Selective catalytic reduction(SCR) denitration may increase the emission of NH4+and NH3.The removal and transformation characteristics of ammonium sulfate aerosols and ammonia slip during the wet flue gas desulfurizat...Selective catalytic reduction(SCR) denitration may increase the emission of NH4+and NH3.The removal and transformation characteristics of ammonium sulfate aerosols and ammonia slip during the wet flue gas desulfurization(WFGD) process, as well as the effect of desulfurization parameters, were investigated in an experimental system equipped with a simulated SCR flue gas generation system and a limestone-based WFGD system.The results indicate that the ammonium sulfate aerosols and ammonia slip in the flue gas from SCR can be partly removed by slurry scrubbing, while the entrainment and evaporation of desulfurization slurry with accumulated NH4+will generate new ammoniumcontaining particles and gaseous ammonia.The ammonium-containing particles formed by desulfurization are not only derived from the entrainment of slurry droplets, but also from the re-condensation of gaseous ammonia generated by slurry evaporation.Therefore,even if the concentration of NH4+in the desulfurization slurry is quite low, a high level of NH4+was still contained in the fine particles at the outlet of the scrubber.When the accumulated NH4+in the desulfurization slurry was high enough, the WFGD system promoted the conversion of NH3 to NH4+and increased the additional emission of primary NH4+aerosols.With the decline of the liquid/gas ratio and flue gas temperature, the removal efficiency of ammonia sulfate aerosols increased, and the NH4+emitted from entrainment and evaporation of the desulfurization slurry decreased.In addition, the volatile ammonia concentration after the WFGD system was reduced with the decrease of the NH4+concentration and p H values of the slurry.展开更多
With the acceleration of industrialization,the pollution problem of sulfur dioxide(SO_(2))emitted from coal-fired power plants has become increasingly severe.Although wet flue gas desulfurization(FGD)technology can re...With the acceleration of industrialization,the pollution problem of sulfur dioxide(SO_(2))emitted from coal-fired power plants has become increasingly severe.Although wet flue gas desulfurization(FGD)technology can remove about 95%of SO_(2),its high energy consumption and the corrosion risk of downstream equipment caused by residual SO_(2)(500–3000 ppm)still need to be addressed[1].Previous porous materials(such as MOFs)achieve selective adsorption of SO_(2) through open metal sites,M–OH sites or functional organic groups,but the problem of CO_(2) co-adsorption limits their practical application[2].In recent years,hydrogen-bonded organic frameworks(HOFs)have emerged as a research hotspot due to their reversible hydrogen-bonding networks and flexible structures[3],but their stability under extreme conditions and efficient separation performance still need to be improved[4].展开更多
This paper combined with the actual case of flue gas desulfurization (FGD) system in cement Plant, analyzes the corrosion environment in each area of the FGD system, and selects appropriate anticorrosive materials for...This paper combined with the actual case of flue gas desulfurization (FGD) system in cement Plant, analyzes the corrosion environment in each area of the FGD system, and selects appropriate anticorrosive materials for different corrosion environment, so as to provide operating experience and reference for the safe, stable and efficient operation of the FGD system.展开更多
The catalytic performance of Mo supported on hierarchical alumina–silica(Si/Al = 15) with Mo loadings of 3, 6 and 15 wt% was investigated for the oxidative desulfurization(ODS) of model and real oil samples. Hierarch...The catalytic performance of Mo supported on hierarchical alumina–silica(Si/Al = 15) with Mo loadings of 3, 6 and 15 wt% was investigated for the oxidative desulfurization(ODS) of model and real oil samples. Hierarchical alumina–silica(h Al–Si) was synthesized by economical and ecofriendly silicate-1 seed-induced route using cetyltrimethylammonium bromide(CTAB) as mesoporogen. The effect of CTAB on the structure of catalyst was studied by characterization techniques. The results revealed that 6%Mo/h Al–Si had the highest sulfur removal compared to the other catalyst loadings. The effect of operating parameters was evaluated using Box–Behnken experimental design. The optimal desulfurization conditions with the 6%Mo/h Al–Si catalyst were determined at oxidation temperature of 67 ℃, oxidation time of 42 min, H2O2/S molar ratio of 8 and catalyst dosage of 0.008 g·ml^-1 for achieving a conversion of 95%. Under optimal conditions, different sulfur-containing compounds with initial concentration of 1000 ppm, Dibenzothiophene(DBT), Benzothiophene(BT) and Thiophen(Th), showed the catalytic oxidation reactivity in the order of DBT > BT>Th. According to the regeneration experiments, the 6%Mo/h Al–Si catalyst was reused 4 times with a little reduction in the performance. Also, the total sulfur content of gasoline and diesel after ODS process reached 156.6 and 4592.2 ppm, respectively.展开更多
In petroleum,mercaptan impurities generate malodorous fumes that pose risks to both human health and the environment,and leading to substandard oil quality.Lye desulfurization is a widely employed technique for elimin...In petroleum,mercaptan impurities generate malodorous fumes that pose risks to both human health and the environment,and leading to substandard oil quality.Lye desulfurization is a widely employed technique for eliminating mercaptans from oil.In traditional scrubber towers,lye and oil are poorly mixed,the desulfurization efficiency is low,and the lye consumption is high.To enhance washing efficiency,a droplet micromixer and corresponding fiber coalescence separator were developed.By optimizing the structure and operating parameters,more effective mixing and separation were achieved,and both caustic washing and desulfurization were enhanced.The proposed mixer/separator outperforms the industry standard by reducing the caustic loading by 30%and offers superior economic and engineering performances.The results of this study offer a direction for designing and optimizing a mercaptan removal unit to enhance the scrubbing effectiveness and decrease expenses to achieve more efficient and green production process.展开更多
The development of an efficient dual-function catalytic-sorption system,which seamlessly integrates reaction and separation into a single step for extractant-free systems,represents a transformative advancement in oxi...The development of an efficient dual-function catalytic-sorption system,which seamlessly integrates reaction and separation into a single step for extractant-free systems,represents a transformative advancement in oxidative desulfurization(ODS)process.In this work,we introduce a novel dualfunction amphiphilic biochar(Mo/CBC)catalyst,functionalized with MoO_(3-x)featuring abundant oxygen vacancies,for highly effective extractant-free ODS.The polarity of the biochar was precisely tailored by varying the amount of KOH,leading to the creation of amphiphilic carriers.Subsequent ball milling facilitated the successful loading of MoO_(3-x)onto the biochar surface via an impregnation-calcination route leveraging carbon reduction,resulting in the synthesis of amphiphilic Mo/CBC catalysts.The amphiphilic nature of these catalysts ensures their stable dispersion within the oil phase,while also facilitating their interaction with the oxidant H2O2 and the adsorption of sulfur-containing oxidation products.Characterization techniques,including EPR,XPS,and in situ XRD,verified the existence of abundant oxygen vacancies obtained by carbon reduction on the amphiphilic Mo/CBC catalysts,which significantly boosted their activity in an extractant-free ODs system.Remarkably,the amphiphilic Mo/CBC catalyst displayed exceptional catalytic performance,achieving a desulfurization efficiency of 99.6%in just 10 min without extraction solvent.DFT theoretical calculations further revealed that H_(2)O_(2)readily dissociates into two OH radicals on the O_(vac)-MoO_(3),overcoming a low energy barrier.This process was identified as a key contributor to the catalyst's outstanding ODS performance.Furthermore,other biochar sources,such as rice straw,bamboo,rapeseed oil cake,and walnut oil cake,were investigated to produce Mo-based amphiphilic biochar catalysts,which all showed excellent desulfurization performance.This work establishes a versatile and highly efficient dual-function catalytic-sorption system by designing amphiphilic biochar catalysts enriched with oxygen vacancies,paving the way for the development of universally applicable ODS catalysts for industrial applications.展开更多
As a pyrometallurgical process,circulating fluidized bed(CFB) roasting has good potential for application in desulfurization of high-sulfur bauxite.The gas-solid distribution and reaction during CFB roasting of high-s...As a pyrometallurgical process,circulating fluidized bed(CFB) roasting has good potential for application in desulfurization of high-sulfur bauxite.The gas-solid distribution and reaction during CFB roasting of high-sulfur bauxite were simulated using the computational particle fluid dynamics(CPFD) method.The effect of primary air flow velocity on particle velocity,particle volume distribution,furnace temperature distribution and pressure distribution were investigated.Under the condition of the same total flow of natural gas,the impact of the number of inlets on the desulfurization efficiency,atmosphere mass fraction distribution and temperature distribution in the furnace was further investigated.展开更多
Practical applications of desulfurization gypsum are limited owing to its brittleness and low strength.To overcome these challenges,researchers have developed engineered desulfurization gypsum composites(EDGCs)by inco...Practical applications of desulfurization gypsum are limited owing to its brittleness and low strength.To overcome these challenges,researchers have developed engineered desulfurization gypsum composites(EDGCs)by incorporating ultrahigh molecular weight polyethylene(UHMWPE)fiber and sulfoaluminate cement(SAC).The mix ratio was optimized using response surface methodology(RSM).Experimental testing of EDGC under compressive and tensile loads led to the creation of a regression model that investigates the influence of variables and their interactions on the material’s compressive and tensile strengths.Additionally,microscopic morphology and hydration product composition were analyzed to explore the influence mechanism.The results indicated that EDGC’s compressive strength increased by up to 38.4%owing to a decreased water-binder ratio and higher SAC content.Similarly,tensile strength increased by up to 38.6%owing to increased SAC and fiber content.Moreover,EDGC demonstrated excellent strain-hardening behavior and multiple cracking characteristics,achieving a maximum tensile strain of nearly 3%.The research findings provide valuable insights for optimizing the performance of desulfurization gypsum.展开更多
Experiments on simultaneous absorption of SO_2 and NO_X from sintering flue gas via a composite absorbent NaClO_2/NaClO were carried out. The effects of various operating parameters such as NaClO_2 concentration(ms), ...Experiments on simultaneous absorption of SO_2 and NO_X from sintering flue gas via a composite absorbent NaClO_2/NaClO were carried out. The effects of various operating parameters such as NaClO_2 concentration(ms), NaClO concentration(mp), molar ratio of NaClO_2/NaClO(M), solution temperature(TR), initial solution pH, gas flow(Vg) and inlet concentration of SO_2(CS) and NO(CN) on the removal efficiencies of SO_2 and NO were discussed. The optimal experimental conditions were determined to be initial solution pH = 6, TR=55 °C and M = 1.3 under which the average efficiencies of desulfurization and denitrification could reach99.7% and 90.8%, respectively. Moreover, according to the analysis of reaction products, it was found that adding NaClO to NaClO_2 aqueous solution is favorable for the generation of ClO_2 and Cl_2 which have significant effect on desulfurization and denitrification. Finally, engineering experiments were performed and obtained good results demonstrating that this method is practicable and promising.展开更多
In this study, the characteristics of fine particles before and after wet flue gas desulfurization(WFGD) in three coal-fired heating boilers in northern China were investigated by using a dilution-based emission sampl...In this study, the characteristics of fine particles before and after wet flue gas desulfurization(WFGD) in three coal-fired heating boilers in northern China were investigated by using a dilution-based emission sampling experimental system. The influences of the WFGD process on the mass and number concentrations as well as the chemical composition of fine particles were analyzed. The removal efficiency of desulfurization processes on particulate matter mass was 30.06%–56.25% for the three study units. The WFGD had a great influence on the size distributions of particle mass concentration and number concentration. A significant increase in the number and mass concentration of particles in the size range of 0.094–0.946 μm was observed. The watersoluble ion content accounted for a very large proportion of PM_(2.5) mass, and its proportion in PM_(2.5) increased from 28.39%–41.08% to 48.96%–61.21% after the WFGD process for the three units. The desulfurizing process also drastically increased the proportion of cation component(Ca^(2+) for unit A, Mg^(2+) for unit B, and Na+for unit C) and the proportion of SO_4^(2-) in PM_(2.5), and it increased the CE/AE values of PM_(2.5) from 0.82–0.98 to 0.93–1.27 for the three study units.展开更多
A serial of ordered meso-macroporous phosphotungstic acid(HPW) supported on SiO2 nanocomposites were successfully prepared by a homogeneous precipitation method, using monodispersed polystyrene(PS) microspheres and ca...A serial of ordered meso-macroporous phosphotungstic acid(HPW) supported on SiO2 nanocomposites were successfully prepared by a homogeneous precipitation method, using monodispersed polystyrene(PS) microspheres and cationic surfactant as structure directing agent. These nanocomposites were used as catalysts for oxidative desulfurization(ODS) of model fuel. The materials were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), N2 adsorption-desorption isothrem, X-ray diffraction(XRD), and Fourier transform infrared spectra(FTIR). The characterization results suggested that the as-prepared material possessed ordered meso-macroporous architectures with Keggin type phosphotungstic acid dispersed homogeneously in SiO2 matrix. Under the selected reaction conditions, dibenzothiophene(DBT) in model fuel can be removed within 2 h at room temperature(30 ℃). In addition, only 1.2% of efficiency lose than the fresh catalyst even after 5 cycles.展开更多
Manganese leaching during high concentration flue gas desulfurization process with semi-oxidized manganese ore was studied in this paper.It was found that there were different reaction pathways among which MnO2,Mn2O3 ...Manganese leaching during high concentration flue gas desulfurization process with semi-oxidized manganese ore was studied in this paper.It was found that there were different reaction pathways among which MnO2,Mn2O3 and MnCO3 in semi-oxidized manganese ore during flue gas desulphurization and manganese leaching.High SO2 concentration facilitated redox reaction between MnO2 and SO2,and high concentration of H2SO4 accelerated MnCO3/Mn2O3 leaching from semi-oxidized ore.Kinetics study showed that manganese leaching in flue gas desulfurization process with semi-oxidized ore was controlled by a mixed-control model,that is the surface chemical reaction and mass diffusion dominated both the oxidation of SO2 and manganese leaching process.The apparent activation energy was 13.05 k J·mol-1 and the reaction orders with respect to SO2 and H2SO4 concentration were 1.38 and 0.10,respectively.Finally,a semi-empirical rate equation based on shrinking core model was derived to describe the process.展开更多
The desulfurization of hot metal by the mono-injection of lime powder and the co-injection of lime, calcium carbide and magnesium powders is mathematically modeled. The mono-injection model is derived from the continu...The desulfurization of hot metal by the mono-injection of lime powder and the co-injection of lime, calcium carbide and magnesium powders is mathematically modeled. The mono-injection model is derived from the continuity equation and is validated using experimental results and data previously reported in the literature. The co-injection model and the rate constant of the injected mixture are determined from the molar fractions and rate constants of the individual powders. The effect of the lime content of the mixture on the desulfurization dynamics is studied and discussed.展开更多
Catalytic oxidation desulfurization(CODS)technology has shown great promise for diesel desulfurization by virtue of its low cost,mild reaction conditions,and superior desulfurization performance.Herein,a series of FeM...Catalytic oxidation desulfurization(CODS)technology has shown great promise for diesel desulfurization by virtue of its low cost,mild reaction conditions,and superior desulfurization performance.Herein,a series of FeMoO_(x)/LaTiO_(y)-z samples with diverse Fe/Mo ratios were prepared via a facile citric acid-assisted method.The impact of Fe incorporation on the dispersion and surface elemental states of Mo species,as well as oxygen species content of the synthesized FeMoO_(x)/LaTiO_(y)-z catalysts were systematically characterized using TEM,BET,UV-vis DRS,XPS,XANES,and reaction kinetics,and their CODS performances were examined for 4,6-DMDBT removal.Experimental results demonstrated that Fe/Mo ratio significantly affected the Ti−O bond strength,surface dispersion and electronic structure of Mo O_(2)species on FeMoO_(x)/LaTiO_(y)-z catalysts.FeMoO_(x)/LaTiO_(y)-2 catalyst showed outstanding cycling durability and the best CODS performance with almost 100%removal of 4,6-DMDBT from model oil within 75 min due to its proper MoO3 dispersion,optimal redox property,and the most oxygen vacancy concentration.Nevertheless,further enhancing Fe content led to the increased dispersion of Mo species,while the decrease active Mo species as well as the increase of steric effect for 4,6-DMDBT accessing to the catalytic reactive sites considerably increase the apparent activation energy of FeMoO_(x)/LaTiO_(y)-z(z>2)catalysts during the CODS process,thereby seriously suppressing their CODS performances.Moreover,Radical trapping experiments reveal that the·,generated by the activation of O_(2)at the active sites,catalytic oxidized 4,6-DMDBT to the product of 4,6-DMDBTO_(2),thereby enabling both deep desulfurization and recovery of high-value 4,6-DMDBTO_(2).These findings offer an alternative strategy to achieve ultra deep desulfurization as well as separate and recover high economic value sulfone substances from diesel.展开更多
The chemical composition of seawater affects the desulfurization of chalcopyrite in flotation.In this study,desulfurization experiments of chalcopyrite were conducted in both deionized(DI)water and seawater.The result...The chemical composition of seawater affects the desulfurization of chalcopyrite in flotation.In this study,desulfurization experiments of chalcopyrite were conducted in both deionized(DI)water and seawater.The results showed that,the copper grade of the concentrate obtained from seawater flotation decreased to 24.30%,compared to 24.60%in DI water.Concurrently,the recovery of chalcopyrite decreased from 51.39%to 38.67%,while the selectivity index(SI)also had a reduction from 2.006 to 1.798.The incorporation of ethylene diamine tetraacetic acid(EDTA),sodium silicate(SS),and sodium hexametaphosphate(SHMP)yielded an enhancement in the SI value,elevating it from 1.798 to 1.897,2.250 and 2.153,separately.It is particularly noteworthy that an excess of EDTA resulted in a SI value of merely 1.831.The mechanism of action was elucidated through analysis of surface charge measurements,X-ray photoelectron spectroscopy(XPS),Fourier transform infrared spectroscopy(FT-IR),extended Derjaguin-Landau Verwey-Overbeek(E-DLVO)theory,and density functional theory(DFT)calculations.展开更多
Desulfurization technology is rather difficult and urgently needed for carbon dioxide(CO_(2))utilization in industry.A new Cu(I)-based adsorbent was synthesized and examined for the capacity of removing carbonyl sulfi...Desulfurization technology is rather difficult and urgently needed for carbon dioxide(CO_(2))utilization in industry.A new Cu(I)-based adsorbent was synthesized and examined for the capacity of removing carbonyl sulfide(COS)from a CO_(2)stream in an effort to solve the competitive adsorption between CO_(2)and COS and to seek opportunity to advance adsorption capacity.A wide range of character-ization techniques were used to investigate the physicochemical properties of the synthesized Cu(I)adsorbent featuringπ-complexation and their correlations with the adsorption performance.Meanwhile,the first principal calculation software CP2K was used to develop an understanding of the adsorption mechanism,which can offer useful guidance for the adsorbent regeneration.The synthesized Cu(I)adsorbent,prepared by using copper citrate and citric acid on the ZSM-5(SiO_(2)/Al_(2)O_(3)=25)carrier,outperformed other adsorbents with varying formulations and carriers in adsorption capacities.Through optimization of the preparation and adsorption conditions for various adsorbents,the breakthrough adsorption capacity(Qb)for COS was further enhanced from 2.19 mg/g to 15.36 mg/g.The formed stableπ-complex bonds between COS and Cu(I),as confirmed by density func-tional theory calculations,were verified by the significant improvement in the adsorption capacity after regeneration at 600°C.The above advantages render the novel synthesized Cu(I)adsorbent a promising candidate featuring cost-effectiveness,high efficacy and good regenerability for desulfurization from a CO_(2)stream.展开更多
Development of clean desulfurization process that combines both efficient and environmentally friendly remains a significant challenge for diesel production.The photocatalytic oxidation desulfurization technology is r...Development of clean desulfurization process that combines both efficient and environmentally friendly remains a significant challenge for diesel production.The photocatalytic oxidation desulfurization technology is regarded as a promising process depending on the superior electron transfer and visible light utilization of photocatalyst.Herein,the nonstoichiometry MoO_(3-x)with outstanding photoresponse ability is prepared and modified by imidazole-based ionic liquid[C_(12)mim]Cl to upgrade electronic structure.The interface H-bonding between MoO_(3-x)and[C_(12)mim]Cl regard as electronic transfer channel and the recombination of e^(-)-h^(+)pairs is effectively inhibited with the modification of[C_(12)mim]Cl.Deep desulfurization rate of 96.6%can be reached within 60 min and the MoO_(3-x)/[C_(12)mim]Cl(MoC_(12))photocatalyst demonstrated outstanding cyclic stability within 7 cycles in an extraction coupled photocatalytic oxidation desulfurization(ECPODS)system.The study provides a new perspective on enhancing photocatalytic desulfurization through defect engineering and surface modification.展开更多
Pyrite inside bauxite could be oxidized into soluble S-containing ions by electrolysis, and thus achieving bauxite desulfurization by using filtration. However, S-containing ions in electrolyte had some corrosion effe...Pyrite inside bauxite could be oxidized into soluble S-containing ions by electrolysis, and thus achieving bauxite desulfurization by using filtration. However, S-containing ions in electrolyte had some corrosion effects on electrode, especially for anode. In this work, six kinds of traditional materials were selected as anode, and their corrosion behaviors were examined by using electrochemistry characterization. Tafel and CV curves from simulating electrolyte suggested that their corrosion potentials were in the following order: Ni﹥C﹥SS﹥Fe﹥Cu﹥Pb–Ag. As expected, the desulfurization ratio and cell voltage from bauxite electrolysis were in the following order respectively: Cu﹥Ni﹥Fe﹥SS﹥C﹥Pb–Ag and Ni﹥Fe﹥SS﹥Cu﹥C﹥Pb–Ag. Finally, Ni was proposed a kind of excellent electrode material for bauxite desulfurization from electrolysis.展开更多
Kinetics of hot metal desulfurization were studied using CaO-SiO2-Al2O3-Na2O-TiO2 slag in the range of 1400-1500℃on a laboratory scale.The results of kinetic experiments indicate that the desulfurization rate increas...Kinetics of hot metal desulfurization were studied using CaO-SiO2-Al2O3-Na2O-TiO2 slag in the range of 1400-1500℃on a laboratory scale.The results of kinetic experiments indicate that the desulfurization rate increases as the temperature,Al2O3 content,Na2O content,and TiO2 content increase and basicity increases from 1.01 to 1.75,but decreases when basicity increases from 1.75 to 2.02.The melting effect of slag is promoted as the temperature,Na2O content,and TiO2 content increase and Al2O3 content increases from 12.13 to 17.17 mass%,but worsened as basicity increases and Al2O3 content increases from 17.17 to 22.27 mass%.A kinetic model of hot metal desulfurization has been developed to calculate the mass transfer coefficient and the mass transfer resistance of sulfur in slag.The mass transfer coefficient of sulfur increases as the temperature,Al2O3 content,Na2O content,and TiO2 content increase and basicity decreases.Total mass transfer coefficients of sulfur were in the range of(5.02-23.78)×10^-7 m s^-1.The activation energy was estimated to be 464.06 kJ mo1^-1 at the temperature from 1400 to 1450℃and 176.35 kJ mol-1 at the temperature from 1450 to 1500℃.The sulfur distribution at the slag-metal interface was observed using a mineral liberation analyzer.The result shows that the mass transfer of sulfur in slag is the controlling step at high temperature during the desulfurization process.展开更多
Absorptive separation for resource utilization by selective SO2 removal from flue gas is a potential method applicable in practice. A flue gas desulfurization process for SO2 utilization by selective absorption in a l...Absorptive separation for resource utilization by selective SO2 removal from flue gas is a potential method applicable in practice. A flue gas desulfurization process for SO2 utilization by selective absorption in a lab-scale absorption tower at atmospheric pressure using N-formylmorpholine (NFM) as the absorbent is developed to capture and concentrate the SO2 from flue gas, in which the CO2 content is several orders higher than that of SO2. The investigation of the effects of different operating conditions on the SO2 removal efficiency shows that the SO2 removal efficiency can be obviously enhanced by increasing NFM concentration, or decreasing the absorption temperature, the superficial gas velocity, the gas-liquid ratio, or the SO2 concentration in absorption solution. Under the optimum operating conditions (covering a temperature of 40 °C, a superficial gas velocity of <0.0165 m/s, a gas-liquid ratio of 200—250, a SO2 concentration in lean NFM solution of 0—10 mg/L, and a NFM concentration of 3 mol/L), the SO2 removal rate reaches over 99.5% while the absorption of CO2 is negligible. Similarly, the SO2 removal rate is as high as 99.5% obtained in consecutive absorption-desorption cycles. Desorption experiment results indicate that the absorption of sulfur dioxide is completely reversible and the release of SO2 from NFM is very easy and rapid at 104 °C. The absorption simulation result for desulfurization of flue gas vented from the industrial catalytic cracking regenerator shows that 98.0% of SO2 can be absorbed in the absorber and most of them are released in the desorber. The experimental and simulated results show that the desulfurization ability and regenerability of NFM solution is encouraging for the development of FGD process to capture the SO2 from flue gas.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51576039 and 51576039).
文摘Selective catalytic reduction(SCR) denitration may increase the emission of NH4+and NH3.The removal and transformation characteristics of ammonium sulfate aerosols and ammonia slip during the wet flue gas desulfurization(WFGD) process, as well as the effect of desulfurization parameters, were investigated in an experimental system equipped with a simulated SCR flue gas generation system and a limestone-based WFGD system.The results indicate that the ammonium sulfate aerosols and ammonia slip in the flue gas from SCR can be partly removed by slurry scrubbing, while the entrainment and evaporation of desulfurization slurry with accumulated NH4+will generate new ammoniumcontaining particles and gaseous ammonia.The ammonium-containing particles formed by desulfurization are not only derived from the entrainment of slurry droplets, but also from the re-condensation of gaseous ammonia generated by slurry evaporation.Therefore,even if the concentration of NH4+in the desulfurization slurry is quite low, a high level of NH4+was still contained in the fine particles at the outlet of the scrubber.When the accumulated NH4+in the desulfurization slurry was high enough, the WFGD system promoted the conversion of NH3 to NH4+and increased the additional emission of primary NH4+aerosols.With the decline of the liquid/gas ratio and flue gas temperature, the removal efficiency of ammonia sulfate aerosols increased, and the NH4+emitted from entrainment and evaporation of the desulfurization slurry decreased.In addition, the volatile ammonia concentration after the WFGD system was reduced with the decrease of the NH4+concentration and p H values of the slurry.
基金the support of the National Natural Science Foundation of China(Nos.22205207 and 22378369).
文摘With the acceleration of industrialization,the pollution problem of sulfur dioxide(SO_(2))emitted from coal-fired power plants has become increasingly severe.Although wet flue gas desulfurization(FGD)technology can remove about 95%of SO_(2),its high energy consumption and the corrosion risk of downstream equipment caused by residual SO_(2)(500–3000 ppm)still need to be addressed[1].Previous porous materials(such as MOFs)achieve selective adsorption of SO_(2) through open metal sites,M–OH sites or functional organic groups,but the problem of CO_(2) co-adsorption limits their practical application[2].In recent years,hydrogen-bonded organic frameworks(HOFs)have emerged as a research hotspot due to their reversible hydrogen-bonding networks and flexible structures[3],but their stability under extreme conditions and efficient separation performance still need to be improved[4].
文摘This paper combined with the actual case of flue gas desulfurization (FGD) system in cement Plant, analyzes the corrosion environment in each area of the FGD system, and selects appropriate anticorrosive materials for different corrosion environment, so as to provide operating experience and reference for the safe, stable and efficient operation of the FGD system.
文摘The catalytic performance of Mo supported on hierarchical alumina–silica(Si/Al = 15) with Mo loadings of 3, 6 and 15 wt% was investigated for the oxidative desulfurization(ODS) of model and real oil samples. Hierarchical alumina–silica(h Al–Si) was synthesized by economical and ecofriendly silicate-1 seed-induced route using cetyltrimethylammonium bromide(CTAB) as mesoporogen. The effect of CTAB on the structure of catalyst was studied by characterization techniques. The results revealed that 6%Mo/h Al–Si had the highest sulfur removal compared to the other catalyst loadings. The effect of operating parameters was evaluated using Box–Behnken experimental design. The optimal desulfurization conditions with the 6%Mo/h Al–Si catalyst were determined at oxidation temperature of 67 ℃, oxidation time of 42 min, H2O2/S molar ratio of 8 and catalyst dosage of 0.008 g·ml^-1 for achieving a conversion of 95%. Under optimal conditions, different sulfur-containing compounds with initial concentration of 1000 ppm, Dibenzothiophene(DBT), Benzothiophene(BT) and Thiophen(Th), showed the catalytic oxidation reactivity in the order of DBT > BT>Th. According to the regeneration experiments, the 6%Mo/h Al–Si catalyst was reused 4 times with a little reduction in the performance. Also, the total sulfur content of gasoline and diesel after ODS process reached 156.6 and 4592.2 ppm, respectively.
基金supported by the National Natural Science Foundation of China(52025103)the Xplorer Prize(XPLORER-2022-1034).
文摘In petroleum,mercaptan impurities generate malodorous fumes that pose risks to both human health and the environment,and leading to substandard oil quality.Lye desulfurization is a widely employed technique for eliminating mercaptans from oil.In traditional scrubber towers,lye and oil are poorly mixed,the desulfurization efficiency is low,and the lye consumption is high.To enhance washing efficiency,a droplet micromixer and corresponding fiber coalescence separator were developed.By optimizing the structure and operating parameters,more effective mixing and separation were achieved,and both caustic washing and desulfurization were enhanced.The proposed mixer/separator outperforms the industry standard by reducing the caustic loading by 30%and offers superior economic and engineering performances.The results of this study offer a direction for designing and optimizing a mercaptan removal unit to enhance the scrubbing effectiveness and decrease expenses to achieve more efficient and green production process.
基金supported by the National Natural Science Foundation of China(22162008)the Science and Technology Supporting Project of Guizhou Province([2022]208)+1 种基金the Guizhou Province Local Government Overseas Study Programthe open project of Guizhou Provincial Double Carbon and Renewable Energy Technology Innovation Research Institute.
文摘The development of an efficient dual-function catalytic-sorption system,which seamlessly integrates reaction and separation into a single step for extractant-free systems,represents a transformative advancement in oxidative desulfurization(ODS)process.In this work,we introduce a novel dualfunction amphiphilic biochar(Mo/CBC)catalyst,functionalized with MoO_(3-x)featuring abundant oxygen vacancies,for highly effective extractant-free ODS.The polarity of the biochar was precisely tailored by varying the amount of KOH,leading to the creation of amphiphilic carriers.Subsequent ball milling facilitated the successful loading of MoO_(3-x)onto the biochar surface via an impregnation-calcination route leveraging carbon reduction,resulting in the synthesis of amphiphilic Mo/CBC catalysts.The amphiphilic nature of these catalysts ensures their stable dispersion within the oil phase,while also facilitating their interaction with the oxidant H2O2 and the adsorption of sulfur-containing oxidation products.Characterization techniques,including EPR,XPS,and in situ XRD,verified the existence of abundant oxygen vacancies obtained by carbon reduction on the amphiphilic Mo/CBC catalysts,which significantly boosted their activity in an extractant-free ODs system.Remarkably,the amphiphilic Mo/CBC catalyst displayed exceptional catalytic performance,achieving a desulfurization efficiency of 99.6%in just 10 min without extraction solvent.DFT theoretical calculations further revealed that H_(2)O_(2)readily dissociates into two OH radicals on the O_(vac)-MoO_(3),overcoming a low energy barrier.This process was identified as a key contributor to the catalyst's outstanding ODS performance.Furthermore,other biochar sources,such as rice straw,bamboo,rapeseed oil cake,and walnut oil cake,were investigated to produce Mo-based amphiphilic biochar catalysts,which all showed excellent desulfurization performance.This work establishes a versatile and highly efficient dual-function catalytic-sorption system by designing amphiphilic biochar catalysts enriched with oxygen vacancies,paving the way for the development of universally applicable ODS catalysts for industrial applications.
基金supported by the National Key Research and Development Program of China(2022YFC2904400)Guangxi Science and Technology Major Project(Gui Ke AA23023033)。
文摘As a pyrometallurgical process,circulating fluidized bed(CFB) roasting has good potential for application in desulfurization of high-sulfur bauxite.The gas-solid distribution and reaction during CFB roasting of high-sulfur bauxite were simulated using the computational particle fluid dynamics(CPFD) method.The effect of primary air flow velocity on particle velocity,particle volume distribution,furnace temperature distribution and pressure distribution were investigated.Under the condition of the same total flow of natural gas,the impact of the number of inlets on the desulfurization efficiency,atmosphere mass fraction distribution and temperature distribution in the furnace was further investigated.
基金The National Natural Science Foundation of China(No.51978504).
文摘Practical applications of desulfurization gypsum are limited owing to its brittleness and low strength.To overcome these challenges,researchers have developed engineered desulfurization gypsum composites(EDGCs)by incorporating ultrahigh molecular weight polyethylene(UHMWPE)fiber and sulfoaluminate cement(SAC).The mix ratio was optimized using response surface methodology(RSM).Experimental testing of EDGC under compressive and tensile loads led to the creation of a regression model that investigates the influence of variables and their interactions on the material’s compressive and tensile strengths.Additionally,microscopic morphology and hydration product composition were analyzed to explore the influence mechanism.The results indicated that EDGC’s compressive strength increased by up to 38.4%owing to a decreased water-binder ratio and higher SAC content.Similarly,tensile strength increased by up to 38.6%owing to increased SAC and fiber content.Moreover,EDGC demonstrated excellent strain-hardening behavior and multiple cracking characteristics,achieving a maximum tensile strain of nearly 3%.The research findings provide valuable insights for optimizing the performance of desulfurization gypsum.
基金Supported by the National Science Foundation of China for Distinguished Young Scholars(No.51325601)Major Program of National Science Foundation of China(No.51390492)Joint Funds of National Science Foundation of China(No.U1560205)
文摘Experiments on simultaneous absorption of SO_2 and NO_X from sintering flue gas via a composite absorbent NaClO_2/NaClO were carried out. The effects of various operating parameters such as NaClO_2 concentration(ms), NaClO concentration(mp), molar ratio of NaClO_2/NaClO(M), solution temperature(TR), initial solution pH, gas flow(Vg) and inlet concentration of SO_2(CS) and NO(CN) on the removal efficiencies of SO_2 and NO were discussed. The optimal experimental conditions were determined to be initial solution pH = 6, TR=55 °C and M = 1.3 under which the average efficiencies of desulfurization and denitrification could reach99.7% and 90.8%, respectively. Moreover, according to the analysis of reaction products, it was found that adding NaClO to NaClO_2 aqueous solution is favorable for the generation of ClO_2 and Cl_2 which have significant effect on desulfurization and denitrification. Finally, engineering experiments were performed and obtained good results demonstrating that this method is practicable and promising.
基金supported by the National Key R&D Program of China(No.2017YFC0209905)the National Natural Science Foundation of China(Nos.91544232&51638001)+2 种基金the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(Nos.2013BAC17B01,2014BAC23B00)the Ministry of Environmental Protection Special Funds for Scientific Research on Public Causes(No.201409006)the fund support from Beijing Municipal Commission of Science and Technology(Nos.D161100004416001,Z161100004516013)
文摘In this study, the characteristics of fine particles before and after wet flue gas desulfurization(WFGD) in three coal-fired heating boilers in northern China were investigated by using a dilution-based emission sampling experimental system. The influences of the WFGD process on the mass and number concentrations as well as the chemical composition of fine particles were analyzed. The removal efficiency of desulfurization processes on particulate matter mass was 30.06%–56.25% for the three study units. The WFGD had a great influence on the size distributions of particle mass concentration and number concentration. A significant increase in the number and mass concentration of particles in the size range of 0.094–0.946 μm was observed. The watersoluble ion content accounted for a very large proportion of PM_(2.5) mass, and its proportion in PM_(2.5) increased from 28.39%–41.08% to 48.96%–61.21% after the WFGD process for the three units. The desulfurizing process also drastically increased the proportion of cation component(Ca^(2+) for unit A, Mg^(2+) for unit B, and Na+for unit C) and the proportion of SO_4^(2-) in PM_(2.5), and it increased the CE/AE values of PM_(2.5) from 0.82–0.98 to 0.93–1.27 for the three study units.
基金Supported by the National Nature Science Foundation of China(No.21476177)
文摘A serial of ordered meso-macroporous phosphotungstic acid(HPW) supported on SiO2 nanocomposites were successfully prepared by a homogeneous precipitation method, using monodispersed polystyrene(PS) microspheres and cationic surfactant as structure directing agent. These nanocomposites were used as catalysts for oxidative desulfurization(ODS) of model fuel. The materials were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), N2 adsorption-desorption isothrem, X-ray diffraction(XRD), and Fourier transform infrared spectra(FTIR). The characterization results suggested that the as-prepared material possessed ordered meso-macroporous architectures with Keggin type phosphotungstic acid dispersed homogeneously in SiO2 matrix. Under the selected reaction conditions, dibenzothiophene(DBT) in model fuel can be removed within 2 h at room temperature(30 ℃). In addition, only 1.2% of efficiency lose than the fresh catalyst even after 5 cycles.
基金the funding support by National Key Research and Development Program of China(No.2018YFC0213405).
文摘Manganese leaching during high concentration flue gas desulfurization process with semi-oxidized manganese ore was studied in this paper.It was found that there were different reaction pathways among which MnO2,Mn2O3 and MnCO3 in semi-oxidized manganese ore during flue gas desulphurization and manganese leaching.High SO2 concentration facilitated redox reaction between MnO2 and SO2,and high concentration of H2SO4 accelerated MnCO3/Mn2O3 leaching from semi-oxidized ore.Kinetics study showed that manganese leaching in flue gas desulfurization process with semi-oxidized ore was controlled by a mixed-control model,that is the surface chemical reaction and mass diffusion dominated both the oxidation of SO2 and manganese leaching process.The apparent activation energy was 13.05 k J·mol-1 and the reaction orders with respect to SO2 and H2SO4 concentration were 1.38 and 0.10,respectively.Finally,a semi-empirical rate equation based on shrinking core model was derived to describe the process.
文摘The desulfurization of hot metal by the mono-injection of lime powder and the co-injection of lime, calcium carbide and magnesium powders is mathematically modeled. The mono-injection model is derived from the continuity equation and is validated using experimental results and data previously reported in the literature. The co-injection model and the rate constant of the injected mixture are determined from the molar fractions and rate constants of the individual powders. The effect of the lime content of the mixture on the desulfurization dynamics is studied and discussed.
基金supported by the Natural Science Foundation of Guangdong Province(2024A1515010908,2025A1515011103)Opening Project of Hubei Key Laboratory of Plasma Chemistry and Advanced Materials(2024P11)+2 种基金Postdoctoral Fellowship Program of CPSF(GZC20233104)National Natural Science Foundation of China(22202087)Opening Project of Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing&Finishing(STRZ202418)。
文摘Catalytic oxidation desulfurization(CODS)technology has shown great promise for diesel desulfurization by virtue of its low cost,mild reaction conditions,and superior desulfurization performance.Herein,a series of FeMoO_(x)/LaTiO_(y)-z samples with diverse Fe/Mo ratios were prepared via a facile citric acid-assisted method.The impact of Fe incorporation on the dispersion and surface elemental states of Mo species,as well as oxygen species content of the synthesized FeMoO_(x)/LaTiO_(y)-z catalysts were systematically characterized using TEM,BET,UV-vis DRS,XPS,XANES,and reaction kinetics,and their CODS performances were examined for 4,6-DMDBT removal.Experimental results demonstrated that Fe/Mo ratio significantly affected the Ti−O bond strength,surface dispersion and electronic structure of Mo O_(2)species on FeMoO_(x)/LaTiO_(y)-z catalysts.FeMoO_(x)/LaTiO_(y)-2 catalyst showed outstanding cycling durability and the best CODS performance with almost 100%removal of 4,6-DMDBT from model oil within 75 min due to its proper MoO3 dispersion,optimal redox property,and the most oxygen vacancy concentration.Nevertheless,further enhancing Fe content led to the increased dispersion of Mo species,while the decrease active Mo species as well as the increase of steric effect for 4,6-DMDBT accessing to the catalytic reactive sites considerably increase the apparent activation energy of FeMoO_(x)/LaTiO_(y)-z(z>2)catalysts during the CODS process,thereby seriously suppressing their CODS performances.Moreover,Radical trapping experiments reveal that the·,generated by the activation of O_(2)at the active sites,catalytic oxidized 4,6-DMDBT to the product of 4,6-DMDBTO_(2),thereby enabling both deep desulfurization and recovery of high-value 4,6-DMDBTO_(2).These findings offer an alternative strategy to achieve ultra deep desulfurization as well as separate and recover high economic value sulfone substances from diesel.
基金Project(52174239)supported by the National Natural Science Foundation of ChinaProject(2021YFC2902400)supported by the National Key R&D Program of China。
文摘The chemical composition of seawater affects the desulfurization of chalcopyrite in flotation.In this study,desulfurization experiments of chalcopyrite were conducted in both deionized(DI)water and seawater.The results showed that,the copper grade of the concentrate obtained from seawater flotation decreased to 24.30%,compared to 24.60%in DI water.Concurrently,the recovery of chalcopyrite decreased from 51.39%to 38.67%,while the selectivity index(SI)also had a reduction from 2.006 to 1.798.The incorporation of ethylene diamine tetraacetic acid(EDTA),sodium silicate(SS),and sodium hexametaphosphate(SHMP)yielded an enhancement in the SI value,elevating it from 1.798 to 1.897,2.250 and 2.153,separately.It is particularly noteworthy that an excess of EDTA resulted in a SI value of merely 1.831.The mechanism of action was elucidated through analysis of surface charge measurements,X-ray photoelectron spectroscopy(XPS),Fourier transform infrared spectroscopy(FT-IR),extended Derjaguin-Landau Verwey-Overbeek(E-DLVO)theory,and density functional theory(DFT)calculations.
基金supported by the National Key Research and Development Program of China(2022YFA1504402)National Energy R&D Center of Petroleum Refining Technology(RIPP,SINOPEC)+2 种基金the National Natural Science Foundation of China(22472016 and U23B20169)Key R&D Program of Ningbo(No.2023Z144)the Fundamental Research Funds for the Central Universities(DUT22LAB601).
文摘Desulfurization technology is rather difficult and urgently needed for carbon dioxide(CO_(2))utilization in industry.A new Cu(I)-based adsorbent was synthesized and examined for the capacity of removing carbonyl sulfide(COS)from a CO_(2)stream in an effort to solve the competitive adsorption between CO_(2)and COS and to seek opportunity to advance adsorption capacity.A wide range of character-ization techniques were used to investigate the physicochemical properties of the synthesized Cu(I)adsorbent featuringπ-complexation and their correlations with the adsorption performance.Meanwhile,the first principal calculation software CP2K was used to develop an understanding of the adsorption mechanism,which can offer useful guidance for the adsorbent regeneration.The synthesized Cu(I)adsorbent,prepared by using copper citrate and citric acid on the ZSM-5(SiO_(2)/Al_(2)O_(3)=25)carrier,outperformed other adsorbents with varying formulations and carriers in adsorption capacities.Through optimization of the preparation and adsorption conditions for various adsorbents,the breakthrough adsorption capacity(Qb)for COS was further enhanced from 2.19 mg/g to 15.36 mg/g.The formed stableπ-complex bonds between COS and Cu(I),as confirmed by density func-tional theory calculations,were verified by the significant improvement in the adsorption capacity after regeneration at 600°C.The above advantages render the novel synthesized Cu(I)adsorbent a promising candidate featuring cost-effectiveness,high efficacy and good regenerability for desulfurization from a CO_(2)stream.
基金supports from National Natural Science Foundation of China(Nos.22172066,22378176)supported by State Key Laboratory of Heavy Oil Processing.Supported by Jiangsu Collaborative Innovation Center of TechnologyMaterial of Water Treatment,Suzhou University of Science and Technology.
文摘Development of clean desulfurization process that combines both efficient and environmentally friendly remains a significant challenge for diesel production.The photocatalytic oxidation desulfurization technology is regarded as a promising process depending on the superior electron transfer and visible light utilization of photocatalyst.Herein,the nonstoichiometry MoO_(3-x)with outstanding photoresponse ability is prepared and modified by imidazole-based ionic liquid[C_(12)mim]Cl to upgrade electronic structure.The interface H-bonding between MoO_(3-x)and[C_(12)mim]Cl regard as electronic transfer channel and the recombination of e^(-)-h^(+)pairs is effectively inhibited with the modification of[C_(12)mim]Cl.Deep desulfurization rate of 96.6%can be reached within 60 min and the MoO_(3-x)/[C_(12)mim]Cl(MoC_(12))photocatalyst demonstrated outstanding cyclic stability within 7 cycles in an extraction coupled photocatalytic oxidation desulfurization(ECPODS)system.The study provides a new perspective on enhancing photocatalytic desulfurization through defect engineering and surface modification.
基金Supported by the Natural Science Foundation of China(51474198,51422405)
文摘Pyrite inside bauxite could be oxidized into soluble S-containing ions by electrolysis, and thus achieving bauxite desulfurization by using filtration. However, S-containing ions in electrolyte had some corrosion effects on electrode, especially for anode. In this work, six kinds of traditional materials were selected as anode, and their corrosion behaviors were examined by using electrochemistry characterization. Tafel and CV curves from simulating electrolyte suggested that their corrosion potentials were in the following order: Ni﹥C﹥SS﹥Fe﹥Cu﹥Pb–Ag. As expected, the desulfurization ratio and cell voltage from bauxite electrolysis were in the following order respectively: Cu﹥Ni﹥Fe﹥SS﹥C﹥Pb–Ag and Ni﹥Fe﹥SS﹥Cu﹥C﹥Pb–Ag. Finally, Ni was proposed a kind of excellent electrode material for bauxite desulfurization from electrolysis.
基金The authors would like to acknowledge the National Key R&D Program of China(No.2017YFC0210301)the National Natural Science Foundation of China(No.51474021)for financial support.
文摘Kinetics of hot metal desulfurization were studied using CaO-SiO2-Al2O3-Na2O-TiO2 slag in the range of 1400-1500℃on a laboratory scale.The results of kinetic experiments indicate that the desulfurization rate increases as the temperature,Al2O3 content,Na2O content,and TiO2 content increase and basicity increases from 1.01 to 1.75,but decreases when basicity increases from 1.75 to 2.02.The melting effect of slag is promoted as the temperature,Na2O content,and TiO2 content increase and Al2O3 content increases from 12.13 to 17.17 mass%,but worsened as basicity increases and Al2O3 content increases from 17.17 to 22.27 mass%.A kinetic model of hot metal desulfurization has been developed to calculate the mass transfer coefficient and the mass transfer resistance of sulfur in slag.The mass transfer coefficient of sulfur increases as the temperature,Al2O3 content,Na2O content,and TiO2 content increase and basicity decreases.Total mass transfer coefficients of sulfur were in the range of(5.02-23.78)×10^-7 m s^-1.The activation energy was estimated to be 464.06 kJ mo1^-1 at the temperature from 1400 to 1450℃and 176.35 kJ mol-1 at the temperature from 1450 to 1500℃.The sulfur distribution at the slag-metal interface was observed using a mineral liberation analyzer.The result shows that the mass transfer of sulfur in slag is the controlling step at high temperature during the desulfurization process.
基金supported by National Natural Science Foundation of China (Major Program: 61590923)International (Regional) Cooperation and Exchange Project(No. 61720106008)+2 种基金National Natural Science Foundation of China (No. 61873093)National Science Fund for Distinguished Young Scholars (61725301)the Fundamental Research Funds for the Central Universities
文摘Absorptive separation for resource utilization by selective SO2 removal from flue gas is a potential method applicable in practice. A flue gas desulfurization process for SO2 utilization by selective absorption in a lab-scale absorption tower at atmospheric pressure using N-formylmorpholine (NFM) as the absorbent is developed to capture and concentrate the SO2 from flue gas, in which the CO2 content is several orders higher than that of SO2. The investigation of the effects of different operating conditions on the SO2 removal efficiency shows that the SO2 removal efficiency can be obviously enhanced by increasing NFM concentration, or decreasing the absorption temperature, the superficial gas velocity, the gas-liquid ratio, or the SO2 concentration in absorption solution. Under the optimum operating conditions (covering a temperature of 40 °C, a superficial gas velocity of <0.0165 m/s, a gas-liquid ratio of 200—250, a SO2 concentration in lean NFM solution of 0—10 mg/L, and a NFM concentration of 3 mol/L), the SO2 removal rate reaches over 99.5% while the absorption of CO2 is negligible. Similarly, the SO2 removal rate is as high as 99.5% obtained in consecutive absorption-desorption cycles. Desorption experiment results indicate that the absorption of sulfur dioxide is completely reversible and the release of SO2 from NFM is very easy and rapid at 104 °C. The absorption simulation result for desulfurization of flue gas vented from the industrial catalytic cracking regenerator shows that 98.0% of SO2 can be absorbed in the absorber and most of them are released in the desorber. The experimental and simulated results show that the desulfurization ability and regenerability of NFM solution is encouraging for the development of FGD process to capture the SO2 from flue gas.