森林火点检测在林火应急救援中起着至关重要的作用.鉴于现有模型在样本质量、多尺度检测以及多视角图像泛化能力方面存在不足,以YOLOv7为基础,提出一种森林火点目标检测方法FFD-YOLO(forest fire detection based on YOLO).首先,构建多...森林火点检测在林火应急救援中起着至关重要的作用.鉴于现有模型在样本质量、多尺度检测以及多视角图像泛化能力方面存在不足,以YOLOv7为基础,提出一种森林火点目标检测方法FFD-YOLO(forest fire detection based on YOLO).首先,构建多视角可见光图像森林火灾高点检测数据集FFHPV(forest fire of high point view),旨在增强模型对多视角火点知识的学习能力;其次,引入全维动态卷积,构建空间金字塔池化层(OD-SPP),以此提升模型针对多视角数据的火点特征提取能力;最后,引入具有动态非单调聚焦机制的边界框定位损失函数Wise-IoU(wise intersection over union),降低低质量数据对模型精度的影响,提高小目标火点的检测能力.实验结果表明:所提出的FFD-YOLO方法相较于YOLOv7,精度提高3.9%,召回率提高3.7%,均值平均精度提高4.0%,F1分数提高0.038;同时,在与YOLOv5、YOLOv8、DDQ(dense distinct query)、DINO(detection transformer with improved denoising anchor boxes)、Faster R-CNN、Sparse R-CNN、Mask R-CNN、FCOS和YOLOX的对比实验中,FFD-YOLO具有最高的精度75.3%、召回率73.8%、均值平均精度77.6%和F1分数0.745,验证了该方法的可行性与有效性.展开更多
文摘森林火点检测在林火应急救援中起着至关重要的作用.鉴于现有模型在样本质量、多尺度检测以及多视角图像泛化能力方面存在不足,以YOLOv7为基础,提出一种森林火点目标检测方法FFD-YOLO(forest fire detection based on YOLO).首先,构建多视角可见光图像森林火灾高点检测数据集FFHPV(forest fire of high point view),旨在增强模型对多视角火点知识的学习能力;其次,引入全维动态卷积,构建空间金字塔池化层(OD-SPP),以此提升模型针对多视角数据的火点特征提取能力;最后,引入具有动态非单调聚焦机制的边界框定位损失函数Wise-IoU(wise intersection over union),降低低质量数据对模型精度的影响,提高小目标火点的检测能力.实验结果表明:所提出的FFD-YOLO方法相较于YOLOv7,精度提高3.9%,召回率提高3.7%,均值平均精度提高4.0%,F1分数提高0.038;同时,在与YOLOv5、YOLOv8、DDQ(dense distinct query)、DINO(detection transformer with improved denoising anchor boxes)、Faster R-CNN、Sparse R-CNN、Mask R-CNN、FCOS和YOLOX的对比实验中,FFD-YOLO具有最高的精度75.3%、召回率73.8%、均值平均精度77.6%和F1分数0.745,验证了该方法的可行性与有效性.