期刊文献+
共找到10,325篇文章
< 1 2 250 >
每页显示 20 50 100
Development prospects of residual stress detection methods
1
作者 Xin LI Hanjun GAO Qiong WU 《Chinese Journal of Aeronautics》 2025年第7期601-603,共3页
In the aerospace field, residual stress directly affects the strength, fatigue life and dimensional stability of thin-walled structural components, and is a key factor to ensure flight safety and reliability. At prese... In the aerospace field, residual stress directly affects the strength, fatigue life and dimensional stability of thin-walled structural components, and is a key factor to ensure flight safety and reliability. At present, research on residual stress at home and abroad mainly focuses on the optimization of traditional detection technology, stress control of manufacturing process and service performance evaluation, among which research on residual stress detection methods mainly focuses on the improvement of the accuracy, sensitivity, reliability and other performance of existing detection methods, but it still faces many challenges such as extremely small detection range, low efficiency, large error and limited application range. 展开更多
关键词 residual stress flight safety reliability detection methods optimization traditional detection technology residual stress detection methods service performance evaluation IMPROVEMENT stress control
原文传递
A novel detection method for warhead fragment targets in optical images under dynamic strong interference environments
2
作者 Guoyi Zhang Hongxiang Zhang +4 位作者 Zhihua Shen Deren Kong Chenhao Ning Fei Shang Xiaohu Zhang 《Defence Technology(防务技术)》 2025年第1期252-270,共19页
A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,... A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing. 展开更多
关键词 Damage parameter testing Warhead fragment target detection High-speed imaging systems Dynamic strong interference disturbance suppression Variational bayesian inference Motion target detection Faint streak-like target detection
在线阅读 下载PDF
YOLO-S3DT:A Small Target Detection Model for UAV Images Based on YOLOv8
3
作者 Pengcheng Gao Zhenjiang Li 《Computers, Materials & Continua》 2025年第3期4555-4572,共18页
The application of deep learning for target detection in aerial images captured by Unmanned Aerial Vehicles(UAV)has emerged as a prominent research focus.Due to the considerable distance between UAVs and the photograp... The application of deep learning for target detection in aerial images captured by Unmanned Aerial Vehicles(UAV)has emerged as a prominent research focus.Due to the considerable distance between UAVs and the photographed objects,coupled with complex shooting environments,existing models often struggle to achieve accurate real-time target detection.In this paper,a You Only Look Once v8(YOLOv8)model is modified from four aspects:the detection head,the up-sampling module,the feature extraction module,and the parameter optimization of positive sample screening,and the YOLO-S3DT model is proposed to improve the performance of the model for detecting small targets in aerial images.Experimental results show that all detection indexes of the proposed model are significantly improved without increasing the number of model parameters and with the limited growth of computation.Moreover,this model also has the best performance compared to other detecting models,demonstrating its advancement within this category of tasks. 展开更多
关键词 Target detection UAV images detection small target detection YOLO
在线阅读 下载PDF
An Ultralytics YOLOv8-Based Approach for Road Detection in Snowy Environments in the Arctic Region of Norway 被引量:2
4
作者 Aqsa Rahim Fuqing Yuan Javad Barabady 《Computers, Materials & Continua》 2025年第6期4411-4428,共18页
In recent years,advancements in autonomous vehicle technology have accelerated,promising safer and more efficient transportation systems.However,achieving fully autonomous driving in challenging weather conditions,par... In recent years,advancements in autonomous vehicle technology have accelerated,promising safer and more efficient transportation systems.However,achieving fully autonomous driving in challenging weather conditions,particularly in snowy environments,remains a challenge.Snow-covered roads introduce unpredictable surface conditions,occlusions,and reduced visibility,that require robust and adaptive path detection algorithms.This paper presents an enhanced road detection framework for snowy environments,leveraging Simple Framework forContrastive Learning of Visual Representations(SimCLR)for Self-Supervised pretraining,hyperparameter optimization,and uncertainty-aware object detection to improve the performance of YouOnly Look Once version 8(YOLOv8).Themodel is trained and evaluated on a custom-built dataset collected from snowy roads in Tromsø,Norway,which covers a range of snow textures,illumination conditions,and road geometries.The proposed framework achieves scores in terms of mAP@50 equal to 99%and mAP@50–95 equal to 97%,demonstrating the effectiveness of YOLOv8 for real-time road detection in extreme winter conditions.The findings contribute to the safe and reliable deployment of autonomous vehicles in Arctic environments,enabling robust decision-making in hazardous weather conditions.This research lays the groundwork for more resilient perceptionmodels in self-driving systems,paving the way for the future development of intelligent and adaptive transportation networks. 展开更多
关键词 Autonomous vehicles self-driving vehicles road detection snow-covered roads YOLOv8 road detection using segmentation
在线阅读 下载PDF
Machine learning-assisted fluorescence visualization for sequential quantitative detection of aluminum and fluoride ions 被引量:2
5
作者 Qiang Zhang Xin Li +5 位作者 Long Yu Lingxiao Wang Zhiqing Wen Pengchen Su Zhenli Sun Suhua Wang 《Journal of Environmental Sciences》 2025年第3期68-78,共11页
The presence of aluminum(Al^(3+))and fluoride(F^(−))ions in the environment can be harmful to ecosystems and human health,highlighting the need for accurate and efficient monitoring.In this paper,an innovative approac... The presence of aluminum(Al^(3+))and fluoride(F^(−))ions in the environment can be harmful to ecosystems and human health,highlighting the need for accurate and efficient monitoring.In this paper,an innovative approach is presented that leverages the power of machine learning to enhance the accuracy and efficiency of fluorescence-based detection for sequential quantitative analysis of aluminum(Al^(3+))and fluoride(F^(−))ions in aqueous solutions.The proposed method involves the synthesis of sulfur-functionalized carbon dots(C-dots)as fluorescence probes,with fluorescence enhancement upon interaction with Al^(3+)ions,achieving a detection limit of 4.2 nmol/L.Subsequently,in the presence of F^(−)ions,fluorescence is quenched,with a detection limit of 47.6 nmol/L.The fingerprints of fluorescence images are extracted using a cross-platform computer vision library in Python,followed by data preprocessing.Subsequently,the fingerprint data is subjected to cluster analysis using the K-means model from machine learning,and the average Silhouette Coefficient indicates excellent model performance.Finally,a regression analysis based on the principal component analysis method is employed to achieve more precise quantitative analysis of aluminum and fluoride ions.The results demonstrate that the developed model excels in terms of accuracy and sensitivity.This groundbreaking model not only showcases exceptional performance but also addresses the urgent need for effective environmental monitoring and risk assessment,making it a valuable tool for safeguarding our ecosystems and public health. 展开更多
关键词 Machine learning Aluminum ion detection Fluorine ion detection Fluorescence probe K-means model
原文传递
Multi-scale feature fusion optical remote sensing target detection method 被引量:1
6
作者 BAI Liang DING Xuewen +1 位作者 LIU Ying CHANG Limei 《Optoelectronics Letters》 2025年第4期226-233,共8页
An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyram... An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved. 展开更多
关键词 multi scale feature fusion optical remote sensing feature map improve target detection ability optical remote sensing imagesfirstlythe target detection feature fusionto enrich semantic information spatial information
原文传递
Enhancing Fire Detection with YOLO Models:A Bayesian Hyperparameter Tuning Approach
7
作者 Van-Ha Hoang Jong Weon Lee Chun-Su Park 《Computers, Materials & Continua》 2025年第6期4097-4116,共20页
Fire can cause significant damage to the environment,economy,and human lives.If fire can be detected early,the damage can be minimized.Advances in technology,particularly in computer vision powered by deep learning,ha... Fire can cause significant damage to the environment,economy,and human lives.If fire can be detected early,the damage can be minimized.Advances in technology,particularly in computer vision powered by deep learning,have enabled automated fire detection in images and videos.Several deep learning models have been developed for object detection,including applications in fire and smoke detection.This study focuses on optimizing the training hyperparameters of YOLOv8 andYOLOv10models usingBayesianTuning(BT).Experimental results on the large-scale D-Fire dataset demonstrate that this approach enhances detection performance.Specifically,the proposed approach improves the mean average precision at an Intersection over Union(IoU)threshold of 0.5(mAP50)of the YOLOv8s,YOLOv10s,YOLOv8l,and YOLOv10lmodels by 0.26,0.21,0.84,and 0.63,respectively,compared tomodels trainedwith the default hyperparameters.The performance gains are more pronounced in larger models,YOLOv8l and YOLOv10l,than in their smaller counterparts,YOLOv8s and YOLOv10s.Furthermore,YOLOv8 models consistently outperform YOLOv10,with mAP50 improvements of 0.26 for YOLOv8s over YOLOv10s and 0.65 for YOLOv8l over YOLOv10l when trained with BT.These results establish YOLOv8 as the preferred model for fire detection applications where detection performance is prioritized. 展开更多
关键词 Fire detection smoke detection deep learning YOLO Bayesian hyperparameter tuning hyperparameter optimization Optuna
在线阅读 下载PDF
DAFPN-YOLO: An Improved UAV-Based Object Detection Algorithm Based on YOLOv8s
8
作者 Honglin Wang Yaolong Zhang Cheng Zhu 《Computers, Materials & Continua》 2025年第5期1929-1949,共21页
UAV-based object detection is rapidly expanding in both civilian and military applications,including security surveillance,disaster assessment,and border patrol.However,challenges such as small objects,occlusions,comp... UAV-based object detection is rapidly expanding in both civilian and military applications,including security surveillance,disaster assessment,and border patrol.However,challenges such as small objects,occlusions,complex backgrounds,and variable lighting persist due to the unique perspective of UAV imagery.To address these issues,this paper introduces DAFPN-YOLO,an innovative model based on YOLOv8s(You Only Look Once version 8s).Themodel strikes a balance between detection accuracy and speed while reducing parameters,making itwell-suited for multi-object detection tasks from drone perspectives.A key feature of DAFPN-YOLO is the enhanced Drone-AFPN(Adaptive Feature Pyramid Network),which adaptively fuses multi-scale features to optimize feature extraction and enhance spatial and small-object information.To leverage Drone-AFPN’smulti-scale capabilities fully,a dedicated 160×160 small-object detection head was added,significantly boosting detection accuracy for small targets.In the backbone,the C2f_Dual(Cross Stage Partial with Cross-Stage Feature Fusion Dual)module and SPPELAN(Spatial Pyramid Pooling with Enhanced LocalAttentionNetwork)modulewere integrated.These components improve feature extraction and information aggregationwhile reducing parameters and computational complexity,enhancing inference efficiency.Additionally,Shape-IoU(Shape Intersection over Union)is used as the loss function for bounding box regression,enabling more precise shape-based object matching.Experimental results on the VisDrone 2019 dataset demonstrate the effectiveness ofDAFPN-YOLO.Compared to YOLOv8s,the proposedmodel achieves a 5.4 percentage point increase inmAP@0.5,a 3.8 percentage point improvement in mAP@0.5:0.95,and a 17.2%reduction in parameter count.These results highlight DAFPN-YOLO’s advantages in UAV-based object detection,offering valuable insights for applying deep learning to UAV-specific multi-object detection tasks. 展开更多
关键词 YOLOv8 UAV-based object detection AFPN small-object detection head SPPELAN DualConv loss function
在线阅读 下载PDF
Editorial on the research topic:AI-driven fluorescence in situ hybridization test for early cancer detection
9
作者 Simon James Fong Jia-Hui Yu Li Bao 《Medical Data Mining》 2025年第1期1-3,共3页
Introduction Early cancer detection represents a critical evolution in healthcare,addressing a significant pain point in cancer treatment:the tendency for diagnoses to occur at advanced stages.Traditionally,many cance... Introduction Early cancer detection represents a critical evolution in healthcare,addressing a significant pain point in cancer treatment:the tendency for diagnoses to occur at advanced stages.Traditionally,many cancers are not identified until they have progressed to late stages,where treatment options become limited,less effective,and more costly.This late detection results in poorer prognoses,higher mortality rates,and increased healthcare costs.Without early detection tools like Fluorescence In Situ Hybridization(FISH),these challenges persist,leaving patients with fewer opportunities for successful outcomes. 展开更多
关键词 cancer detection early cancer detection ai driven fluorescence situ hybridization fluorescence situ hybri FISH healthcare costs mortality rates
暂未订购
Tree Detection in RGB Satellite Imagery Using YOLO-Based Deep Learning Models
10
作者 Irfan Abbas Robertas Damaševičius 《Computers, Materials & Continua》 2025年第10期483-502,共20页
Forests are vital ecosystems that play a crucial role in sustaining life on Earth and supporting human well-being.Traditional forest mapping and monitoring methods are often costly and limited in scope,necessitating t... Forests are vital ecosystems that play a crucial role in sustaining life on Earth and supporting human well-being.Traditional forest mapping and monitoring methods are often costly and limited in scope,necessitating the adoption of advanced,automated approaches for improved forest conservation and management.This study explores the application of deep learning-based object detection techniques for individual tree detection in RGB satellite imagery.A dataset of 3157 images was collected and divided into training(2528),validation(495),and testing(134)sets.To enhance model robustness and generalization,data augmentation was applied to the training part of the dataset.Various YOLO-based models,including YOLOv8,YOLOv9,YOLOv10,YOLOv11,and YOLOv12,were evaluated using different hyperparameters and optimization techniques,such as stochastic gradient descent(SGD)and auto-optimization.These models were assessed in terms of detection accuracy and the number of detected trees.The highest-performing model,YOLOv12m,achieved a mean average precision(mAP@50)of 0.908,mAP@50:95 of 0.581,recall of 0.851,precision of 0.852,and an F1-score of 0.847.The results demonstrate that YOLO-based object detection offers a highly efficient,scalable,and accurate solution for individual tree detection in satellite imagery,facilitating improved forest inventory,monitoring,and ecosystem management.This study underscores the potential of AI-driven tree detection to enhance environmental sustainability and support data-driven decision-making in forestry. 展开更多
关键词 Tree detection RGB satellite imagery forest monitoring precision forestry object detection remote sensing environmental surveillance forest inventory aerial imagery LIDAR AI in forestry tree segmentation
在线阅读 下载PDF
NADSA:A Novel Approach for Detection of Sinkhole Attacks Based on RPL Protocol in 6LowPAN Network
11
作者 Atena Shiranzaei Emad Alizadeh +2 位作者 Mahdi Rabbani Sajjad Bagheri Baba Ahmadi Mohsen Tajgardan 《Computers, Materials & Continua》 2025年第9期5381-5402,共22页
The sinkhole attack is one of the most damaging threats in the Internet of Things(IoT).It deceptively attracts neighboring nodes and initiates malicious activity,often disrupting the network when combined with other a... The sinkhole attack is one of the most damaging threats in the Internet of Things(IoT).It deceptively attracts neighboring nodes and initiates malicious activity,often disrupting the network when combined with other attacks.This study proposes a novel approach,named NADSA,to detect and isolate sinkhole attacks.NADSA is based on the RPL protocol and consists of two detection phases.In the first phase,the minimum possible hop count between the sender and receiver is calculated and compared with the sender’s reported hop count.The second phase utilizes the number of DIO messages to identify suspicious nodes and then applies a fuzzification process using RSSI,ETX,and distance measurements to confirm the presence of a malicious node.The proposed method is extensively simulated in highly lossy and sparse network environments with varying numbers of nodes.The results demonstrate that NADSA achieves high efficiency,with PDRs of 68%,70%,and 73%;E2EDs of 81,72,and 60 ms;TPRs of 89%,83%,and 80%;and FPRs of 24%,28%,and 33%.NADSA outperforms existing methods in challenging network conditions,where traditional approaches typically degrade in effectiveness. 展开更多
关键词 Internet of Things security RPL intrusion detection sinkhole attack detection RSSI
在线阅读 下载PDF
Intrusion Detection Model on Network Data with Deep Adaptive Multi-Layer Attention Network(DAMLAN)
12
作者 Fatma S.Alrayes Syed Umar Amin +2 位作者 Nada Ali Hakami Mohammed K.Alzaylaee Tariq Kashmeery 《Computer Modeling in Engineering & Sciences》 2025年第7期581-614,共34页
The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging at... The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging attacks,there is a demand for better techniques to improve detection reliability.This study introduces a new method,the Deep Adaptive Multi-Layer Attention Network(DAMLAN),to boost the result of intrusion detection on network data.Due to its multi-scale attention mechanisms and graph features,DAMLAN aims to address both known and unknown intrusions.The real-world NSL-KDD dataset,a popular choice among IDS researchers,is used to assess the proposed model.There are 67,343 normal samples and 58,630 intrusion attacks in the training set,12,833 normal samples,and 9711 intrusion attacks in the test set.Thus,the proposed DAMLAN method is more effective than the standard models due to the consideration of patterns by the attention layers.The experimental performance of the proposed model demonstrates that it achieves 99.26%training accuracy and 90.68%testing accuracy,with precision reaching 98.54%on the training set and 96.64%on the testing set.The recall and F1 scores again support the model with training set values of 99.90%and 99.21%and testing set values of 86.65%and 91.37%.These results provide a strong basis for the claims made regarding the model’s potential to identify intrusion attacks and affirm its relatively strong overall performance,irrespective of type.Future work would employ more attempts to extend the scalability and applicability of DAMLAN for real-time use in intrusion detection systems. 展开更多
关键词 Intrusion detection deep adaptive networks multi-layer attention DAMLAN network security anomaly detection
在线阅读 下载PDF
Determinants of high sessile serrated lesion detection:Role of faecal occult blood test and colonoscopy quality indicators
13
作者 Harry Williams Natalie R Dierick +2 位作者 Christina Lee Praka Sundaralingam Stuart N Kostalas 《World Journal of Gastrointestinal Endoscopy》 2025年第8期79-90,共12页
BACKGROUND Sessile serrated lesions(SSLs)are premalignant polyps implicated in up to 30%of colorectal cancers.Australia reports high SSL detection rates(SSL-DRs),yet with marked variability(3.1%-24%).This substantial ... BACKGROUND Sessile serrated lesions(SSLs)are premalignant polyps implicated in up to 30%of colorectal cancers.Australia reports high SSL detection rates(SSL-DRs),yet with marked variability(3.1%-24%).This substantial variation raises concerns about missed lesions and post-colonoscopy colorectal cancer.This study investigates determinants associated with SSL-DR variation in regional Australia.AIM To study how patient,clinical,and colonoscopy factors are associated with SSL detection in a regional Australian practice.We aimed to contribute high-detection data to the literature by analyzing the association of SSL detection with various determinants.METHODS This retrospective,cross-sectional analysis examined 1450 colonoscopies performed at Port Macquarie Gastroenterology during 2023.Sigmoidoscopies and repeat procedures were excluded.Multivariate logistic regression analyzed associations between SSL detection and patient demographics,clinical indications,procedural factors,and comorbidities.RESULTS The overall SSL-DR was 30.7%.Multivariate analysis identified several independent predictors:Clinical indication,bowel preparation quality,inflammatory bowel disease status,and serrated polyposis syndrome.The faecal occult blood test positive(FOBT)(+)cohort showed the highest predicted SSL detection probability(39.8%),while clinical symptoms showed the lowest(22.3%).After adjustment,SSL detection odds were 2.3 times greater among FOBT(+)patients than those with clinical symptoms(adjusted odds ratio=2.30,95%confidence interval:1.20-4.40,P=0.004).CONCLUSION SSL-DR as a quality indicator requires contextualization regarding clinical indications,bowel preparation quality,and comorbidities.There was a significantly higher prevalence of SSLs in FOBT(+)patients.Despite comprehensive adjustment,this study cannot fully explain the wide SSL-DR variation in Australia,highlighting the need for standardized detection protocols and further research to ensure optimal cancer prevention outcomes. 展开更多
关键词 Sessile serrated lesion Adenoma detection rate Faecal occult blood test Polyp detection rate DYSPLASIA COLONOSCOPY PREVALENCE
暂未订购
SSANet-Based Lightweight and Efficient Crop Disease Detection
14
作者 Hao Sun Di Cai Dae-Ki Kang 《Computers, Materials & Continua》 2025年第10期1675-1692,共18页
Accurately identifying crop pests and diseases ensures agricultural productivity and safety.Although current YOLO-based detection models offer real-time capabilities,their conventional convolutional layers involve hig... Accurately identifying crop pests and diseases ensures agricultural productivity and safety.Although current YOLO-based detection models offer real-time capabilities,their conventional convolutional layers involve high computational redundancy and a fixed receptive field,making it challenging to capture local details and global semantics in complex scenarios simultaneously.This leads to significant issues like missed detections of small targets and heightened sensitivity to background interference.To address these challenges,this paper proposes a lightweight adaptive detection network—StarSpark-AdaptiveNet(SSANet),which optimizes features through a dual-module collaborative mechanism.Specifically,the StarNet module utilizes Depthwise separable convolutions(DW-Conv)and dynamic star operations to establish multi-stage feature extraction pathways,enhancing local detail perception within a lightweight framework.Moreover,the Multi-scale Adaptive Spatial Attention Gate(MASAG)module integrates cross-layer feature fusion and dynamic weight allocation to capture multi-scale global contextual information,effectively suppressing background noise.These modules jointly form a“local enhancement-global calibration”bidirectional optimization mechanism,significantly improving the model’s adaptability to complex disease patterns.Furthermore,the proposed Scale-based Dynamic Loss(SD Loss)dynamically adjusts the weight of scale and localization losses,improving regression stability and localization accuracy,especially for small targets.Experiments on the eggplant fruit disease dataset demonstrate that SSANet achieves an mAP50 of 83.9%and a detection speed of 273.5 FPS with only 2.11 M parameters and 5.1 GFLOPs computational cost,outperforming the baseline YOLO11 model by reducing parameters by 18.1%,increasing mAP50 by 1.3%,and improving inference speed by 9.1%.Ablation studies further confirm the effectiveness and complementarity of the modules.SSANet offers a high-accuracy,low-cost solution suitable for real-time pest and disease detection in crops,facilitating edge device deployment and promoting precision agriculture. 展开更多
关键词 Crop disease detection lightweight network adaptive attention scale-based loss YOLO real-time detection
在线阅读 下载PDF
A review of concrete bridge surface defect detection based on deep learning
15
作者 LIAO Yanna HUANG Chaoyang Abdel-Hamid SOLIMAN 《Optoelectronics Letters》 2025年第9期562-576,共15页
The detection of surface defects in concrete bridges using deep learning is of significant importance for reducing operational risks,saving maintenance costs,and driving the intelligent transformation of bridge defect... The detection of surface defects in concrete bridges using deep learning is of significant importance for reducing operational risks,saving maintenance costs,and driving the intelligent transformation of bridge defect detection.In contrast to the subjective and inefficient manual visual inspection,deep learning-based algorithms for concrete defect detection exhibit remarkable advantages,emerging as a focal point in recent research.This paper comprehensively analyzes the research progress of deep learning algorithms in the field of surface defect detection in concrete bridges in recent years.It introduces the early detection methods for surface defects in concrete bridges and the development of deep learning.Subsequently,it provides an overview of deep learning-based concrete bridge surface defect detection research from three aspects:image classification,object detection,and semantic segmentation.The paper summarizes the strengths and weaknesses of existing methods and the challenges they face.Additionally,it analyzes and prospects the development trends of surface defect detection in concrete bridges. 展开更多
关键词 deep learning detection surface defects intelligent transformation manual visual inspectiondeep concrete bridges reducing operational riskssaving concrete bridge concrete defect detection
原文传递
An economical and flexible chip using surface-enhanced infrared absorption spectroscopy for pharmaceutical detection:Combining qualitative analysis and quantitative detection
16
作者 Jikai Wang Pengfei Zeng +3 位作者 Haitao Xie Suisui He Xilin Xiao Cuiyun Yu 《Journal of Pharmaceutical Analysis》 2025年第2期474-476,共3页
Infrared(IR)spectroscopy,a technique within the realm of molecular vibrational spectroscopy,furnishes distinctive chemical signatures pivotal for both structural analysis and compound identification.A notable challeng... Infrared(IR)spectroscopy,a technique within the realm of molecular vibrational spectroscopy,furnishes distinctive chemical signatures pivotal for both structural analysis and compound identification.A notable challenge emerges from the misalignment between the mid-IR light wavelength range and molecular dimensions,culminating in a constrained absorption cross-section and diminished vibrational absorption coefficients(Supplementary data). 展开更多
关键词 pharmaceutical detection quantitative detection structural analysis surface enhanced infrared absorption spectroscopy qualitative analysis chemical signatures infrared spectroscopy molecular vibrational spectroscopyfurnishes
在线阅读 下载PDF
Point-voxel dual transformer for LiDAR 3D object detection
17
作者 TONG Jigang YANG Fanhang +1 位作者 YANG Sen DU Shengzhi 《Optoelectronics Letters》 2025年第9期547-554,共8页
In this paper,a two-stage light detection and ranging(LiDAR) three-dimensional(3D) object detection framework is presented,namely point-voxel dual transformer(PV-DT3D),which is a transformer-based method.In the propos... In this paper,a two-stage light detection and ranging(LiDAR) three-dimensional(3D) object detection framework is presented,namely point-voxel dual transformer(PV-DT3D),which is a transformer-based method.In the proposed PV-DT3D,point-voxel fusion features are used for proposal refinement.Specifically,keypoints are sampled from entire point cloud scene and used to encode representative scene features via a proposal-aware voxel set abstraction module.Subsequently,following the generation of proposals by the region proposal networks(RPN),the internal encoded keypoints are fed into the dual transformer encoder-decoder architecture.In 3D object detection,the proposed PV-DT3D takes advantage of both point-wise transformer and channel-wise architecture to capture contextual information from the spatial and channel dimensions.Experiments conducted on the highly competitive KITTI 3D car detection leaderboard show that the PV-DT3D achieves superior detection accuracy among state-of-the-art point-voxel-based methods. 展开更多
关键词 proposal refinement encode representative scene features point voxel dual transformer object detection LIDAR d object detection generation proposals proposal refinementspecificallykeypoints
原文传递
DI-YOLOv5:An Improved Dual-Wavelet-Based YOLOv5 for Dense Small Object Detection
18
作者 Zi-Xin Li Yu-Long Wang Fei Wang 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期457-459,共3页
Dear Editor,This letter focuses on the fact that small objects with few pixels disappear in feature maps with large receptive fields, as the network deepens, in object detection tasks. Therefore, the detection of dens... Dear Editor,This letter focuses on the fact that small objects with few pixels disappear in feature maps with large receptive fields, as the network deepens, in object detection tasks. Therefore, the detection of dense small objects is challenging. 展开更多
关键词 small objects receptive fields feature maps detection dense small objects object detection dense objects
在线阅读 下载PDF
A Detection Algorithm for Two-Wheeled Vehicles in Complex Scenarios Based on Semi-Supervised Learning
19
作者 Mingen Zhong Kaibo Yang +4 位作者 Ziji Xiao Jiawei Tan Kang Fan Zhiying Deng Mengli Zhou 《Computers, Materials & Continua》 2025年第7期1055-1071,共17页
With the rapid urbanization and exponential population growth in China,two-wheeled vehicles have become a popular mode of transportation,particularly for short-distance travel.However,due to a lack of safety awareness... With the rapid urbanization and exponential population growth in China,two-wheeled vehicles have become a popular mode of transportation,particularly for short-distance travel.However,due to a lack of safety awareness,traffic violations by two-wheeled vehicle riders have become a widespread concern,contributing to urban traffic risks.Currently,significant human and material resources are being allocated to monitor and intercept non-compliant riders to ensure safe driving behavior.To enhance the safety,efficiency,and cost-effectiveness of traffic monitoring,automated detection systems based on image processing algorithms can be employed to identify traffic violations from eye-level video footage.In this study,we propose a robust detection algorithm specifically designed for two-wheeled vehicles,which serves as a fundamental step toward intelligent traffic monitoring.Our approach integrates a novel convolutional and attention mechanism to improve detection accuracy and efficiency.Additionally,we introduce a semi-supervised training strategy that leverages a large number of unlabeled images to enhance the model’s learning capability by extracting valuable background information.This method enables the model to generalize effectively to diverse urban environments and varying lighting conditions.We evaluate our proposed algorithm on a custom-built dataset,and experimental results demonstrate its superior performance,achieving an average precision(AP)of 95%and a recall(R)of 90.6%.Furthermore,the model maintains a computational efficiency of only 25.7 GFLOPs while achieving a high processing speed of 249 FPS,making it highly suitable for deployment on edge devices.Compared to existing detection methods,our approach significantly enhances the accuracy and robustness of two-wheeled vehicle identification while ensuring real-time performance. 展开更多
关键词 Two wheeled vehicles illegal behavior detection object detection semi supervised learning deep learning TRANSFORMER convolutional neural network
在线阅读 下载PDF
Research Progress on Detection Technologies for Pseudomonas Aeruginosa
20
作者 Yangke Wang Dong Liu +2 位作者 Junjie Liu Baojun Yu Lingzi Yang 《Asia Pacific Journal of Clinical Medical Research》 2025年第3期49-57,共9页
Pseudomonas aeruginosa is an opportunistic pathogen widely distributed in the natural environment,which can cause a variety of infections,especially in people with low immunity and high pathogenicity.In recent years,s... Pseudomonas aeruginosa is an opportunistic pathogen widely distributed in the natural environment,which can cause a variety of infections,especially in people with low immunity and high pathogenicity.In recent years,significant progress has been made in the detection technology of Pseudomonas aeruginosa,covering traditional methods,molecular biology techniques,immunological methods and automated detection systems.Traditional methods such as the national standard method and the filter membrane method are easy to operate,but have the problems of long time consuming and limited sensitivity.Molecular biological techniques(such as PCR,gene cloning)and immunological methods(such as ELISA,colloidal gold immunochromatography)have significantly improved the sensitivity and specificity of detection,but they require high equipment and technology,and are expensive.Automated detection systems,such as VITEK 2 Compact and AutoMS 1000 mass spectrometry identification system,are excellent in improving detection efficiency and accuracy,but their high cost and complex operation process limit their wide application.In addition,the resistance of Pseudomonas aeruginosa to bacteriostatic agents further increases the difficulty of detection.In this paper,the development and application of immunological detection technology,molecular biological technology and immunological technology of Pseudomonas aeruginosa were reviewed,and the principles,advantages,disadvantages and research progress of various detection technologies of Pseudomonas aeruginosa were described,and the future development trend was prospected,in order to provide reference for the optimization and development of detection methods of Pseudomonas aeruginosa. 展开更多
关键词 Pseudomonas Aeruginosa detection Technology Molecular Biology IMMUNOLOGY Automated detection
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部