Aimed at the long and narrow geometric features and poor generalization ability of the damage detection in conveyor belts with steel rope cores using the X-ray image,a detection method of damage X-ray image is propose...Aimed at the long and narrow geometric features and poor generalization ability of the damage detection in conveyor belts with steel rope cores using the X-ray image,a detection method of damage X-ray image is proposed based on the improved fully convolutional one-stage object detection(FCOS)algorithm.The regression performance of bounding boxes was optimized by introducing the complete intersection over union loss function into the improved algorithm.The feature fusion network structure is modified by adding adaptive fusion paths to the feature fusion network structure,which makes full use of the features of accurate localization and semantics of multi-scale feature fusion networks.Finally,the network structure was trained and validated by using the X-ray image dataset of damages in conveyor belts with steel rope cores provided by a flaw detection equipment manufacturer.In addition,the data enhancement methods such as rotating,mirroring,and scaling,were employed to enrich the image dataset so that the model is adequately trained.Experimental results showed that the improved FCOS algorithm promoted the precision rate and the recall rate by 20.9%and 14.8%respectively,compared with the original algorithm.Meanwhile,compared with Fast R-CNN,Faster R-CNN,SSD,and YOLOv3,the improved FCOS algorithm has obvious advantages;detection precision rate and recall rate of the modified network reached 95.8%and 97.0%respectively.Furthermore,it demonstrated a higher detection accuracy without affecting the speed.The results of this work have some reference significance for the automatic identification and detection of steel core conveyor belt damage.展开更多
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol...Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score.展开更多
Nowadays,abnormal traffic detection for Software-Defined Networking(SDN)faces the challenges of large data volume and high dimensionality.Since traditional machine learning-based detection methods have the problem of ...Nowadays,abnormal traffic detection for Software-Defined Networking(SDN)faces the challenges of large data volume and high dimensionality.Since traditional machine learning-based detection methods have the problem of data redundancy,the Metaheuristic Algorithm(MA)is introduced to select features beforemachine learning to reduce the dimensionality of data.Since a Tyrannosaurus Optimization Algorithm(TROA)has the advantages of few parameters,simple implementation,and fast convergence,and it shows better results in feature selection,TROA can be applied to abnormal traffic detection for SDN.However,TROA suffers frominsufficient global search capability,is easily trapped in local optimums,and has poor search accuracy.Then,this paper tries to improve TROA,namely the Improved Tyrannosaurus Optimization Algorithm(ITROA).It proposes a metaheuristic-driven abnormal traffic detection model for SDN based on ITROA.Finally,the validity of the ITROA is verified by the benchmark function and the UCI dataset,and the feature selection optimization operation is performed on the InSDN dataset by ITROA and other MAs to obtain the optimized feature subset for SDN abnormal traffic detection.The experiment shows that the performance of the proposed ITROA outperforms compared MAs in terms of the metaheuristic-driven model for SDN,achieving an accuracy of 99.37%on binary classification and 96.73%on multiclassification.展开更多
Face recognition has emerged as one of the most prominent applications of image analysis and under-standing,gaining considerable attention in recent years.This growing interest is driven by two key factors:its extensi...Face recognition has emerged as one of the most prominent applications of image analysis and under-standing,gaining considerable attention in recent years.This growing interest is driven by two key factors:its extensive applications in law enforcement and the commercial domain,and the rapid advancement of practical technologies.Despite the significant advancements,modern recognition algorithms still struggle in real-world conditions such as varying lighting conditions,occlusion,and diverse facial postures.In such scenarios,human perception is still well above the capabilities of present technology.Using the systematic mapping study,this paper presents an in-depth review of face detection algorithms and face recognition algorithms,presenting a detailed survey of advancements made between 2015 and 2024.We analyze key methodologies,highlighting their strengths and restrictions in the application context.Additionally,we examine various datasets used for face detection/recognition datasets focusing on the task-specific applications,size,diversity,and complexity.By analyzing these algorithms and datasets,this survey works as a valuable resource for researchers,identifying the research gap in the field of face detection and recognition and outlining potential directions for future research.展开更多
The excessive use of artificial intelligence(AI)algorithms has caused the problem of errors in AI algorithms,which has challenged the fairness of decision-making,and has intensified people’s inequality.Therefore,it i...The excessive use of artificial intelligence(AI)algorithms has caused the problem of errors in AI algorithms,which has challenged the fairness of decision-making,and has intensified people’s inequality.Therefore,it is necessary to conduct in-depth research and propose corresponding error detection and error elimination methods.This paper first proposes the root causes and threats of bias in AI algorithms,then summarizes the existing bias detection and error elimination methods,and proposes a bias processing framework in three-level dimensions of data,models,and conclusions,aiming to provide a framework for a comprehensive solution to errors in algorithms.At the same time,it also summarizes the problems and challenges in existing research and makes a prospect for future research trends.It is hoped that it will be helpful for us to build fairer AI.展开更多
Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of t...Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task.展开更多
Domain Generation Algorithms(DGAs)continue to pose a significant threat inmodernmalware infrastructures by enabling resilient and evasive communication with Command and Control(C&C)servers.Traditional detection me...Domain Generation Algorithms(DGAs)continue to pose a significant threat inmodernmalware infrastructures by enabling resilient and evasive communication with Command and Control(C&C)servers.Traditional detection methods-rooted in statistical heuristics,feature engineering,and shallow machine learning-struggle to adapt to the increasing sophistication,linguistic mimicry,and adversarial variability of DGA variants.The emergence of Large Language Models(LLMs)marks a transformative shift in this landscape.Leveraging deep contextual understanding,semantic generalization,and few-shot learning capabilities,LLMs such as BERT,GPT,and T5 have shown promising results in detecting both character-based and dictionary-based DGAs,including previously unseen(zeroday)variants.This paper provides a comprehensive and critical review of LLM-driven DGA detection,introducing a structured taxonomy of LLM architectures,evaluating the linguistic and behavioral properties of benchmark datasets,and comparing recent detection frameworks across accuracy,latency,robustness,and multilingual performance.We also highlight key limitations,including challenges in adversarial resilience,model interpretability,deployment scalability,and privacy risks.To address these gaps,we present a forward-looking research roadmap encompassing adversarial training,model compression,cross-lingual benchmarking,and real-time integration with SIEM/SOAR platforms.This survey aims to serve as a foundational resource for advancing the development of scalable,explainable,and operationally viable LLM-based DGA detection systems.展开更多
With the birth of Software-Defined Networking(SDN),integration of both SDN and traditional architectures becomes the development trend of computer networks.Network intrusion detection faces challenges in dealing with ...With the birth of Software-Defined Networking(SDN),integration of both SDN and traditional architectures becomes the development trend of computer networks.Network intrusion detection faces challenges in dealing with complex attacks in SDN environments,thus to address the network security issues from the viewpoint of Artificial Intelligence(AI),this paper introduces the Crayfish Optimization Algorithm(COA)to the field of intrusion detection for both SDN and traditional network architectures,and based on the characteristics of the original COA,an Improved Crayfish Optimization Algorithm(ICOA)is proposed by integrating strategies of elite reverse learning,Levy flight,crowding factor and parameter modification.The ICOA is then utilized for AI-integrated feature selection of intrusion detection for both SDN and traditional network architectures,to reduce the dimensionality of the data and improve the performance of network intrusion detection.Finally,the performance evaluation is performed by testing not only the NSL-KDD dataset and the UNSW-NB 15 dataset for traditional networks but also the InSDN dataset for SDN-based networks.Experimental results show that ICOA improves the accuracy by 0.532%and 2.928%respectively compared with GWO and COA in traditional networks.In SDN networks,the accuracy of ICOA is 0.25%and 0.3%higher than COA and PSO.These findings collectively indicate that AI-integrated feature selection based on the proposed ICOA can promote network intrusion detection for both SDN and traditional architectures.展开更多
Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,maki...Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production.展开更多
A Rapid-exploration Random Tree(RRT)autonomous detection algorithm based on the multi-guide-node deflection strategy and Karto Simultaneous Localization and Mapping(SLAM)algorithm was proposed to solve the problems of...A Rapid-exploration Random Tree(RRT)autonomous detection algorithm based on the multi-guide-node deflection strategy and Karto Simultaneous Localization and Mapping(SLAM)algorithm was proposed to solve the problems of low efficiency of detecting frontier boundary points and drift distortion in the process of map building in the traditional RRT algorithm in the autonomous detection strategy of mobile robot.Firstly,an RRT global frontier boundary point detection algorithm based on the multi-guide-node deflection strategy was put forward,which introduces the reference value of guide nodes’deflection probability into the random sampling function so that the global search tree can detect frontier boundary points towards the guide nodes according to random probability.After that,a new autonomous detection algorithm for mobile robots was proposed by combining the graph optimization-based Karto SLAM algorithm with the previously improved RRT algorithm.The algorithm simulation platform based on the Gazebo platform was built.The simulation results show that compared with the traditional RRT algorithm,the proposed RRT autonomous detection algorithm can effectively reduce the time of autonomous detection,plan the length of detection trajectory under the condition of high average detection coverage,and complete the task of autonomous detection mapping more efficiently.Finally,with the help of the ROS-based mobile robot experimental platform,the performance of the proposed algorithm was verified in the real environment of different obstacles.The experimental results show that in the actual environment of simple and complex obstacles,the proposed RRT autonomous detection algorithm was superior to the traditional RRT autonomous detection algorithm in the time of detection,length of detection trajectory,and average coverage,thus improving the efficiency and accuracy of autonomous detection.展开更多
Online review platforms are becoming increasingly popular,encouraging dishonest merchants and service providers to deceive customers by creating fake reviews for their goods or services.Using Sybil accounts,bot farms,...Online review platforms are becoming increasingly popular,encouraging dishonest merchants and service providers to deceive customers by creating fake reviews for their goods or services.Using Sybil accounts,bot farms,and real account purchases,immoral actors demonize rivals and advertise their goods.Most academic and industry efforts have been aimed at detecting fake/fraudulent product or service evaluations for years.The primary hurdle to identifying fraudulent reviews is the lack of a reliable means to distinguish fraudulent reviews from real ones.This paper adopts a semi-supervised machine learning method to detect fake reviews on any website,among other things.Online reviews are classified using a semi-supervised approach(PU-learning)since there is a shortage of labeled data,and they are dynamic.Then,classification is performed using the machine learning techniques Support Vector Machine(SVM)and Nave Bayes.The performance of the suggested system has been compared with standard works,and experimental findings are assessed using several assessment metrics.展开更多
To avoid colliding with trees during its operation,a lawn mower robot must detect the trees.Existing tree detection methods suffer from low detection accuracy(missed detection)and the lack of a lightweight model.In th...To avoid colliding with trees during its operation,a lawn mower robot must detect the trees.Existing tree detection methods suffer from low detection accuracy(missed detection)and the lack of a lightweight model.In this study,a dataset of trees was constructed on the basis of a real lawn environment.According to the theory of channel incremental depthwise convolution and residual suppression,the Embedded-A module is proposed,which expands the depth of the feature map twice to form a residual structure to improve the lightweight degree of the model.According to residual fusion theory,the Embedded-B module is proposed,which improves the accuracy of feature-map downsampling by depthwise convolution and pooling fusion.The Embedded YOLO object detection network is formed by stacking the embedded modules and the fusion of feature maps of different resolutions.Experimental results on the testing set show that the Embedded YOLO tree detection algorithm has 84.17%and 69.91%average precision values respectively for trunk and spherical tree,and 77.04% mean average precision value.The number of convolution parameters is 1.78×10^(6),and the calculation amount is 3.85 billion float operations per second.The size of weight file is 7.11MB,and the detection speed can reach 179 frame/s.This study provides a theoretical basis for the lightweight application of the object detection algorithm based on deep learning for lawn mower robots.展开更多
Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamlessoperation of the system. Current industrial processes are getting smarter with the emergence of Indu...Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamlessoperation of the system. Current industrial processes are getting smarter with the emergence of Industry 4.0.Specifically, various modernized industrial processes have been equipped with quite a few sensors to collectprocess-based data to find faults arising or prevailing in processes along with monitoring the status of processes.Fault diagnosis of rotating machines serves a main role in the engineering field and industrial production. Dueto the disadvantages of existing fault, diagnosis approaches, which greatly depend on professional experienceand human knowledge, intellectual fault diagnosis based on deep learning (DL) has attracted the researcher’sinterest. DL reaches the desired fault classification and automatic feature learning. Therefore, this article designs a Gradient Optimizer Algorithm with Hybrid Deep Learning-based Failure Detection and Classification (GOAHDLFDC)in the industrial environment. The presented GOAHDL-FDC technique initially applies continuous wavelettransform (CWT) for preprocessing the actual vibrational signals of the rotating machinery. Next, the residualnetwork (ResNet18) model was exploited for the extraction of features from the vibration signals which are thenfed into theHDLmodel for automated fault detection. Finally, theGOA-based hyperparameter tuning is performedtoadjust the parameter valuesof theHDLmodel accurately.The experimental result analysis of the GOAHDL-FD Calgorithm takes place using a series of simulations and the experimentation outcomes highlight the better resultsof the GOAHDL-FDC technique under different aspects.展开更多
Current methodologies for cleaning wind power anomaly data exhibit limited capabilities in identifying abnormal data within extensive datasets and struggle to accommodate the considerable variability and intricacy of ...Current methodologies for cleaning wind power anomaly data exhibit limited capabilities in identifying abnormal data within extensive datasets and struggle to accommodate the considerable variability and intricacy of wind farm data.Consequently,a method for cleaning wind power anomaly data by combining image processing with community detection algorithms(CWPAD-IPCDA)is proposed.To precisely identify and initially clean anomalous data,wind power curve(WPC)images are converted into graph structures,which employ the Louvain community recognition algorithm and graph-theoretic methods for community detection and segmentation.Furthermore,the mathematical morphology operation(MMO)determines the main part of the initially cleaned wind power curve images and maps them back to the normal wind power points to complete the final cleaning.The CWPAD-IPCDA method was applied to clean datasets from 25 wind turbines(WTs)in two wind farms in northwest China to validate its feasibility.A comparison was conducted using density-based spatial clustering of applications with noise(DBSCAN)algorithm,an improved isolation forest algorithm,and an image-based(IB)algorithm.The experimental results demonstrate that the CWPAD-IPCDA method surpasses the other three algorithms,achieving an approximately 7.23%higher average data cleaning rate.The mean value of the sum of the squared errors(SSE)of the dataset after cleaning is approximately 6.887 lower than that of the other algorithms.Moreover,the mean of overall accuracy,as measured by the F1-score,exceeds that of the other methods by approximately 10.49%;this indicates that the CWPAD-IPCDA method is more conducive to improving the accuracy and reliability of wind power curve modeling and wind farm power forecasting.展开更多
A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all...A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all optimization problems. A self-adapting and efficient dandelion algorithm is proposed in this work to lower the number of DA's parameters and simplify DA's structure. Only the normal sowing operator is retained;while the other operators are discarded. An adaptive seeding radius strategy is designed for the core dandelion. The results show that the proposed algorithm achieves better performance on the standard test functions with less time consumption than its competitive peers. In addition, the proposed algorithm is applied to feature selection for credit card fraud detection(CCFD), and the results indicate that it can obtain higher classification and detection performance than the-state-of-the-art methods.展开更多
Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detec...Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishingUniformResource Locator(URLs).Addressing these challenge,we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network(RNN)with the hyperparameter optimization prowess of theWhale Optimization Algorithm(WOA).Ourmodel capitalizes on an extensive Kaggle dataset,featuring over 11,000 URLs,each delineated by 30 attributes.The WOA’s hyperparameter optimization enhances the RNN’s performance,evidenced by a meticulous validation process.The results,encapsulated in precision,recall,and F1-score metrics,surpass baseline models,achieving an overall accuracy of 92%.This study not only demonstrates the RNN’s proficiency in learning complex patterns but also underscores the WOA’s effectiveness in refining machine learning models for the critical task of phishing detection.展开更多
In order to solve the problem of metal impurities mixed in the production line of wood pulp nonwoven raw materials,intelligent metal detection and disposal automation equipment is designed.Based on the principle of el...In order to solve the problem of metal impurities mixed in the production line of wood pulp nonwoven raw materials,intelligent metal detection and disposal automation equipment is designed.Based on the principle of electromagnetic induction,the precise positioning of metal coordinates is realized by initial inspection and multi-directional re-inspection.Based on a geometry optimization driving algorithm,the cutting area is determined by locating the center of the circle that covers the maximum area.This approach aims to minimize the cutting area and maximize the use of materials.Additionally,the method strives to preserve as many fabrics at the edges as possible by employing the farthest edge covering circle algorithm.Based on a speed compensation algorithm,the flexible switching of upper and lower rolls is realized to ensure the maximum production efficiency.Compared with the metal detection device in the existing production line,the designed automation equipment has the advantages of higher detection sensitivity,more accurate metal coordinate positioning,smaller cutting material areas and higher production efficiency,which can make the production process more continuous,automated and intelligent.展开更多
High-precision methane gas detection is of great importance in industrial safety, energy production and environmental protection, etc. However, in the existing measurement techniques, the methane gas concentration inf...High-precision methane gas detection is of great importance in industrial safety, energy production and environmental protection, etc. However, in the existing measurement techniques, the methane gas concentration information is susceptible to noise, which leads to its useful signal being drowned by noise. A fusion algorithm of variational modal decomposition(VMD) and improved wavelet threshold filtering is proposed, which is used in combination with tunable diode laser absorption spectroscopy(TDLAS) to implement a non-contact, high-resolution methane gas concentration detection. The fusion algorithm can perform noise reduction and further segmentation of the methane gas detection signal. And the simulation and experiment verify the effectiveness of the fusion algorithm, and the experimental results show that for the detection of air containing 10 ppm, 30 ppm, 60 ppm, 80 ppm, and 99 ppm methane, the errors are 12.75%, 8.18%, 3.37%, 2.46%, and 1.78%, respectively.展开更多
Signal detection plays an essential role in massive Multiple-Input Multiple-Output(MIMO)systems.However,existing detection methods have not yet made a good tradeoff between Bit Error Rate(BER)and computational complex...Signal detection plays an essential role in massive Multiple-Input Multiple-Output(MIMO)systems.However,existing detection methods have not yet made a good tradeoff between Bit Error Rate(BER)and computational complexity,resulting in slow convergence or high complexity.To address this issue,a low-complexity Approximate Message Passing(AMP)detection algorithm with Deep Neural Network(DNN)(denoted as AMP-DNN)is investigated in this paper.Firstly,an efficient AMP detection algorithm is derived by scalarizing the simplification of Belief Propagation(BP)algorithm.Secondly,by unfolding the obtained AMP detection algorithm,a DNN is specifically designed for the optimal performance gain.For the proposed AMP-DNN,the number of trainable parameters is only related to that of layers,regardless of modulation scheme,antenna number and matrix calculation,thus facilitating fast and stable training of the network.In addition,the AMP-DNN can detect different channels under the same distribution with only one training.The superior performance of the AMP-DNN is also verified by theoretical analysis and experiments.It is found that the proposed algorithm enables the reduction of BER without signal prior information,especially in the spatially correlated channel,and has a lower computational complexity compared with existing state-of-the-art methods.展开更多
Anomaly Detection (AD) has been extensively adopted in industrial settings to facilitate quality control of products. It is critical to industrial production, especially to areas such as aircraft manufacturing, which ...Anomaly Detection (AD) has been extensively adopted in industrial settings to facilitate quality control of products. It is critical to industrial production, especially to areas such as aircraft manufacturing, which require strict part qualification rates. Although being more efficient and practical, few-shot AD has not been well explored. The existing AD methods only extract features in a single frequency while defects exist in multiple frequency domains. Moreover, current methods have not fully leveraged the few-shot support samples to extract input-related normal patterns. To address these issues, we propose an industrial few-shot AD method, Feature Extender for Anomaly Detection (FEAD), which extracts normal patterns in multiple frequency domains from few-shot samples under the guidance of the input sample. Firstly, to achieve better coverage of normal patterns in the input sample, we introduce a Sample-Conditioned Transformation Module (SCTM), which transforms support features under the guidance of the input sample to obtain extra normal patterns. Secondly, to effectively distinguish and localize anomaly patterns in multiple frequency domains, we devise an Adaptive Descriptor Construction Module (ADCM) to build and select pattern descriptors in a series of frequencies adaptively. Finally, an auxiliary task for SCTM is designed to ensure the diversity of transformations and include more normal patterns into support features. Extensive experiments on two widely used industrial AD datasets (MVTec-AD and VisA) demonstrate the effectiveness of the proposed FEAD.展开更多
文摘Aimed at the long and narrow geometric features and poor generalization ability of the damage detection in conveyor belts with steel rope cores using the X-ray image,a detection method of damage X-ray image is proposed based on the improved fully convolutional one-stage object detection(FCOS)algorithm.The regression performance of bounding boxes was optimized by introducing the complete intersection over union loss function into the improved algorithm.The feature fusion network structure is modified by adding adaptive fusion paths to the feature fusion network structure,which makes full use of the features of accurate localization and semantics of multi-scale feature fusion networks.Finally,the network structure was trained and validated by using the X-ray image dataset of damages in conveyor belts with steel rope cores provided by a flaw detection equipment manufacturer.In addition,the data enhancement methods such as rotating,mirroring,and scaling,were employed to enrich the image dataset so that the model is adequately trained.Experimental results showed that the improved FCOS algorithm promoted the precision rate and the recall rate by 20.9%and 14.8%respectively,compared with the original algorithm.Meanwhile,compared with Fast R-CNN,Faster R-CNN,SSD,and YOLOv3,the improved FCOS algorithm has obvious advantages;detection precision rate and recall rate of the modified network reached 95.8%and 97.0%respectively.Furthermore,it demonstrated a higher detection accuracy without affecting the speed.The results of this work have some reference significance for the automatic identification and detection of steel core conveyor belt damage.
基金supported by Science and Technology Innovation Programfor Postgraduate Students in IDP Subsidized by Fundamental Research Funds for the Central Universities(Project No.ZY20240335)support of the Research Project of the Key Technology of Malicious Code Detection Based on Data Mining in APT Attack(Project No.2022IT173)the Research Project of the Big Data Sensitive Information Supervision Technology Based on Convolutional Neural Network(Project No.2022011033).
文摘Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score.
基金supported by the National Natural Science Foundation of China under Grant 61602162the Hubei Provincial Science and Technology Plan Project under Grant 2023BCB041.
文摘Nowadays,abnormal traffic detection for Software-Defined Networking(SDN)faces the challenges of large data volume and high dimensionality.Since traditional machine learning-based detection methods have the problem of data redundancy,the Metaheuristic Algorithm(MA)is introduced to select features beforemachine learning to reduce the dimensionality of data.Since a Tyrannosaurus Optimization Algorithm(TROA)has the advantages of few parameters,simple implementation,and fast convergence,and it shows better results in feature selection,TROA can be applied to abnormal traffic detection for SDN.However,TROA suffers frominsufficient global search capability,is easily trapped in local optimums,and has poor search accuracy.Then,this paper tries to improve TROA,namely the Improved Tyrannosaurus Optimization Algorithm(ITROA).It proposes a metaheuristic-driven abnormal traffic detection model for SDN based on ITROA.Finally,the validity of the ITROA is verified by the benchmark function and the UCI dataset,and the feature selection optimization operation is performed on the InSDN dataset by ITROA and other MAs to obtain the optimized feature subset for SDN abnormal traffic detection.The experiment shows that the performance of the proposed ITROA outperforms compared MAs in terms of the metaheuristic-driven model for SDN,achieving an accuracy of 99.37%on binary classification and 96.73%on multiclassification.
文摘Face recognition has emerged as one of the most prominent applications of image analysis and under-standing,gaining considerable attention in recent years.This growing interest is driven by two key factors:its extensive applications in law enforcement and the commercial domain,and the rapid advancement of practical technologies.Despite the significant advancements,modern recognition algorithms still struggle in real-world conditions such as varying lighting conditions,occlusion,and diverse facial postures.In such scenarios,human perception is still well above the capabilities of present technology.Using the systematic mapping study,this paper presents an in-depth review of face detection algorithms and face recognition algorithms,presenting a detailed survey of advancements made between 2015 and 2024.We analyze key methodologies,highlighting their strengths and restrictions in the application context.Additionally,we examine various datasets used for face detection/recognition datasets focusing on the task-specific applications,size,diversity,and complexity.By analyzing these algorithms and datasets,this survey works as a valuable resource for researchers,identifying the research gap in the field of face detection and recognition and outlining potential directions for future research.
文摘The excessive use of artificial intelligence(AI)algorithms has caused the problem of errors in AI algorithms,which has challenged the fairness of decision-making,and has intensified people’s inequality.Therefore,it is necessary to conduct in-depth research and propose corresponding error detection and error elimination methods.This paper first proposes the root causes and threats of bias in AI algorithms,then summarizes the existing bias detection and error elimination methods,and proposes a bias processing framework in three-level dimensions of data,models,and conclusions,aiming to provide a framework for a comprehensive solution to errors in algorithms.At the same time,it also summarizes the problems and challenges in existing research and makes a prospect for future research trends.It is hoped that it will be helpful for us to build fairer AI.
基金supported by the National Natural Science Foundation of China(62276055).
文摘Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task.
基金the Deanship of Scientific Research at King Khalid University for funding this work through large group under grant number(GRP.2/663/46).
文摘Domain Generation Algorithms(DGAs)continue to pose a significant threat inmodernmalware infrastructures by enabling resilient and evasive communication with Command and Control(C&C)servers.Traditional detection methods-rooted in statistical heuristics,feature engineering,and shallow machine learning-struggle to adapt to the increasing sophistication,linguistic mimicry,and adversarial variability of DGA variants.The emergence of Large Language Models(LLMs)marks a transformative shift in this landscape.Leveraging deep contextual understanding,semantic generalization,and few-shot learning capabilities,LLMs such as BERT,GPT,and T5 have shown promising results in detecting both character-based and dictionary-based DGAs,including previously unseen(zeroday)variants.This paper provides a comprehensive and critical review of LLM-driven DGA detection,introducing a structured taxonomy of LLM architectures,evaluating the linguistic and behavioral properties of benchmark datasets,and comparing recent detection frameworks across accuracy,latency,robustness,and multilingual performance.We also highlight key limitations,including challenges in adversarial resilience,model interpretability,deployment scalability,and privacy risks.To address these gaps,we present a forward-looking research roadmap encompassing adversarial training,model compression,cross-lingual benchmarking,and real-time integration with SIEM/SOAR platforms.This survey aims to serve as a foundational resource for advancing the development of scalable,explainable,and operationally viable LLM-based DGA detection systems.
基金supported by the National Natural Science Foundation of China under Grant 61602162the Hubei Provincial Science and Technology Plan Project under Grant 2023BCB041.
文摘With the birth of Software-Defined Networking(SDN),integration of both SDN and traditional architectures becomes the development trend of computer networks.Network intrusion detection faces challenges in dealing with complex attacks in SDN environments,thus to address the network security issues from the viewpoint of Artificial Intelligence(AI),this paper introduces the Crayfish Optimization Algorithm(COA)to the field of intrusion detection for both SDN and traditional network architectures,and based on the characteristics of the original COA,an Improved Crayfish Optimization Algorithm(ICOA)is proposed by integrating strategies of elite reverse learning,Levy flight,crowding factor and parameter modification.The ICOA is then utilized for AI-integrated feature selection of intrusion detection for both SDN and traditional network architectures,to reduce the dimensionality of the data and improve the performance of network intrusion detection.Finally,the performance evaluation is performed by testing not only the NSL-KDD dataset and the UNSW-NB 15 dataset for traditional networks but also the InSDN dataset for SDN-based networks.Experimental results show that ICOA improves the accuracy by 0.532%and 2.928%respectively compared with GWO and COA in traditional networks.In SDN networks,the accuracy of ICOA is 0.25%and 0.3%higher than COA and PSO.These findings collectively indicate that AI-integrated feature selection based on the proposed ICOA can promote network intrusion detection for both SDN and traditional architectures.
基金National Key Research and Development Program of China(Nos.2022YFB4700600 and 2022YFB4700605)National Natural Science Foundation of China(Nos.61771123 and 62171116)+1 种基金Fundamental Research Funds for the Central UniversitiesGraduate Student Innovation Fund of Donghua University,China(No.CUSF-DH-D-2022044)。
文摘Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production.
基金This research was funded by National Natural Science Foundation of China(No.62063006)Guangxi Science and Technology Major Program(No.2022AA05002)+2 种基金Key Laboratory of AI and Information Processing(Hechi University),Education Department of Guangxi Zhuang Autonomous Region(No.2022GXZDSY003)Guangxi Key Laboratory of Spatial Information and Geomatics(Guilin University of Technology)(No.21-238-21-16)Innovation Project of Guangxi Graduate Education(No.YCSW2023352).
文摘A Rapid-exploration Random Tree(RRT)autonomous detection algorithm based on the multi-guide-node deflection strategy and Karto Simultaneous Localization and Mapping(SLAM)algorithm was proposed to solve the problems of low efficiency of detecting frontier boundary points and drift distortion in the process of map building in the traditional RRT algorithm in the autonomous detection strategy of mobile robot.Firstly,an RRT global frontier boundary point detection algorithm based on the multi-guide-node deflection strategy was put forward,which introduces the reference value of guide nodes’deflection probability into the random sampling function so that the global search tree can detect frontier boundary points towards the guide nodes according to random probability.After that,a new autonomous detection algorithm for mobile robots was proposed by combining the graph optimization-based Karto SLAM algorithm with the previously improved RRT algorithm.The algorithm simulation platform based on the Gazebo platform was built.The simulation results show that compared with the traditional RRT algorithm,the proposed RRT autonomous detection algorithm can effectively reduce the time of autonomous detection,plan the length of detection trajectory under the condition of high average detection coverage,and complete the task of autonomous detection mapping more efficiently.Finally,with the help of the ROS-based mobile robot experimental platform,the performance of the proposed algorithm was verified in the real environment of different obstacles.The experimental results show that in the actual environment of simple and complex obstacles,the proposed RRT autonomous detection algorithm was superior to the traditional RRT autonomous detection algorithm in the time of detection,length of detection trajectory,and average coverage,thus improving the efficiency and accuracy of autonomous detection.
文摘Online review platforms are becoming increasingly popular,encouraging dishonest merchants and service providers to deceive customers by creating fake reviews for their goods or services.Using Sybil accounts,bot farms,and real account purchases,immoral actors demonize rivals and advertise their goods.Most academic and industry efforts have been aimed at detecting fake/fraudulent product or service evaluations for years.The primary hurdle to identifying fraudulent reviews is the lack of a reliable means to distinguish fraudulent reviews from real ones.This paper adopts a semi-supervised machine learning method to detect fake reviews on any website,among other things.Online reviews are classified using a semi-supervised approach(PU-learning)since there is a shortage of labeled data,and they are dynamic.Then,classification is performed using the machine learning techniques Support Vector Machine(SVM)and Nave Bayes.The performance of the suggested system has been compared with standard works,and experimental findings are assessed using several assessment metrics.
基金the National Natural Science Foundation of China (No.51275223)。
文摘To avoid colliding with trees during its operation,a lawn mower robot must detect the trees.Existing tree detection methods suffer from low detection accuracy(missed detection)and the lack of a lightweight model.In this study,a dataset of trees was constructed on the basis of a real lawn environment.According to the theory of channel incremental depthwise convolution and residual suppression,the Embedded-A module is proposed,which expands the depth of the feature map twice to form a residual structure to improve the lightweight degree of the model.According to residual fusion theory,the Embedded-B module is proposed,which improves the accuracy of feature-map downsampling by depthwise convolution and pooling fusion.The Embedded YOLO object detection network is formed by stacking the embedded modules and the fusion of feature maps of different resolutions.Experimental results on the testing set show that the Embedded YOLO tree detection algorithm has 84.17%and 69.91%average precision values respectively for trunk and spherical tree,and 77.04% mean average precision value.The number of convolution parameters is 1.78×10^(6),and the calculation amount is 3.85 billion float operations per second.The size of weight file is 7.11MB,and the detection speed can reach 179 frame/s.This study provides a theoretical basis for the lightweight application of the object detection algorithm based on deep learning for lawn mower robots.
基金The Deanship of Scientific Research(DSR)at King Abdulaziz University(KAU),Jeddah,Saudi Arabia has funded this project under Grant No.(G:651-135-1443).
文摘Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamlessoperation of the system. Current industrial processes are getting smarter with the emergence of Industry 4.0.Specifically, various modernized industrial processes have been equipped with quite a few sensors to collectprocess-based data to find faults arising or prevailing in processes along with monitoring the status of processes.Fault diagnosis of rotating machines serves a main role in the engineering field and industrial production. Dueto the disadvantages of existing fault, diagnosis approaches, which greatly depend on professional experienceand human knowledge, intellectual fault diagnosis based on deep learning (DL) has attracted the researcher’sinterest. DL reaches the desired fault classification and automatic feature learning. Therefore, this article designs a Gradient Optimizer Algorithm with Hybrid Deep Learning-based Failure Detection and Classification (GOAHDLFDC)in the industrial environment. The presented GOAHDL-FDC technique initially applies continuous wavelettransform (CWT) for preprocessing the actual vibrational signals of the rotating machinery. Next, the residualnetwork (ResNet18) model was exploited for the extraction of features from the vibration signals which are thenfed into theHDLmodel for automated fault detection. Finally, theGOA-based hyperparameter tuning is performedtoadjust the parameter valuesof theHDLmodel accurately.The experimental result analysis of the GOAHDL-FD Calgorithm takes place using a series of simulations and the experimentation outcomes highlight the better resultsof the GOAHDL-FDC technique under different aspects.
基金supported by the National Natural Science Foundation of China(Project No.51767018)Natural Science Foundation of Gansu Province(Project No.23JRRA836).
文摘Current methodologies for cleaning wind power anomaly data exhibit limited capabilities in identifying abnormal data within extensive datasets and struggle to accommodate the considerable variability and intricacy of wind farm data.Consequently,a method for cleaning wind power anomaly data by combining image processing with community detection algorithms(CWPAD-IPCDA)is proposed.To precisely identify and initially clean anomalous data,wind power curve(WPC)images are converted into graph structures,which employ the Louvain community recognition algorithm and graph-theoretic methods for community detection and segmentation.Furthermore,the mathematical morphology operation(MMO)determines the main part of the initially cleaned wind power curve images and maps them back to the normal wind power points to complete the final cleaning.The CWPAD-IPCDA method was applied to clean datasets from 25 wind turbines(WTs)in two wind farms in northwest China to validate its feasibility.A comparison was conducted using density-based spatial clustering of applications with noise(DBSCAN)algorithm,an improved isolation forest algorithm,and an image-based(IB)algorithm.The experimental results demonstrate that the CWPAD-IPCDA method surpasses the other three algorithms,achieving an approximately 7.23%higher average data cleaning rate.The mean value of the sum of the squared errors(SSE)of the dataset after cleaning is approximately 6.887 lower than that of the other algorithms.Moreover,the mean of overall accuracy,as measured by the F1-score,exceeds that of the other methods by approximately 10.49%;this indicates that the CWPAD-IPCDA method is more conducive to improving the accuracy and reliability of wind power curve modeling and wind farm power forecasting.
基金supported by the Institutional Fund Projects(IFPIP-1481-611-1443)the Key Projects of Natural Science Research in Anhui Higher Education Institutions(2022AH051909)+1 种基金the Provincial Quality Project of Colleges and Universities in Anhui Province(2022sdxx020,2022xqhz044)Bengbu University 2021 High-Level Scientific Research and Cultivation Project(2021pyxm04)。
文摘A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all optimization problems. A self-adapting and efficient dandelion algorithm is proposed in this work to lower the number of DA's parameters and simplify DA's structure. Only the normal sowing operator is retained;while the other operators are discarded. An adaptive seeding radius strategy is designed for the core dandelion. The results show that the proposed algorithm achieves better performance on the standard test functions with less time consumption than its competitive peers. In addition, the proposed algorithm is applied to feature selection for credit card fraud detection(CCFD), and the results indicate that it can obtain higher classification and detection performance than the-state-of-the-art methods.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2024R 343)PrincessNourah bint Abdulrahman University,Riyadh,Saudi ArabiaDeanship of Scientific Research at Northern Border University,Arar,Kingdom of Saudi Arabia,for funding this researchwork through the project number“NBU-FFR-2024-1092-02”.
文摘Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishingUniformResource Locator(URLs).Addressing these challenge,we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network(RNN)with the hyperparameter optimization prowess of theWhale Optimization Algorithm(WOA).Ourmodel capitalizes on an extensive Kaggle dataset,featuring over 11,000 URLs,each delineated by 30 attributes.The WOA’s hyperparameter optimization enhances the RNN’s performance,evidenced by a meticulous validation process.The results,encapsulated in precision,recall,and F1-score metrics,surpass baseline models,achieving an overall accuracy of 92%.This study not only demonstrates the RNN’s proficiency in learning complex patterns but also underscores the WOA’s effectiveness in refining machine learning models for the critical task of phishing detection.
基金National Key Research and Development Program of China(Nos.2022YFB4700600 and 2022YFB4700605)。
文摘In order to solve the problem of metal impurities mixed in the production line of wood pulp nonwoven raw materials,intelligent metal detection and disposal automation equipment is designed.Based on the principle of electromagnetic induction,the precise positioning of metal coordinates is realized by initial inspection and multi-directional re-inspection.Based on a geometry optimization driving algorithm,the cutting area is determined by locating the center of the circle that covers the maximum area.This approach aims to minimize the cutting area and maximize the use of materials.Additionally,the method strives to preserve as many fabrics at the edges as possible by employing the farthest edge covering circle algorithm.Based on a speed compensation algorithm,the flexible switching of upper and lower rolls is realized to ensure the maximum production efficiency.Compared with the metal detection device in the existing production line,the designed automation equipment has the advantages of higher detection sensitivity,more accurate metal coordinate positioning,smaller cutting material areas and higher production efficiency,which can make the production process more continuous,automated and intelligent.
基金supported by the Project Grant from Heilongjiang Bayi Agricultural Reclamation University,Heilongjiang,China (No.XDB201813)。
文摘High-precision methane gas detection is of great importance in industrial safety, energy production and environmental protection, etc. However, in the existing measurement techniques, the methane gas concentration information is susceptible to noise, which leads to its useful signal being drowned by noise. A fusion algorithm of variational modal decomposition(VMD) and improved wavelet threshold filtering is proposed, which is used in combination with tunable diode laser absorption spectroscopy(TDLAS) to implement a non-contact, high-resolution methane gas concentration detection. The fusion algorithm can perform noise reduction and further segmentation of the methane gas detection signal. And the simulation and experiment verify the effectiveness of the fusion algorithm, and the experimental results show that for the detection of air containing 10 ppm, 30 ppm, 60 ppm, 80 ppm, and 99 ppm methane, the errors are 12.75%, 8.18%, 3.37%, 2.46%, and 1.78%, respectively.
基金supported by Major Project of Science and Technology Research Program of Chongqing Education Commission of China(Grant No.KJZD-M201900601)China Postdoctoral Science Foundation(Grant No.2021MD703932)Project Supported by Engineering Research Center of Mobile Communications,Ministry of Education,China(Grant No.cqupt-mct-202006)。
文摘Signal detection plays an essential role in massive Multiple-Input Multiple-Output(MIMO)systems.However,existing detection methods have not yet made a good tradeoff between Bit Error Rate(BER)and computational complexity,resulting in slow convergence or high complexity.To address this issue,a low-complexity Approximate Message Passing(AMP)detection algorithm with Deep Neural Network(DNN)(denoted as AMP-DNN)is investigated in this paper.Firstly,an efficient AMP detection algorithm is derived by scalarizing the simplification of Belief Propagation(BP)algorithm.Secondly,by unfolding the obtained AMP detection algorithm,a DNN is specifically designed for the optimal performance gain.For the proposed AMP-DNN,the number of trainable parameters is only related to that of layers,regardless of modulation scheme,antenna number and matrix calculation,thus facilitating fast and stable training of the network.In addition,the AMP-DNN can detect different channels under the same distribution with only one training.The superior performance of the AMP-DNN is also verified by theoretical analysis and experiments.It is found that the proposed algorithm enables the reduction of BER without signal prior information,especially in the spatially correlated channel,and has a lower computational complexity compared with existing state-of-the-art methods.
基金supported by the National Natural Science Foundation of China(No.52188102).
文摘Anomaly Detection (AD) has been extensively adopted in industrial settings to facilitate quality control of products. It is critical to industrial production, especially to areas such as aircraft manufacturing, which require strict part qualification rates. Although being more efficient and practical, few-shot AD has not been well explored. The existing AD methods only extract features in a single frequency while defects exist in multiple frequency domains. Moreover, current methods have not fully leveraged the few-shot support samples to extract input-related normal patterns. To address these issues, we propose an industrial few-shot AD method, Feature Extender for Anomaly Detection (FEAD), which extracts normal patterns in multiple frequency domains from few-shot samples under the guidance of the input sample. Firstly, to achieve better coverage of normal patterns in the input sample, we introduce a Sample-Conditioned Transformation Module (SCTM), which transforms support features under the guidance of the input sample to obtain extra normal patterns. Secondly, to effectively distinguish and localize anomaly patterns in multiple frequency domains, we devise an Adaptive Descriptor Construction Module (ADCM) to build and select pattern descriptors in a series of frequencies adaptively. Finally, an auxiliary task for SCTM is designed to ensure the diversity of transformations and include more normal patterns into support features. Extensive experiments on two widely used industrial AD datasets (MVTec-AD and VisA) demonstrate the effectiveness of the proposed FEAD.