With the rapid advancement of visual generative models such as Generative Adversarial Networks(GANs)and stable Diffusion,the creation of highly realistic Deepfake through automated forgery has significantly progressed...With the rapid advancement of visual generative models such as Generative Adversarial Networks(GANs)and stable Diffusion,the creation of highly realistic Deepfake through automated forgery has significantly progressed.This paper examines the advancements inDeepfake detection and defense technologies,emphasizing the shift from passive detection methods to proactive digital watermarking techniques.Passive detection methods,which involve extracting features from images or videos to identify forgeries,encounter challenges such as poor performance against unknown manipulation techniques and susceptibility to counter-forensic tactics.In contrast,proactive digital watermarking techniques embed specificmarkers into images or videos,facilitating real-time detection and traceability,thereby providing a preemptive defense againstDeepfake content.We offer a comprehensive analysis of digitalwatermarking-based forensic techniques,discussing their advantages over passivemethods and highlighting four key benefits:real-time detection,embedded defense,resistance to tampering,and provision of legal evidence.Additionally,the paper identifies gaps in the literature concerning proactive forensic techniques and suggests future research directions,including cross-domain watermarking and adaptive watermarking strategies.By systematically classifying and comparing existing techniques,this review aims to contribute valuable insights for the development of more effective proactive defense strategies in Deepfake forensics.展开更多
Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of suc...Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of successful treatment and survival.However,current diagnostic methods often fail to detect tumors at an early stage or to accurately pinpoint their location within the lung tissue.Single-model deep learning technologies for lung cancer detection,while beneficial,cannot capture the full range of features present in medical imaging data,leading to incomplete or inaccurate detection.Furthermore,it may not be robust enough to handle the wide variability in medical images due to different imaging conditions,patient anatomy,and tumor characteristics.To overcome these disadvantages,dual-model or multi-model approaches can be employed.This research focuses on enhancing the detection of lung cancer by utilizing a combination of two learning models:a Convolutional Neural Network(CNN)for categorization and the You Only Look Once(YOLOv8)architecture for real-time identification and pinpointing of tumors.CNNs automatically learn to extract hierarchical features from raw image data,capturing patterns such as edges,textures,and complex structures that are crucial for identifying lung cancer.YOLOv8 incorporates multiscale feature extraction,enabling the detection of tumors of varying sizes and scales within a single image.This is particularly beneficial for identifying small or irregularly shaped tumors that may be challenging to detect.Furthermore,through the utilization of cutting-edge data augmentation methods,such as Deep Convolutional Generative Adversarial Networks(DCGAN),the suggested approach can handle the issue of limited data and boost the models’ability to learn from diverse and comprehensive datasets.The combined method not only improved accuracy and localization but also ensured efficient real-time processing,which is crucial for practical clinical applications.The CNN achieved an accuracy of 97.67%in classifying lung tissues into healthy and cancerous categories.The YOLOv8 model achieved an Intersection over Union(IoU)score of 0.85 for tumor localization,reflecting high precision in detecting and marking tumor boundaries within the images.Finally,the incorporation of synthetic images generated by DCGAN led to a 10%improvement in both the CNN classification accuracy and YOLOv8 detection performance.展开更多
Detecting sitting posture abnormalities in wheelchair users enables early identification of changes in their functional status.To date,this detection has relied on in-person observation by medical specialists.However,...Detecting sitting posture abnormalities in wheelchair users enables early identification of changes in their functional status.To date,this detection has relied on in-person observation by medical specialists.However,given the challenges faced by health specialists to carry out continuous monitoring,the development of an intelligent anomaly detection system is proposed.Unlike other authors,where they use supervised techniques,this work proposes using unsupervised techniques due to the advantages they offer.These advantages include the lack of prior labeling of data,and the detection of anomalies previously not contemplated,among others.In the present work,an individualized methodology consisting of two phases is developed:characterizing the normal sitting pattern and determining abnormal samples.An analysis has been carried out between different unsupervised techniques to study which ones are more suitable for postural diagnosis.It can be concluded,among other aspects,that the utilization of dimensionality reduction techniques leads to improved results.Moreover,the normality characterization phase is deemed necessary for enhancing the system’s learning capabilities.Additionally,employing an individualized approach to the model aids in capturing the particularities of the various pathologies present among subjects.展开更多
The rapid evolution of malware presents a critical cybersecurity challenge,rendering traditional signature-based detection methods ineffective against novel variants.This growing threat affects individuals,organizatio...The rapid evolution of malware presents a critical cybersecurity challenge,rendering traditional signature-based detection methods ineffective against novel variants.This growing threat affects individuals,organizations,and governments,highlighting the urgent need for robust malware detection mechanisms.Conventional machine learning-based approaches rely on static and dynamicmalware analysis and often struggle to detect previously unseen threats due to their dependency on predefined signatures.Although machine learning algorithms(MLAs)offer promising detection capabilities,their reliance on extensive feature engineering limits real-time applicability.Deep learning techniques mitigate this issue by automating feature extraction but may introduce computational overhead,affecting deployment efficiency.This research evaluates classical MLAs and deep learningmodels to enhance malware detection performance across diverse datasets.The proposed approach integrates a novel text and imagebased detection framework,employing an optimized Support Vector Machine(SVM)for textual data analysis and EfficientNet-B0 for image-based malware classification.Experimental analysis,conducted across multiple train-test splits over varying timescales,demonstrates 99.97%accuracy on textual datasets using SVM and 96.7%accuracy on image-based datasets with EfficientNet-B0,significantly improving zero-day malware detection.Furthermore,a comparative analysis with existing competitive techniques,such as Random Forest,XGBoost,and CNN-based(Convolutional Neural Network)classifiers,highlights the superior performance of the proposed model in terms of accuracy,efficiency,and robustness.展开更多
With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comp...With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comprise heterogeneous networks where outdated systems coexist with the latest devices,spanning a range of devices from non-encrypted ones to fully encrypted ones.Given the limited visibility into payloads in this context,this study investigates AI-based attack detection methods that leverage encrypted traffic metadata,eliminating the need for decryption and minimizing system performance degradation—especially in light of these heterogeneous devices.Using the UNSW-NB15 and CICIoT-2023 dataset,encrypted and unencrypted traffic were categorized according to security protocol,and AI-based intrusion detection experiments were conducted for each traffic type based on metadata.To mitigate the problem of class imbalance,eight different data sampling techniques were applied.The effectiveness of these sampling techniques was then comparatively analyzed using two ensemble models and three Deep Learning(DL)models from various perspectives.The experimental results confirmed that metadata-based attack detection is feasible using only encrypted traffic.In the UNSW-NB15 dataset,the f1-score of encrypted traffic was approximately 0.98,which is 4.3%higher than that of unencrypted traffic(approximately 0.94).In addition,analysis of the encrypted traffic in the CICIoT-2023 dataset using the same method showed a significantly lower f1-score of roughly 0.43,indicating that the quality of the dataset and the preprocessing approach have a substantial impact on detection performance.Furthermore,when data sampling techniques were applied to encrypted traffic,the recall in the UNSWNB15(Encrypted)dataset improved by up to 23.0%,and in the CICIoT-2023(Encrypted)dataset by 20.26%,showing a similar level of improvement.Notably,in CICIoT-2023,f1-score and Receiver Operation Characteristic-Area Under the Curve(ROC-AUC)increased by 59.0%and 55.94%,respectively.These results suggest that data sampling can have a positive effect even in encrypted environments.However,the extent of the improvement may vary depending on data quality,model architecture,and sampling strategy.展开更多
As an important guarantee for the prevention and control of animal diseases,veterinary drugs have important functions in improving animal production performance and product quality and maintaining ecological balance.T...As an important guarantee for the prevention and control of animal diseases,veterinary drugs have important functions in improving animal production performance and product quality and maintaining ecological balance.They are an important guarantee for the healthy development of animal husbandry,food safety and public health.However,the irrational use and abuse of veterinary drugs and feed pharmaceutical additives are widespread,causing harmful substances in animal foods and damage to human health,and threatening the sustainable development of the environment and animal husbandry as well.In order to ensure human health,it is urgent to develop a simple,rapid,high-sensitivity,high-throughput and low-cost veterinary drug residue detection technology.In this paper,the sample pretreatment methods and detection techniques for the analysis of veterinary drug residues in animal foods were reviewed.展开更多
In order to overcome the inconvenience of manual bubble counting, a bubble counter based on photoelectric technique aiming for automatically detecting and measuring minute gas leakage of cryogenic valves is proposed. ...In order to overcome the inconvenience of manual bubble counting, a bubble counter based on photoelectric technique aiming for automatically detecting and measuring minute gas leakage of cryogenic valves is proposed. Experiments have been conducted on a self-built apparatus, testing the performance with different gas inlet strategies (bottom gas-inlet strategy and side gas-inlet strategy) and the influence of gas pipe length (0, 1, 2, 4, 6, 8, 10 m) and leakage rate (around 10, 20, 30, 40 bubbles/min) on first bubble time and bubble rate. A buffer of 110 cm3 is inserted between leakage source and gas pipe to simulate the down- stream cavum adjacent to the valve clack. Based on analyzing the experimental data, experiential parameters have also been summarized to guide leakage detection and measurement for engineering applications. A practical system has already been suc- cessfully applied in a cryogenic testing apparatus for cryogenic valves.展开更多
Objective: To review the use of ultrasound (US) for the detection of free intraperitoneal fluid (ascites) and for the procedural guidance of the paracentesis procedure. Methods: Two clinical vignettes are presented to...Objective: To review the use of ultrasound (US) for the detection of free intraperitoneal fluid (ascites) and for the procedural guidance of the paracentesis procedure. Methods: Two clinical vignettes are presented to review the pertinent diagnostic, management and safety considerations associated with paracentesis. First, US techniques used for the identification of ascites and in the quantification of fluid pockets amenable to aspiration will be discussed. Next, the actual steps required for the performance of US-guided paracentesis will be covered. A review and analysis of the most current literature regarding US and paracentesis then follows. Conclusion: Current literature favors US-guided paracentesis over the traditional blind technique with a significant reduction in both the rate of unsuccessful aspiration of fluid and in the bleeding complications related to this procedure. Use of US for both the diagnostic and therapeutic management of ascites should be advocated as an essential skill for physicians and other health care providers caring for these patients.展开更多
Adenoma detection rate(ADR) is a key component of colonoscopy quality assessment, with a direct link between itself and future mortality from colorectal cancer. There are a number of potential factors, both modifiable...Adenoma detection rate(ADR) is a key component of colonoscopy quality assessment, with a direct link between itself and future mortality from colorectal cancer. There are a number of potential factors, both modifiable and non-modifiable that can impact upon ADR. As methods, understanding and technologies advance, so should our ability to improve ADRs, and thus, reduce colorectal cancer mortality. This article will review new technologies and techniques that improve ADR, both in terms of the endoscopes themselves and adjuncts to current systems. In particular it focuses on effective techniques and behaviours, developments in image enhancement, advancement in endoscope design and developments in accessories that may improve ADR. It also highlights the key role that continued medical education plays in improving the quality of colonoscopy and thus ADR. The review aims to present a balanced summary of the evidence currently available and does not propose to serve as a guideline.展开更多
Side-channel attacks have recently progressed into software-induced attacks.In particular,a rowhammer attack,which exploits the characteristics of dynamic random access memory(DRAM),can quickly and continuously access...Side-channel attacks have recently progressed into software-induced attacks.In particular,a rowhammer attack,which exploits the characteristics of dynamic random access memory(DRAM),can quickly and continuously access the cells as the cell density of DRAM increases,thereby generating a disturbance error affecting the neighboring cells,resulting in bit flips.Although a rowhammer attack is a highly sophisticated attack in which disturbance errors are deliberately generated into data bits,it has been reported that it can be exploited on various platforms such as mobile devices,web browsers,and virtual machines.Furthermore,there have been studies on bypassing the defense measures of DRAM manufacturers and the like to respond to rowhammer attacks.A rowhammer attack can control user access and compromise the integrity of sensitive data with attacks such as a privilege escalation and an alteration of the encryption keys.In an attempt to mitigate a rowhammer attack,various hardware-and software-based mitigation techniques are being studied,but there are limitations in that the research methods do not detect the rowhammer attack in advance,causing overhead or degradation of the system performance.Therefore,in this study,a rowhammer attack detection technique is proposed by extracting common features of rowhammer attack files through a static analysis of rowhammer attack codes.展开更多
For the first time, mass spectrometric (MS) techniques were employed to rapidly detect the pathogen Chalara fraxinea in-vitro and directly in-vivo in tissues of diseased ash trees caused by C. fraxinea, using a range ...For the first time, mass spectrometric (MS) techniques were employed to rapidly detect the pathogen Chalara fraxinea in-vitro and directly in-vivo in tissues of diseased ash trees caused by C. fraxinea, using a range of characteristic novel secondary metabolites of C. fraxinea as chemical markers for the presence of the pathogen. We have found an evident correlation between the presence and amount of these-only for C. fraxinea characteristic and novel-secondary metabolites (named chalarafraxinines) and the degree of disease of respective infected ash seedlings. As demonstrated in this work, the MS based high-throughput-screening approach constitute an alternative to the time consuming and expensive micro biological isolation procedures for detection of the pathogen C. fraxinea and furthermore, can be used to rapidly test ash genotypes for resistance / susceptibility to C. fraxinea infection.展开更多
Recognizing handwritten characters remains a critical and formidable challenge within the realm of computervision. Although considerable strides have been made in enhancing English handwritten character recognitionthr...Recognizing handwritten characters remains a critical and formidable challenge within the realm of computervision. Although considerable strides have been made in enhancing English handwritten character recognitionthrough various techniques, deciphering Arabic handwritten characters is particularly intricate. This complexityarises from the diverse array of writing styles among individuals, coupled with the various shapes that a singlecharacter can take when positioned differently within document images, rendering the task more perplexing. Inthis study, a novel segmentation method for Arabic handwritten scripts is suggested. This work aims to locatethe local minima of the vertical and diagonal word image densities to precisely identify the segmentation pointsbetween the cursive letters. The proposed method starts with pre-processing the word image without affectingits main features, then calculates the directions pixel density of the word image by scanning it vertically and fromangles 30° to 90° to count the pixel density fromall directions and address the problem of overlapping letters, whichis a commonly attitude in writing Arabic texts by many people. Local minima and thresholds are also determinedto identify the ideal segmentation area. The proposed technique is tested on samples obtained fromtwo datasets: Aself-curated image dataset and the IFN/ENIT dataset. The results demonstrate that the proposed method achievesa significant improvement in the proportions of cursive segmentation of 92.96% on our dataset, as well as 89.37%on the IFN/ENIT dataset.展开更多
The text of the Quran is principally dependent on the Arabic language.Therefore,improving the security and reliability of the Quran’s text when it is exchanged via internet networks has become one of the most difcult...The text of the Quran is principally dependent on the Arabic language.Therefore,improving the security and reliability of the Quran’s text when it is exchanged via internet networks has become one of the most difcult challenges that researchers face today.Consequently,the diacritical marks in the Holy Quran which represent Arabic vowels(i,j.s)known as the kashida(or“extended letters”)must be protected from changes.The cover text of the Quran and its watermarked text are different due to the low values of the Peak Signal to Noise Ratio(PSNR),and Normalized Cross-Correlation(NCC);thus,the location for tamper detection accuracy is low.The gap addressed in this paper to improve the security of Arabic text in the Holy Quran by using vowels with kashida.To enhance the watermarking scheme of the text of the Quran based on hybrid techniques(XOR and queuing techniques)of the purposed scheme.The methodology propose scheme consists of four phases:The rst phase is pre-processing.This is followed by the second phase where an embedding process takes place to hide the data after the vowel letters wherein if the secret bit is“1”,it inserts the kashida but does not insert the kashida if the bit is“0”.The third phase is an extraction process and the last phase is to evaluate the performance of the proposed scheme by using PSNR(for the imperceptibility),and NCC(for the security of the watermarking).Experiments were performed on three datasets of varying lengths under multiple random locations of insertion,reorder and deletion attacks.The experimental results were revealed the improvement of the NCC by 1.76%,PSNR by 9.6%compared to available current schemes.展开更多
Semantic duplicates in databases represent today an important data quality challenge which leads to bad decisions. In large databases, we sometimes find ourselves with tens of thousands of duplicates, which necessitat...Semantic duplicates in databases represent today an important data quality challenge which leads to bad decisions. In large databases, we sometimes find ourselves with tens of thousands of duplicates, which necessitates an automatic deduplication. For this, it is necessary to detect duplicates, with a fairly reliable method to find as many duplicates as possible and powerful enough to run in a reasonable time. This paper proposes and compares on real data effective duplicates detection methods for automatic deduplication of files based on names, working with French texts or English texts, and the names of people or places, in Africa or in the West. After conducting a more complete classification of semantic duplicates than the usual classifications, we introduce several methods for detecting duplicates whose average complexity observed is less than O(2n). Through a simple model, we highlight a global efficacy rate, combining precision and recall. We propose a new metric distance between records, as well as rules for automatic duplicate detection. Analyses made on a database containing real data for an administration in Central Africa, and on a known standard database containing names of restaurants in the USA, have shown better results than those of known methods, with a lesser complexity.展开更多
This paper was summarized the research status and the development tendency of post-harvest component detection and preservation techniques of Nanfeng citrus in China, also analyzed the characteristics of various techn...This paper was summarized the research status and the development tendency of post-harvest component detection and preservation techniques of Nanfeng citrus in China, also analyzed the characteristics of various techniques, and proposed the developmental direction of novel techniques for post-harvest component detection and preservation of Nanfeng citrus.展开更多
Plant diseases and pests present significant challenges to global food security, leading to substantial losses in agricultural productivity and threatening environmental sustainability. As the world’s population grow...Plant diseases and pests present significant challenges to global food security, leading to substantial losses in agricultural productivity and threatening environmental sustainability. As the world’s population grows, ensuring food availability becomes increasingly urgent. This review explores the significance of advanced plant disease detection techniques in disease and pest management for enhancing food security. Traditional plant disease detection methods often rely on visual inspection and are time-consuming and subjective. This leads to delayed interventions and ineffective control measures. However, recent advancements in remote sensing, imaging technologies, and molecular diagnostics offer powerful tools for early and precise disease detection. Big data analytics and machine learning play pivotal roles in analyzing vast and complex datasets, thus accurately identifying plant diseases and predicting disease occurrence and severity. We explore how prompt interventions employing advanced techniques enable more efficient disease control and concurrently minimize the environmental impact of conventional disease and pest management practices. Furthermore, we analyze and make future recommendations to improve the precision and sensitivity of current advanced detection techniques. We propose incorporating eco-evolutionary theories into research to enhance the understanding of pathogen spread in future climates and mitigate the risk of disease outbreaks. We highlight the need for a science-policy interface that works closely with scientists, policymakers, and relevant intergovernmental organizations to ensure coordination and collaboration among them, ultimately developing effective disease monitoring and management strategies needed for securing sustainable food production and environmental well-being.展开更多
The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making themmore intelligent and connected. However, this advancement comes with challenges related to the effectiveness...The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making themmore intelligent and connected. However, this advancement comes with challenges related to the effectiveness ofIoT devices. These devices, present in offices, homes, industries, and more, need constant monitoring to ensuretheir proper functionality. The success of smart systems relies on their seamless operation and ability to handlefaults. Sensors, crucial components of these systems, gather data and contribute to their functionality. Therefore,sensor faults can compromise the system’s reliability and undermine the trustworthiness of smart environments.To address these concerns, various techniques and algorithms can be employed to enhance the performance ofIoT devices through effective fault detection. This paper conducted a thorough review of the existing literature andconducted a detailed analysis.This analysis effectively links sensor errors with a prominent fault detection techniquecapable of addressing them. This study is innovative because it paves theway for future researchers to explore errorsthat have not yet been tackled by existing fault detection methods. Significant, the paper, also highlights essentialfactors for selecting and adopting fault detection techniques, as well as the characteristics of datasets and theircorresponding recommended techniques. Additionally, the paper presents amethodical overview of fault detectiontechniques employed in smart devices, including themetrics used for evaluation. Furthermore, the paper examinesthe body of academic work related to sensor faults and fault detection techniques within the domain. This reflectsthe growing inclination and scholarly attention of researchers and academicians toward strategies for fault detectionwithin the realm of the Internet of Things.展开更多
This paper presents a procedure of sing le gear tooth analysis for early detection and diagnosis of gear faults. The objec tive of this procedure is to develop a method for more sensitive detection of th e incipient ...This paper presents a procedure of sing le gear tooth analysis for early detection and diagnosis of gear faults. The objec tive of this procedure is to develop a method for more sensitive detection of th e incipient faults and locating the faults in the gear. The main idea of the sin gle gear tooth analysis is that the vibration signals collected with a high samp ling rate are divided into a number of segments with the same time interval. The number of signal segments is equal to that of the gear teeth. The analysis of i ndividual segments reveals more sensitively the changes of the vibration signals in both time and frequency domain caused by gear faults. In addition, the locat ion of a failed tooth can be indicated in terms of the position of the segment t hat deviates from the normal segments. An experimental investigation verified th e advantages of the single gear tooth analysis.展开更多
This study develops an Enhanced Threshold Based Energy Detection approach(ETBED)for spectrum sensing in a cognitive radio network.The threshold identification method is implemented in the received signal at the second...This study develops an Enhanced Threshold Based Energy Detection approach(ETBED)for spectrum sensing in a cognitive radio network.The threshold identification method is implemented in the received signal at the secondary user based on the square law.The proposed method is implemented with the signal transmission of multiple outputs-orthogonal frequency division multiplexing.Additionally,the proposed method is considered the dynamic detection threshold adjustments and energy identification spectrum sensing technique in cognitive radio systems.In the dynamic threshold,the signal ratio-based threshold is fixed.The threshold is computed by considering the Modified Black Widow Optimization Algorithm(MBWO).So,the proposed methodology is a combination of dynamic threshold detection and MBWO.The general threshold-based detection technique has different limitations such as the inability optimal signal threshold for determining the presence of the primary user signal.These limitations undermine the sensing accuracy of the energy identification technique.Hence,the ETBED technique is developed to enhance the energy efficiency of cognitive radio networks.The projected approach is executed and analyzed with performance and comparison analysis.The proposed method is contrasted with the conventional techniques of theWhale Optimization Algorithm(WOA)and GreyWolf Optimization(GWO).It indicated superior results,achieving a high average throughput of 2.2 Mbps and an energy efficiency of 3.8,outperforming conventional techniques.展开更多
ATM card fraud is increasing gradually with the expansion of modern technology and global communication. In the whole world, it is resulting in the loss of billions of dollars each year. Fraud detection systems have b...ATM card fraud is increasing gradually with the expansion of modern technology and global communication. In the whole world, it is resulting in the loss of billions of dollars each year. Fraud detection systems have become essential for all ATM card issuing banks to minimize their losses. The main goals are, firstly, to review alternative techniques that have been used in fraud detection and secondly compare and analyze these techniques that are already used in ATM card fraud detection. Recently different card security systems used different fraud detection techniques;these techniques are based on neural network, genetic algorithm, hidden Markov model, Bayesian network, decision tree, clustering method, support vector machine, etc. According to our survey, the most important parameters used for comparing these fraud detection systems are accuracy, speed and cost of fraud detection. This study is very useful for any ATM card provider to choose an appropriate solution for fraud detection problem and also enable us to build a hybrid approach for developing some effective algorithms which can perform properly on fraud detection mechanism.展开更多
基金supported by the National Fund Cultivation Project from China People’s Police University(Grant Number:JJPY202402)National Natural Science Foundation of China(Grant Number:62172165).
文摘With the rapid advancement of visual generative models such as Generative Adversarial Networks(GANs)and stable Diffusion,the creation of highly realistic Deepfake through automated forgery has significantly progressed.This paper examines the advancements inDeepfake detection and defense technologies,emphasizing the shift from passive detection methods to proactive digital watermarking techniques.Passive detection methods,which involve extracting features from images or videos to identify forgeries,encounter challenges such as poor performance against unknown manipulation techniques and susceptibility to counter-forensic tactics.In contrast,proactive digital watermarking techniques embed specificmarkers into images or videos,facilitating real-time detection and traceability,thereby providing a preemptive defense againstDeepfake content.We offer a comprehensive analysis of digitalwatermarking-based forensic techniques,discussing their advantages over passivemethods and highlighting four key benefits:real-time detection,embedded defense,resistance to tampering,and provision of legal evidence.Additionally,the paper identifies gaps in the literature concerning proactive forensic techniques and suggests future research directions,including cross-domain watermarking and adaptive watermarking strategies.By systematically classifying and comparing existing techniques,this review aims to contribute valuable insights for the development of more effective proactive defense strategies in Deepfake forensics.
文摘Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of successful treatment and survival.However,current diagnostic methods often fail to detect tumors at an early stage or to accurately pinpoint their location within the lung tissue.Single-model deep learning technologies for lung cancer detection,while beneficial,cannot capture the full range of features present in medical imaging data,leading to incomplete or inaccurate detection.Furthermore,it may not be robust enough to handle the wide variability in medical images due to different imaging conditions,patient anatomy,and tumor characteristics.To overcome these disadvantages,dual-model or multi-model approaches can be employed.This research focuses on enhancing the detection of lung cancer by utilizing a combination of two learning models:a Convolutional Neural Network(CNN)for categorization and the You Only Look Once(YOLOv8)architecture for real-time identification and pinpointing of tumors.CNNs automatically learn to extract hierarchical features from raw image data,capturing patterns such as edges,textures,and complex structures that are crucial for identifying lung cancer.YOLOv8 incorporates multiscale feature extraction,enabling the detection of tumors of varying sizes and scales within a single image.This is particularly beneficial for identifying small or irregularly shaped tumors that may be challenging to detect.Furthermore,through the utilization of cutting-edge data augmentation methods,such as Deep Convolutional Generative Adversarial Networks(DCGAN),the suggested approach can handle the issue of limited data and boost the models’ability to learn from diverse and comprehensive datasets.The combined method not only improved accuracy and localization but also ensured efficient real-time processing,which is crucial for practical clinical applications.The CNN achieved an accuracy of 97.67%in classifying lung tissues into healthy and cancerous categories.The YOLOv8 model achieved an Intersection over Union(IoU)score of 0.85 for tumor localization,reflecting high precision in detecting and marking tumor boundaries within the images.Finally,the incorporation of synthetic images generated by DCGAN led to a 10%improvement in both the CNN classification accuracy and YOLOv8 detection performance.
基金FEDER/Ministry of Science and Innovation-State Research Agency/Project PID2020-112667RB-I00 funded by MCIN/AEI/10.13039/501100011033the Basque Government,IT1726-22+2 种基金by the predoctoral contracts PRE_2022_2_0022 and EP_2023_1_0015 of the Basque Governmentpartially supported by the Italian MIUR,PRIN 2020 Project“COMMON-WEARS”,N.2020HCWWLP,CUP:H23C22000230005co-funding from Next Generation EU,in the context of the National Recovery and Resilience Plan,through the Italian MUR,PRIN 2022 Project”COCOWEARS”(A framework for COntinuum COmputing WEARable Systems),N.2022T2XNJE,CUP:H53D23003640006.
文摘Detecting sitting posture abnormalities in wheelchair users enables early identification of changes in their functional status.To date,this detection has relied on in-person observation by medical specialists.However,given the challenges faced by health specialists to carry out continuous monitoring,the development of an intelligent anomaly detection system is proposed.Unlike other authors,where they use supervised techniques,this work proposes using unsupervised techniques due to the advantages they offer.These advantages include the lack of prior labeling of data,and the detection of anomalies previously not contemplated,among others.In the present work,an individualized methodology consisting of two phases is developed:characterizing the normal sitting pattern and determining abnormal samples.An analysis has been carried out between different unsupervised techniques to study which ones are more suitable for postural diagnosis.It can be concluded,among other aspects,that the utilization of dimensionality reduction techniques leads to improved results.Moreover,the normality characterization phase is deemed necessary for enhancing the system’s learning capabilities.Additionally,employing an individualized approach to the model aids in capturing the particularities of the various pathologies present among subjects.
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(grant number IMSIU-DDRSP2504).
文摘The rapid evolution of malware presents a critical cybersecurity challenge,rendering traditional signature-based detection methods ineffective against novel variants.This growing threat affects individuals,organizations,and governments,highlighting the urgent need for robust malware detection mechanisms.Conventional machine learning-based approaches rely on static and dynamicmalware analysis and often struggle to detect previously unseen threats due to their dependency on predefined signatures.Although machine learning algorithms(MLAs)offer promising detection capabilities,their reliance on extensive feature engineering limits real-time applicability.Deep learning techniques mitigate this issue by automating feature extraction but may introduce computational overhead,affecting deployment efficiency.This research evaluates classical MLAs and deep learningmodels to enhance malware detection performance across diverse datasets.The proposed approach integrates a novel text and imagebased detection framework,employing an optimized Support Vector Machine(SVM)for textual data analysis and EfficientNet-B0 for image-based malware classification.Experimental analysis,conducted across multiple train-test splits over varying timescales,demonstrates 99.97%accuracy on textual datasets using SVM and 96.7%accuracy on image-based datasets with EfficientNet-B0,significantly improving zero-day malware detection.Furthermore,a comparative analysis with existing competitive techniques,such as Random Forest,XGBoost,and CNN-based(Convolutional Neural Network)classifiers,highlights the superior performance of the proposed model in terms of accuracy,efficiency,and robustness.
基金supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.RS-2023-00235509Development of security monitoring technology based network behavior against encrypted cyber threats in ICT convergence environment).
文摘With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comprise heterogeneous networks where outdated systems coexist with the latest devices,spanning a range of devices from non-encrypted ones to fully encrypted ones.Given the limited visibility into payloads in this context,this study investigates AI-based attack detection methods that leverage encrypted traffic metadata,eliminating the need for decryption and minimizing system performance degradation—especially in light of these heterogeneous devices.Using the UNSW-NB15 and CICIoT-2023 dataset,encrypted and unencrypted traffic were categorized according to security protocol,and AI-based intrusion detection experiments were conducted for each traffic type based on metadata.To mitigate the problem of class imbalance,eight different data sampling techniques were applied.The effectiveness of these sampling techniques was then comparatively analyzed using two ensemble models and three Deep Learning(DL)models from various perspectives.The experimental results confirmed that metadata-based attack detection is feasible using only encrypted traffic.In the UNSW-NB15 dataset,the f1-score of encrypted traffic was approximately 0.98,which is 4.3%higher than that of unencrypted traffic(approximately 0.94).In addition,analysis of the encrypted traffic in the CICIoT-2023 dataset using the same method showed a significantly lower f1-score of roughly 0.43,indicating that the quality of the dataset and the preprocessing approach have a substantial impact on detection performance.Furthermore,when data sampling techniques were applied to encrypted traffic,the recall in the UNSWNB15(Encrypted)dataset improved by up to 23.0%,and in the CICIoT-2023(Encrypted)dataset by 20.26%,showing a similar level of improvement.Notably,in CICIoT-2023,f1-score and Receiver Operation Characteristic-Area Under the Curve(ROC-AUC)increased by 59.0%and 55.94%,respectively.These results suggest that data sampling can have a positive effect even in encrypted environments.However,the extent of the improvement may vary depending on data quality,model architecture,and sampling strategy.
基金Supported by National Beef Industrial Technology System(CARS-38)Basic Science Research Fund(1610322018002)
文摘As an important guarantee for the prevention and control of animal diseases,veterinary drugs have important functions in improving animal production performance and product quality and maintaining ecological balance.They are an important guarantee for the healthy development of animal husbandry,food safety and public health.However,the irrational use and abuse of veterinary drugs and feed pharmaceutical additives are widespread,causing harmful substances in animal foods and damage to human health,and threatening the sustainable development of the environment and animal husbandry as well.In order to ensure human health,it is urgent to develop a simple,rapid,high-sensitivity,high-throughput and low-cost veterinary drug residue detection technology.In this paper,the sample pretreatment methods and detection techniques for the analysis of veterinary drug residues in animal foods were reviewed.
基金Project (Nos. 50776075 and 50536040) supported by the National Natural Science Foundation of China
文摘In order to overcome the inconvenience of manual bubble counting, a bubble counter based on photoelectric technique aiming for automatically detecting and measuring minute gas leakage of cryogenic valves is proposed. Experiments have been conducted on a self-built apparatus, testing the performance with different gas inlet strategies (bottom gas-inlet strategy and side gas-inlet strategy) and the influence of gas pipe length (0, 1, 2, 4, 6, 8, 10 m) and leakage rate (around 10, 20, 30, 40 bubbles/min) on first bubble time and bubble rate. A buffer of 110 cm3 is inserted between leakage source and gas pipe to simulate the down- stream cavum adjacent to the valve clack. Based on analyzing the experimental data, experiential parameters have also been summarized to guide leakage detection and measurement for engineering applications. A practical system has already been suc- cessfully applied in a cryogenic testing apparatus for cryogenic valves.
文摘Objective: To review the use of ultrasound (US) for the detection of free intraperitoneal fluid (ascites) and for the procedural guidance of the paracentesis procedure. Methods: Two clinical vignettes are presented to review the pertinent diagnostic, management and safety considerations associated with paracentesis. First, US techniques used for the identification of ascites and in the quantification of fluid pockets amenable to aspiration will be discussed. Next, the actual steps required for the performance of US-guided paracentesis will be covered. A review and analysis of the most current literature regarding US and paracentesis then follows. Conclusion: Current literature favors US-guided paracentesis over the traditional blind technique with a significant reduction in both the rate of unsuccessful aspiration of fluid and in the bleeding complications related to this procedure. Use of US for both the diagnostic and therapeutic management of ascites should be advocated as an essential skill for physicians and other health care providers caring for these patients.
文摘Adenoma detection rate(ADR) is a key component of colonoscopy quality assessment, with a direct link between itself and future mortality from colorectal cancer. There are a number of potential factors, both modifiable and non-modifiable that can impact upon ADR. As methods, understanding and technologies advance, so should our ability to improve ADRs, and thus, reduce colorectal cancer mortality. This article will review new technologies and techniques that improve ADR, both in terms of the endoscopes themselves and adjuncts to current systems. In particular it focuses on effective techniques and behaviours, developments in image enhancement, advancement in endoscope design and developments in accessories that may improve ADR. It also highlights the key role that continued medical education plays in improving the quality of colonoscopy and thus ADR. The review aims to present a balanced summary of the evidence currently available and does not propose to serve as a guideline.
基金supported by a National Research Foundation of Korea(NRF)Grant funded by the Korean government(MSIT)(No.NRF-2017R1E1A1A01075110).
文摘Side-channel attacks have recently progressed into software-induced attacks.In particular,a rowhammer attack,which exploits the characteristics of dynamic random access memory(DRAM),can quickly and continuously access the cells as the cell density of DRAM increases,thereby generating a disturbance error affecting the neighboring cells,resulting in bit flips.Although a rowhammer attack is a highly sophisticated attack in which disturbance errors are deliberately generated into data bits,it has been reported that it can be exploited on various platforms such as mobile devices,web browsers,and virtual machines.Furthermore,there have been studies on bypassing the defense measures of DRAM manufacturers and the like to respond to rowhammer attacks.A rowhammer attack can control user access and compromise the integrity of sensitive data with attacks such as a privilege escalation and an alteration of the encryption keys.In an attempt to mitigate a rowhammer attack,various hardware-and software-based mitigation techniques are being studied,but there are limitations in that the research methods do not detect the rowhammer attack in advance,causing overhead or degradation of the system performance.Therefore,in this study,a rowhammer attack detection technique is proposed by extracting common features of rowhammer attack files through a static analysis of rowhammer attack codes.
文摘For the first time, mass spectrometric (MS) techniques were employed to rapidly detect the pathogen Chalara fraxinea in-vitro and directly in-vivo in tissues of diseased ash trees caused by C. fraxinea, using a range of characteristic novel secondary metabolites of C. fraxinea as chemical markers for the presence of the pathogen. We have found an evident correlation between the presence and amount of these-only for C. fraxinea characteristic and novel-secondary metabolites (named chalarafraxinines) and the degree of disease of respective infected ash seedlings. As demonstrated in this work, the MS based high-throughput-screening approach constitute an alternative to the time consuming and expensive micro biological isolation procedures for detection of the pathogen C. fraxinea and furthermore, can be used to rapidly test ash genotypes for resistance / susceptibility to C. fraxinea infection.
文摘Recognizing handwritten characters remains a critical and formidable challenge within the realm of computervision. Although considerable strides have been made in enhancing English handwritten character recognitionthrough various techniques, deciphering Arabic handwritten characters is particularly intricate. This complexityarises from the diverse array of writing styles among individuals, coupled with the various shapes that a singlecharacter can take when positioned differently within document images, rendering the task more perplexing. Inthis study, a novel segmentation method for Arabic handwritten scripts is suggested. This work aims to locatethe local minima of the vertical and diagonal word image densities to precisely identify the segmentation pointsbetween the cursive letters. The proposed method starts with pre-processing the word image without affectingits main features, then calculates the directions pixel density of the word image by scanning it vertically and fromangles 30° to 90° to count the pixel density fromall directions and address the problem of overlapping letters, whichis a commonly attitude in writing Arabic texts by many people. Local minima and thresholds are also determinedto identify the ideal segmentation area. The proposed technique is tested on samples obtained fromtwo datasets: Aself-curated image dataset and the IFN/ENIT dataset. The results demonstrate that the proposed method achievesa significant improvement in the proportions of cursive segmentation of 92.96% on our dataset, as well as 89.37%on the IFN/ENIT dataset.
基金funded by MOHE(FRGS:R.K130000.7856.5F026),Received by Nilam Nur Amir Sjarif.
文摘The text of the Quran is principally dependent on the Arabic language.Therefore,improving the security and reliability of the Quran’s text when it is exchanged via internet networks has become one of the most difcult challenges that researchers face today.Consequently,the diacritical marks in the Holy Quran which represent Arabic vowels(i,j.s)known as the kashida(or“extended letters”)must be protected from changes.The cover text of the Quran and its watermarked text are different due to the low values of the Peak Signal to Noise Ratio(PSNR),and Normalized Cross-Correlation(NCC);thus,the location for tamper detection accuracy is low.The gap addressed in this paper to improve the security of Arabic text in the Holy Quran by using vowels with kashida.To enhance the watermarking scheme of the text of the Quran based on hybrid techniques(XOR and queuing techniques)of the purposed scheme.The methodology propose scheme consists of four phases:The rst phase is pre-processing.This is followed by the second phase where an embedding process takes place to hide the data after the vowel letters wherein if the secret bit is“1”,it inserts the kashida but does not insert the kashida if the bit is“0”.The third phase is an extraction process and the last phase is to evaluate the performance of the proposed scheme by using PSNR(for the imperceptibility),and NCC(for the security of the watermarking).Experiments were performed on three datasets of varying lengths under multiple random locations of insertion,reorder and deletion attacks.The experimental results were revealed the improvement of the NCC by 1.76%,PSNR by 9.6%compared to available current schemes.
文摘Semantic duplicates in databases represent today an important data quality challenge which leads to bad decisions. In large databases, we sometimes find ourselves with tens of thousands of duplicates, which necessitates an automatic deduplication. For this, it is necessary to detect duplicates, with a fairly reliable method to find as many duplicates as possible and powerful enough to run in a reasonable time. This paper proposes and compares on real data effective duplicates detection methods for automatic deduplication of files based on names, working with French texts or English texts, and the names of people or places, in Africa or in the West. After conducting a more complete classification of semantic duplicates than the usual classifications, we introduce several methods for detecting duplicates whose average complexity observed is less than O(2n). Through a simple model, we highlight a global efficacy rate, combining precision and recall. We propose a new metric distance between records, as well as rules for automatic duplicate detection. Analyses made on a database containing real data for an administration in Central Africa, and on a known standard database containing names of restaurants in the USA, have shown better results than those of known methods, with a lesser complexity.
基金Supported by Science and Technology Supporting Project of Science and Technology Department of Jiangxi Province(20142BBF60002)
文摘This paper was summarized the research status and the development tendency of post-harvest component detection and preservation techniques of Nanfeng citrus in China, also analyzed the characteristics of various techniques, and proposed the developmental direction of novel techniques for post-harvest component detection and preservation of Nanfeng citrus.
文摘Plant diseases and pests present significant challenges to global food security, leading to substantial losses in agricultural productivity and threatening environmental sustainability. As the world’s population grows, ensuring food availability becomes increasingly urgent. This review explores the significance of advanced plant disease detection techniques in disease and pest management for enhancing food security. Traditional plant disease detection methods often rely on visual inspection and are time-consuming and subjective. This leads to delayed interventions and ineffective control measures. However, recent advancements in remote sensing, imaging technologies, and molecular diagnostics offer powerful tools for early and precise disease detection. Big data analytics and machine learning play pivotal roles in analyzing vast and complex datasets, thus accurately identifying plant diseases and predicting disease occurrence and severity. We explore how prompt interventions employing advanced techniques enable more efficient disease control and concurrently minimize the environmental impact of conventional disease and pest management practices. Furthermore, we analyze and make future recommendations to improve the precision and sensitivity of current advanced detection techniques. We propose incorporating eco-evolutionary theories into research to enhance the understanding of pathogen spread in future climates and mitigate the risk of disease outbreaks. We highlight the need for a science-policy interface that works closely with scientists, policymakers, and relevant intergovernmental organizations to ensure coordination and collaboration among them, ultimately developing effective disease monitoring and management strategies needed for securing sustainable food production and environmental well-being.
文摘The widespread adoption of the Internet of Things (IoT) has transformed various sectors globally, making themmore intelligent and connected. However, this advancement comes with challenges related to the effectiveness ofIoT devices. These devices, present in offices, homes, industries, and more, need constant monitoring to ensuretheir proper functionality. The success of smart systems relies on their seamless operation and ability to handlefaults. Sensors, crucial components of these systems, gather data and contribute to their functionality. Therefore,sensor faults can compromise the system’s reliability and undermine the trustworthiness of smart environments.To address these concerns, various techniques and algorithms can be employed to enhance the performance ofIoT devices through effective fault detection. This paper conducted a thorough review of the existing literature andconducted a detailed analysis.This analysis effectively links sensor errors with a prominent fault detection techniquecapable of addressing them. This study is innovative because it paves theway for future researchers to explore errorsthat have not yet been tackled by existing fault detection methods. Significant, the paper, also highlights essentialfactors for selecting and adopting fault detection techniques, as well as the characteristics of datasets and theircorresponding recommended techniques. Additionally, the paper presents amethodical overview of fault detectiontechniques employed in smart devices, including themetrics used for evaluation. Furthermore, the paper examinesthe body of academic work related to sensor faults and fault detection techniques within the domain. This reflectsthe growing inclination and scholarly attention of researchers and academicians toward strategies for fault detectionwithin the realm of the Internet of Things.
文摘This paper presents a procedure of sing le gear tooth analysis for early detection and diagnosis of gear faults. The objec tive of this procedure is to develop a method for more sensitive detection of th e incipient faults and locating the faults in the gear. The main idea of the sin gle gear tooth analysis is that the vibration signals collected with a high samp ling rate are divided into a number of segments with the same time interval. The number of signal segments is equal to that of the gear teeth. The analysis of i ndividual segments reveals more sensitively the changes of the vibration signals in both time and frequency domain caused by gear faults. In addition, the locat ion of a failed tooth can be indicated in terms of the position of the segment t hat deviates from the normal segments. An experimental investigation verified th e advantages of the single gear tooth analysis.
文摘This study develops an Enhanced Threshold Based Energy Detection approach(ETBED)for spectrum sensing in a cognitive radio network.The threshold identification method is implemented in the received signal at the secondary user based on the square law.The proposed method is implemented with the signal transmission of multiple outputs-orthogonal frequency division multiplexing.Additionally,the proposed method is considered the dynamic detection threshold adjustments and energy identification spectrum sensing technique in cognitive radio systems.In the dynamic threshold,the signal ratio-based threshold is fixed.The threshold is computed by considering the Modified Black Widow Optimization Algorithm(MBWO).So,the proposed methodology is a combination of dynamic threshold detection and MBWO.The general threshold-based detection technique has different limitations such as the inability optimal signal threshold for determining the presence of the primary user signal.These limitations undermine the sensing accuracy of the energy identification technique.Hence,the ETBED technique is developed to enhance the energy efficiency of cognitive radio networks.The projected approach is executed and analyzed with performance and comparison analysis.The proposed method is contrasted with the conventional techniques of theWhale Optimization Algorithm(WOA)and GreyWolf Optimization(GWO).It indicated superior results,achieving a high average throughput of 2.2 Mbps and an energy efficiency of 3.8,outperforming conventional techniques.
文摘ATM card fraud is increasing gradually with the expansion of modern technology and global communication. In the whole world, it is resulting in the loss of billions of dollars each year. Fraud detection systems have become essential for all ATM card issuing banks to minimize their losses. The main goals are, firstly, to review alternative techniques that have been used in fraud detection and secondly compare and analyze these techniques that are already used in ATM card fraud detection. Recently different card security systems used different fraud detection techniques;these techniques are based on neural network, genetic algorithm, hidden Markov model, Bayesian network, decision tree, clustering method, support vector machine, etc. According to our survey, the most important parameters used for comparing these fraud detection systems are accuracy, speed and cost of fraud detection. This study is very useful for any ATM card provider to choose an appropriate solution for fraud detection problem and also enable us to build a hybrid approach for developing some effective algorithms which can perform properly on fraud detection mechanism.