabling it to dynamically emphasize the loss contribution of small object samples.Ultimately,RSIoU significantly improves the convergence performance of the loss function for small objects,particularly under occlusion scenarios.Experiments demonstrate that LR-Net achieves significant improvements across variousmetrics onmultiple datasets compared with YOLOv8n,achieving a 3.7% increase in mean Average Precision(AP)on the VisDrone2019 dataset,along with improvements of 3.3% on the AI-TOD dataset and 1.2% on the COCO dataset.展开更多
Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of t...Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task.展开更多
The neutron response function and detection efficiency of a spherical proton recoil proportional counter (SP) play key roles in precise measurement of neutron spectra of the interior materials.In this paper,the respon...The neutron response function and detection efficiency of a spherical proton recoil proportional counter (SP) play key roles in precise measurement of neutron spectra of the interior materials.In this paper,the response functions and detection efficiency of three SPs developed at CAEP are simulated by Geant4.The simulated spectra are compared with pulse-height spectra measured at 0.165,0.575,1.4,and 14.1 MeV of incident neutrons.And the calculated detector efficiencies agree within 5%with the data obtained by neutron activation.展开更多
This research focuses on detecting faults in flight vehicles with unstable subsystems operating asynchronously.By accounting for asynchronous switching,a switched model is established,and filters for fault detection(F...This research focuses on detecting faults in flight vehicles with unstable subsystems operating asynchronously.By accounting for asynchronous switching,a switched model is established,and filters for fault detection(FD)in unstable subsystems are developed.The FD challenge is then transformed into an H∞filtering issue.Utilizing the multiple discontinuous Lyapunov function(MDLF)approach and the mode-dependent average dwell time(MDADT)method,sufficient conditions are derived to ensure stability during both fast and slow switching.Furthermore,the existence and solutions for FD filters are provided through linear matrix inequalities(LMIs).The simulation outcomes demonstrated the excellent performance of the developed method in studied cases.展开更多
Test selection design(TSD)is an important technique for improving product maintainability,reliability and reducing lifecycle costs.In recent years,although some researchers have addressed the design problem of test se...Test selection design(TSD)is an important technique for improving product maintainability,reliability and reducing lifecycle costs.In recent years,although some researchers have addressed the design problem of test selection,the correlation between test outcomes has not been sufficiently considered in test metrics modeling.This study proposes a new approach that combines copula and D-Vine copula to address the correlation issue in TSD.First,the copula is utilized to model FIR on the joint distribution.Furthermore,the D-Vine copula is applied to model the FDR and FAR.Then,a particle swarm optimization is employed to select the optimal testing scheme.Finally,the efficacy of the proposed method is validated through experimentation on a negative feedback circuit.展开更多
As the density of wireless networks increases globally, the vulnerability of overlapped dense wireless communications to interference by hidden nodes and denial-of-service (DoS) attacks is becoming more apparent. Ther...As the density of wireless networks increases globally, the vulnerability of overlapped dense wireless communications to interference by hidden nodes and denial-of-service (DoS) attacks is becoming more apparent. There exists a gap in research on the detection and response to attacks on Medium Access Control (MAC) mechanisms themselves, which would lead to service outages between nodes. Classifying exploitation and deceptive jamming attacks on control mechanisms is particularly challengingdue to their resemblance to normal heavy communication patterns. Accordingly, this paper proposes a machine learning-based selective attack mitigation model that detects DoS attacks on wireless networks by monitoring packet log data. Based on the type of detected attack, it implements effective corresponding mitigation techniques to restore performance to nodes whose availability has been compromised. Experimental results reveal that the accuracy of the proposed model is 14% higher than that of a baseline anomaly detection model. Further, the appropriate mitigation techniques selected by the proposed system based on the attack type improve the average throughput by more than 440% compared to the case without a response.展开更多
A fluorescent active organic–inorganic hybrid material Py N-SBA-15 was synthesized by implementing pyrene derivatives into mesoporous SBA-15 silica.Py N-SBA-15 had detection and removal functionalities toward Al^(3+)...A fluorescent active organic–inorganic hybrid material Py N-SBA-15 was synthesized by implementing pyrene derivatives into mesoporous SBA-15 silica.Py N-SBA-15 had detection and removal functionalities toward Al^(3+),Cu^(2+),and Hg^(2+).On the one hand,Py N-SBA-15 was used as a fluorescence sensor and displayed high sensitivity toward Al^(3+),Cu^(2+),and Hg^(2+)cations (limit of detection:8.0×10^(-7),1.1×10^(-7),and 2.9×10^(-6)mol·L^(–1),respectively) among various analytes with“turn-off”response.On the other hand,the adsorption studies for these toxic analytes (Cu^(2+),Hg^(2+),and Al^(3+)) showed that the ion removal capacity could reach up to 45,581,and 85 mg·g^(-1),respectively.Moreover,the Langmuir isotherm models were better fitted with the adsorption data,indicating that the adsorption was mono-layer adsorption.Kinetic analysis revealed that the adsorption process was well described by the pseudo-second-order kinetic model for Cu^(2+)and Hg^(2+)and pseudo-first-order kinetic model for Al^(3+).The prepared silica material could be reused in four recycles without significantly decreasing its adsorption capacity.Therefore,the Py N-SBA-15 material can serve as a promising candidate for the simultaneous rapid detection and efficient adsorption of metal ions.展开更多
文摘Aim To detect sensor failure in control system using a single sensor signal. Methods A neural predictor was designed based on a radial basis function network(RBFN), and the neural predictor learned the sensor signal on line with a hybrid algorithm composed of n means clustering and Kalman filter and then gave the estimation of the sensor signal at the next step. If the difference between the estimation and the actural values of the sensor signal exceeded a threshold, the sensor could be declared to have a failure. The choice of the failure detection threshold depends on the noise variance and the possible prediction error of neural predictor. Results and Conclusion\ The computer simulation results show the proposed method can detect sensor failure correctly for a gyro in an automotive engine.
基金Supported by National Natural Science Foundation of China under Grant No.50379025.
文摘Structural cracks can change the frequency response function (FRF) of an offshore platform. Thus, FRF shifts can be used to detect cracks. When a crack at a specific location and magnitude occurs in an offshore structure, changes in the FRF can be measured. In this way, shifts in FRF can be used to detect cracks. An experimental model was constructed to verify the FRF method. The relationship between FRF and cracks was found to be non-linear. The effect of multiple cracks on FRF was analyzed, and the shift due to multiple cracks was found to be much more than the summation of FRF shifts due to each of the cracks. Then the effects of noise and changes in the mass of the jacket on FRF were evaluated. The results show that significant damage to a beam can be detected by dramatic changes in the FRF, even when 10% random noise exists. FRF can also be used to approximately locate the breakage, but it can neither be efficiently used to predict the location of breakage nor the existence of small hairline cracks. The FRF shift caused by a 7% mass change is much less than the FRF shift caused by the breakage of any beam, but is larger than that caused by any early cracks.
基金supported by the National Major Science and Technology Project,China(No.J2019-Ⅳ-0007-0075)the Fundamental Research Funds for the Central Universities,China(No.JKF-20240036)。
文摘To ensure the structural integrity of life-limiting component of aeroengines,Probabilistic Damage Tolerance(PDT)assessment is applied to evaluate the failure risk as required by airworthiness regulations and military standards.The PDT method holds the view that there exist defects such as machining scratches and service cracks in the tenon-groove structures of aeroengine disks.However,it is challenging to conduct PDT assessment due to the scarcity of effective Probability of Detection(POD)model and anomaly distribution model.Through a series of Nondestructive Testing(NDT)experiments,the POD model of real cracks in tenon-groove structures is constructed for the first time by employing the Transfer Function Method(TFM).A novel anomaly distribution model is derived through the utilization of the POD model,instead of using the infeasible field data accumulation method.Subsequently,a framework for calculating the Probability of Failure(POF)of the tenon-groove structures is established,and the aforementioned two models exert a significant influence on the results of POF.
基金supported by the National Natural Science Foundation of China(No.32272399)the Shanghai Natural Science Foundation(No.21ZR1427500).
文摘Listeria monocytogenes(LM)is a dangerous foodborne pathogen for humans.One emerging and validated method of indirectly assessing LM in food is detecting 3-hydroxy-2-butanone(3H2B)gas.In this study,the synthesis of 3-(2-aminoethylamino)propyltrimethoxysilane(AAPTMS)functionalized hierarchical hollow TiO_(2)nanospheres was achieved via precise controlling of solvothermal reaction temperature and post-grafting route.The sensors based on as-prepared materials exhibited excellent sensitivity(480 Hz@50 ppm),low detection limit(100 ppb),and outstanding selectivity.Moreover,the evaluation of LM with high sensitivity and specificity was achieved using the sensors.Such stable three-dimensional spheres,whose distinctive hierarchical and hollow nanostructure simultaneously improved both sensitivity and response/recovery speed dramatically,were spontaneously assembled by nanosheets.Meanwhile,the moderate loadings of AAPTMS significantly improved the selectivity of sensors.Then,the gas-sensing mechanism was explored by utilizing thermodynamic investigation,Gaussian 16 software,and in situ diffuse reflectance infrared transform spectroscopy,illustrating the weak chemisorption between the-NHgroup and 3H2B molecules.These portable sensors are promising for real-time assessment of LM at room temperature,which will make a magnificent contribution to food safety.
基金supported by the National Natural Science Foundation of China(Nos.62373215,62373219 and 62073193)the Natural Science Foundation of Shandong Province(No.ZR2023MF100)+1 种基金the Key Projects of the Ministry of Industry and Information Technology(No.TC220H057-2022)the Independently Developed Instrument Funds of Shandong University(No.zy20240201)。
文摘Current you only look once(YOLO)-based algorithm model is facing the challenge of overwhelming parameters and calculation complexity under the printed circuit board(PCB)defect detection application scenario.In order to solve this problem,we propose a new method,which combined the lightweight network mobile vision transformer(Mobile Vi T)with the convolutional block attention module(CBAM)mechanism and the new regression loss function.This method needed less computation resources,making it more suitable for embedded edge detection devices.Meanwhile,the new loss function improved the positioning accuracy of the bounding box and enhanced the robustness of the model.In addition,experiments on public datasets demonstrate that the improved model achieves an average accuracy of 87.9%across six typical defect detection tasks,while reducing computational costs by nearly 90%.It significantly reduces the model's computational requirements while maintaining accuracy,ensuring reliable performance for edge deployment.
基金Project(61101185)supported by the National Natural Science Foundation of China
文摘A fast algorithm based on the grayscale distribution of infrared target and the weighted kernel function was proposed for the moving target detection(MTD) in dynamic scene of image series. This algorithm is used to deal with issues like the large computational complexity, the fluctuation of grayscale, and the noise in infrared images. Four characteristic points were selected by analyzing the grayscale distribution in infrared image, of which the series was quickly matched with an affine transformation model. The image was then divided into 32×32 squares and the gray-weighted kernel(GWK) for each square was calculated. At last, the MTD was carried out according to the variation of the four GWKs. The results indicate that the MTD can be achieved in real time using the algorithm with the fluctuations of grayscale and noise can be effectively suppressed. The detection probability is greater than 90% with the false alarm rate lower than 5% when the calculation time is less than 40 ms.
文摘The deep learning model is overfitted and the accuracy of the test set is reduced when the deep learning model is trained in the network intrusion detection parameters, due to the traditional loss function convergence problem. Firstly, we utilize a network model architecture combining Gelu activation function and deep neural network;Secondly, the cross-entropy loss function is improved to a weighted cross entropy loss function, and at last it is applied to intrusion detection to improve the accuracy of intrusion detection. In order to compare the effect of the experiment, the KDDcup99 data set, which is commonly used in intrusion detection, is selected as the experimental data and use accuracy, precision, recall and F1-score as evaluation parameters. The experimental results show that the model using the weighted cross-entropy loss function combined with the Gelu activation function under the deep neural network architecture improves the evaluation parameters by about 2% compared with the ordinary cross-entropy loss function model. Experiments prove that the weighted cross-entropy loss function can enhance the model’s ability to discriminate samples.
基金supported by the National Natural Science Foundation of China(Nos.52370110 and 21607044)supported by the Fundamental Research Funds for the Central Universities(No.2023MS146)the Open Research Fund of the School of Chemistry and Chemical Engineering,Henan Normal University for support(Nos.2020ZD01 and 2021YB07)。
文摘Mercury ion(Hg^(2+)),as one of the most toxic heavy metal ions,accumulates easily in the environment,which can generate potential hazards to the ecosystem and human health.To effectively detect and remove Hg^(2+),we fabricated four types of carbon dots(CDs)using carboxymethyl nanocellulose as a carbon source doped with different elements using a hydrothermal method.All the CDs exhibited a strong fluorescence emission,excitation-dependent emission and possessed good water dispersibility.Moreover,the four fluorescent CDs were used for Hg^(2+)recognition in aqueous solution,where the CDs-N exhibited better sensitivity and selectivity for Hg^(2+)detection,with a low limit of detection of 8.29×10^(-6)mol/L.It was determined that the fluorescence quenching could be ascribed to a photoinduced charge-transfer processes between Hg^(2+)and the CDs.In addition,the CDs-N were used as a smart invisible ink for anticounterfeiting,information encryption and decryption.Furthermore,the CDs-N were immersed into a cellulose(CMC)-based hydrogel network to prepare fluorescent hydrogels capable of simultaneously detecting and adsorbing Hg^(2+).We anticipate that this research will open possibilities for a green method to synthesize fluorescent CDs for metal ion detection and fluorescent ink production.
基金supported by the National Natural Science Foundation of China(Grant Nos.62101275 and 62101274).
文摘UAV-based object detection is rapidly expanding in both civilian and military applications,including security surveillance,disaster assessment,and border patrol.However,challenges such as small objects,occlusions,complex backgrounds,and variable lighting persist due to the unique perspective of UAV imagery.To address these issues,this paper introduces DAFPN-YOLO,an innovative model based on YOLOv8s(You Only Look Once version 8s).Themodel strikes a balance between detection accuracy and speed while reducing parameters,making itwell-suited for multi-object detection tasks from drone perspectives.A key feature of DAFPN-YOLO is the enhanced Drone-AFPN(Adaptive Feature Pyramid Network),which adaptively fuses multi-scale features to optimize feature extraction and enhance spatial and small-object information.To leverage Drone-AFPN’smulti-scale capabilities fully,a dedicated 160×160 small-object detection head was added,significantly boosting detection accuracy for small targets.In the backbone,the C2f_Dual(Cross Stage Partial with Cross-Stage Feature Fusion Dual)module and SPPELAN(Spatial Pyramid Pooling with Enhanced LocalAttentionNetwork)modulewere integrated.These components improve feature extraction and information aggregationwhile reducing parameters and computational complexity,enhancing inference efficiency.Additionally,Shape-IoU(Shape Intersection over Union)is used as the loss function for bounding box regression,enabling more precise shape-based object matching.Experimental results on the VisDrone 2019 dataset demonstrate the effectiveness ofDAFPN-YOLO.Compared to YOLOv8s,the proposedmodel achieves a 5.4 percentage point increase inmAP@0.5,a 3.8 percentage point improvement in mAP@0.5:0.95,and a 17.2%reduction in parameter count.These results highlight DAFPN-YOLO’s advantages in UAV-based object detection,offering valuable insights for applying deep learning to UAV-specific multi-object detection tasks.
基金funded by National Natural Science Foundation of China(61741303)the Foundation Project of Guangxi Key Laboratory of Spatial Information andMapping(No.21-238-21-16).
文摘Detecting individuals wearing safety helmets in complex environments faces several challenges.These factors include limited detection accuracy and frequent missed or false detections.Additionally,existing algorithms often have excessive parameter counts,complex network structures,and high computational demands.These challenges make it difficult to deploy such models efficiently on resource-constrained devices like embedded systems.Aiming at this problem,this research proposes an optimized and lightweight solution called FGP-YOLOv8,an improved version of YOLOv8n.The YOLOv8 backbone network is replaced with the FasterNet model to reduce parameters and computational demands while local convolution layers are added.This modification minimizes computational costs with only a minor impact on accuracy.A new GSTA(GSConv-Triplet Attention)module is introduced to enhance feature fusion and reduce computational complexity.This is achieved using attention weights generated from dimensional interactions within the feature map.Additionally,the ParNet-C2f module replaces the original C2f(CSP Bottleneck with 2 Convolutions)module,improving feature extraction for safety helmets of various shapes and sizes.The CIoU(Complete-IoU)is replaced with the WIoU(Wise-IoU)to boost performance further,enhancing detection accuracy and generalization capabilities.Experimental results validate the improvements.The proposedmodel reduces the parameter count by 19.9% and the computational load by 18.5%.At the same time,mAP(mean average precision)increases by 2.3%,and precision improves by 1.2%.These results demonstrate the model’s robust performance in detecting safety helmets across diverse environments.
基金support for this work was supported by Key Lab of Intelligent and Green Flexographic Printing under Grant ZBKT202301.
文摘Current spatio-temporal action detection methods lack sufficient capabilities in extracting and comprehending spatio-temporal information. This paper introduces an end-to-end Adaptive Cross-Scale Fusion Encoder-Decoder (ACSF-ED) network to predict the action and locate the object efficiently. In the Adaptive Cross-Scale Fusion Spatio-Temporal Encoder (ACSF ST-Encoder), the Asymptotic Cross-scale Feature-fusion Module (ACCFM) is designed to address the issue of information degradation caused by the propagation of high-level semantic information, thereby extracting high-quality multi-scale features to provide superior features for subsequent spatio-temporal information modeling. Within the Shared-Head Decoder structure, a shared classification and regression detection head is constructed. A multi-constraint loss function composed of one-to-one, one-to-many, and contrastive denoising losses is designed to address the problem of insufficient constraint force in predicting results with traditional methods. This loss function enhances the accuracy of model classification predictions and improves the proximity of regression position predictions to ground truth objects. The proposed method model is evaluated on the popular dataset UCF101-24 and JHMDB-21. Experimental results demonstrate that the proposed method achieves an accuracy of 81.52% on the Frame-mAP metric, surpassing current existing methods.
基金the Sichuan Science and Technology Program(No.2022YFS0557)the National Natural Science Foundation of China(No.61972271)。
文摘In smart driving for rail transit,a reliable obstacle detection system is an important guarantee for the safety of trains.Therein,the detection of the rail area directly affects the accuracy of the system to identify dangerous targets.Both the rail line and the lane are presented as thin line shapes in the image,but the rail scene is more complex,and the color of the rail line is more difficult to distinguish from the background.By comparison,there are already many deep learning-based lane detection algorithms,but there is a lack of public datasets and targeted deep learning detection algorithms for rail line detection.To address this,this paper constructs a rail image dataset RailwayLine and labels the rail line for the training and testing of models.This dataset contains rich rail images including single-rail,multi-rail,straight rail,curved rail,crossing rails,occlusion,blur,and different lighting conditions.To address the problem of the lack of deep learning-based rail line detection algorithms,we improve the CLRNet algorithm which has an excellent performance in lane detection,and propose the CLRNet-R algorithm for rail line detection.To address the problem of the rail line being thin and occupying fewer pixels in the image,making it difficult to distinguish from complex backgrounds,we introduce an attention mechanism to enhance global feature extraction ability and add a semantic segmentation head to enhance the features of the rail region by the binary probability of rail lines.To address the poor curve recognition performance and unsmooth output lines in the original CLRNet algorithm,we improve the weight allocation for line intersection-over-union calculation in the original framework and propose two loss functions based on local slopes to optimize the model’s local sampling point training constraints,improving the model’s fitting performance on curved rails and obtaining smooth and stable rail line detection results.Through experiments,this paper demonstrates that compared with other mainstream lane detection algorithms,the algorithm proposed in this paper has a better performance for rail line detection.
基金supported by Natural Science Foundation of Inner Mongolia Autonomous Region,China(No.2023QN05023)the Key R&D and Achievement Transformation Programs of Inner Mongolia Autonomous Region,China(Nos.2025KYPT0051,2025KYPT0050).
文摘Accurate and real-time fire detection is crucial for industrial production and daily life.However,the variable form of fire and the significant differences in visual characteristics across its different stages pose great challenges to precise fire prevention and control.To address this issue,a multi-scale fire target detection algorithm using YOLO-fire was proposed by improving the YOLOv8 model.This model introduced new layer structures and attention mechanism,replaced new feature fusion modules and loss functions.By introducing a small-target detection P2 layer,the model’s ability to detect early-stage fires is improved.The coordinate attention mechanism is integrated into the layer structures of multi-scale target detection,enhancing the capture of target location information and channel relationships,thereby focusing more on the target regions.The Neck network structure was optimized by adopting a BiFPN_F strategy for different feature layers,which strengthened the cross-scale representation of fire features and controlled the parameter count of the designed model.The WIoU loss function was employed to optimize the regression process,improving fire source localization accuracy in complex scenarios,enhancing model robustness,and increasing detection precision.Experimental results on fire datasets demonstrated that YOLO-fire could effectively detect multi-scale fire targets in various scenarios.Compared to the baseline model(YOLOv8n),YOLO-fire achieves improvements of 1.37%in accuracy,1.25%in mAP50-95,and 0.35%in F1-score,while reducing parameters by 3.79%.Furthermore,compared to current mainstream target detection algorithms,YOLO-Fire achieved optimal detection performance while reducing network parameters and computational complexity.This research provided effective technical support for fire safety prevention and control in related fields.
基金supported by Chongqing Municipal Commission of Housing and Urban-Rural Development(Grant No.CKZ2024-87)China Chongqing Municipal Science and Technology Bureau(Grant No.2024TIAD-CYKJCXX0121).
文摘Currently,challenges such as small object size and occlusion lead to a lack of accuracy and robustness in small object detection.Since small objects occupy only a few pixels in an image,the extracted features are limited,and mainstream downsampling convolution operations further exacerbate feature loss.Additionally,due to the occlusionprone nature of small objects and their higher sensitivity to localization deviations,conventional Intersection over Union(IoU)loss functions struggle to achieve stable convergence.To address these limitations,LR-Net is proposed for small object detection.Specifically,the proposed Lossless Feature Fusion(LFF)method transfers spatial features into the channel domain while leveraging a hybrid attentionmechanism to focus on critical features,mitigating feature loss caused by downsampling.Furthermore,RSIoU is proposed to enhance the convergence performance of IoU-based losses for small objects.RSIoU corrects the inherent convergence direction issues in SIoU and proposes a penalty term as a Dynamic Focusing Mechanism parameter,enabling it to dynamically emphasize the loss contribution of small object samples.Ultimately,RSIoU significantly improves the convergence performance of the loss function for small objects,particularly under occlusion scenarios.Experiments demonstrate that LR-Net achieves significant improvements across variousmetrics onmultiple datasets compared with YOLOv8n,achieving a 3.7% increase in mean Average Precision(AP)on the VisDrone2019 dataset,along with improvements of 3.3% on the AI-TOD dataset and 1.2% on the COCO dataset.
基金supported by the National Natural Science Foundation of China(62276055).
文摘Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task.
文摘The neutron response function and detection efficiency of a spherical proton recoil proportional counter (SP) play key roles in precise measurement of neutron spectra of the interior materials.In this paper,the response functions and detection efficiency of three SPs developed at CAEP are simulated by Geant4.The simulated spectra are compared with pulse-height spectra measured at 0.165,0.575,1.4,and 14.1 MeV of incident neutrons.And the calculated detector efficiencies agree within 5%with the data obtained by neutron activation.
基金the National Natural Science Foundation of China(Grant Nos.62303380,62176214,62101590,62003268)the Aeronautical Science Foundation of China(Grant No.201907053001).
文摘This research focuses on detecting faults in flight vehicles with unstable subsystems operating asynchronously.By accounting for asynchronous switching,a switched model is established,and filters for fault detection(FD)in unstable subsystems are developed.The FD challenge is then transformed into an H∞filtering issue.Utilizing the multiple discontinuous Lyapunov function(MDLF)approach and the mode-dependent average dwell time(MDADT)method,sufficient conditions are derived to ensure stability during both fast and slow switching.Furthermore,the existence and solutions for FD filters are provided through linear matrix inequalities(LMIs).The simulation outcomes demonstrated the excellent performance of the developed method in studied cases.
基金supported by the National Natural Science Foundation of China(No.62303293,62303414)the China Postdoctoral Science Foundation(No.2023M732176,2023M741821)the Zhejiang Province Postdoctoral Selected Foundation(No.ZJ2023143).
文摘Test selection design(TSD)is an important technique for improving product maintainability,reliability and reducing lifecycle costs.In recent years,although some researchers have addressed the design problem of test selection,the correlation between test outcomes has not been sufficiently considered in test metrics modeling.This study proposes a new approach that combines copula and D-Vine copula to address the correlation issue in TSD.First,the copula is utilized to model FIR on the joint distribution.Furthermore,the D-Vine copula is applied to model the FDR and FAR.Then,a particle swarm optimization is employed to select the optimal testing scheme.Finally,the efficacy of the proposed method is validated through experimentation on a negative feedback circuit.
基金supported by the Ministry of Trade,Industry and Energy(MOTIE)under Training Industrial Security Specialist for High-Tech Industry(RS-2024-00415520)supervised by the Korea Institute for Advancement of Technology(KIAT)the Ministry of Science and ICT(MSIT)under the ICT Challenge and Advanced Network of HRD(ICAN)Program(No.IITP-2022-RS-2022-00156310)supervised by the Institute of Information&Communication Technology Planning&Evaluation(IITP).
文摘As the density of wireless networks increases globally, the vulnerability of overlapped dense wireless communications to interference by hidden nodes and denial-of-service (DoS) attacks is becoming more apparent. There exists a gap in research on the detection and response to attacks on Medium Access Control (MAC) mechanisms themselves, which would lead to service outages between nodes. Classifying exploitation and deceptive jamming attacks on control mechanisms is particularly challengingdue to their resemblance to normal heavy communication patterns. Accordingly, this paper proposes a machine learning-based selective attack mitigation model that detects DoS attacks on wireless networks by monitoring packet log data. Based on the type of detected attack, it implements effective corresponding mitigation techniques to restore performance to nodes whose availability has been compromised. Experimental results reveal that the accuracy of the proposed model is 14% higher than that of a baseline anomaly detection model. Further, the appropriate mitigation techniques selected by the proposed system based on the attack type improve the average throughput by more than 440% compared to the case without a response.
基金supported by the National Natural Science Foundation of China (21966006)。
文摘A fluorescent active organic–inorganic hybrid material Py N-SBA-15 was synthesized by implementing pyrene derivatives into mesoporous SBA-15 silica.Py N-SBA-15 had detection and removal functionalities toward Al^(3+),Cu^(2+),and Hg^(2+).On the one hand,Py N-SBA-15 was used as a fluorescence sensor and displayed high sensitivity toward Al^(3+),Cu^(2+),and Hg^(2+)cations (limit of detection:8.0×10^(-7),1.1×10^(-7),and 2.9×10^(-6)mol·L^(–1),respectively) among various analytes with“turn-off”response.On the other hand,the adsorption studies for these toxic analytes (Cu^(2+),Hg^(2+),and Al^(3+)) showed that the ion removal capacity could reach up to 45,581,and 85 mg·g^(-1),respectively.Moreover,the Langmuir isotherm models were better fitted with the adsorption data,indicating that the adsorption was mono-layer adsorption.Kinetic analysis revealed that the adsorption process was well described by the pseudo-second-order kinetic model for Cu^(2+)and Hg^(2+)and pseudo-first-order kinetic model for Al^(3+).The prepared silica material could be reused in four recycles without significantly decreasing its adsorption capacity.Therefore,the Py N-SBA-15 material can serve as a promising candidate for the simultaneous rapid detection and efficient adsorption of metal ions.