Application of particle image velocity (PIV) techniques for measuringparticle size distribution and total number in an activation chamber of desulfurization system isintroduced. Watersheld algorithm is used to choose ...Application of particle image velocity (PIV) techniques for measuringparticle size distribution and total number in an activation chamber of desulfurization system isintroduced. Watersheld algorithm is used to choose the suitable initial gray level threshold whichis used to change the gray level images taken by PIV to black and white ones, then every particle inan image is isolated totally. For every isolating particle, its contour is tracked by the edgeenhancement filter function and kept by Freeman s chain code. Based on a set of particle s chincode, its size and size distribution are calculated and sorted. Finally, the experimental data ofcalcium particles and water drops, separately injected into the activation chamber, and the erroranalysis of data are given out.展开更多
Selective catalytic reduction(SCR) denitration may increase the emission of NH4+and NH3.The removal and transformation characteristics of ammonium sulfate aerosols and ammonia slip during the wet flue gas desulfurizat...Selective catalytic reduction(SCR) denitration may increase the emission of NH4+and NH3.The removal and transformation characteristics of ammonium sulfate aerosols and ammonia slip during the wet flue gas desulfurization(WFGD) process, as well as the effect of desulfurization parameters, were investigated in an experimental system equipped with a simulated SCR flue gas generation system and a limestone-based WFGD system.The results indicate that the ammonium sulfate aerosols and ammonia slip in the flue gas from SCR can be partly removed by slurry scrubbing, while the entrainment and evaporation of desulfurization slurry with accumulated NH4+will generate new ammoniumcontaining particles and gaseous ammonia.The ammonium-containing particles formed by desulfurization are not only derived from the entrainment of slurry droplets, but also from the re-condensation of gaseous ammonia generated by slurry evaporation.Therefore,even if the concentration of NH4+in the desulfurization slurry is quite low, a high level of NH4+was still contained in the fine particles at the outlet of the scrubber.When the accumulated NH4+in the desulfurization slurry was high enough, the WFGD system promoted the conversion of NH3 to NH4+and increased the additional emission of primary NH4+aerosols.With the decline of the liquid/gas ratio and flue gas temperature, the removal efficiency of ammonia sulfate aerosols increased, and the NH4+emitted from entrainment and evaporation of the desulfurization slurry decreased.In addition, the volatile ammonia concentration after the WFGD system was reduced with the decrease of the NH4+concentration and p H values of the slurry.展开更多
Catalytic oxidation desulfurization(CODS)technology has shown great promise for diesel desulfurization by virtue of its low cost,mild reaction conditions,and superior desulfurization performance.Herein,a series of FeM...Catalytic oxidation desulfurization(CODS)technology has shown great promise for diesel desulfurization by virtue of its low cost,mild reaction conditions,and superior desulfurization performance.Herein,a series of FeMoO_(x)/LaTiO_(y)-z samples with diverse Fe/Mo ratios were prepared via a facile citric acid-assisted method.The impact of Fe incorporation on the dispersion and surface elemental states of Mo species,as well as oxygen species content of the synthesized FeMoO_(x)/LaTiO_(y)-z catalysts were systematically characterized using TEM,BET,UV-vis DRS,XPS,XANES,and reaction kinetics,and their CODS performances were examined for 4,6-DMDBT removal.Experimental results demonstrated that Fe/Mo ratio significantly affected the Ti−O bond strength,surface dispersion and electronic structure of Mo O_(2)species on FeMoO_(x)/LaTiO_(y)-z catalysts.FeMoO_(x)/LaTiO_(y)-2 catalyst showed outstanding cycling durability and the best CODS performance with almost 100%removal of 4,6-DMDBT from model oil within 75 min due to its proper MoO3 dispersion,optimal redox property,and the most oxygen vacancy concentration.Nevertheless,further enhancing Fe content led to the increased dispersion of Mo species,while the decrease active Mo species as well as the increase of steric effect for 4,6-DMDBT accessing to the catalytic reactive sites considerably increase the apparent activation energy of FeMoO_(x)/LaTiO_(y)-z(z>2)catalysts during the CODS process,thereby seriously suppressing their CODS performances.Moreover,Radical trapping experiments reveal that the·,generated by the activation of O_(2)at the active sites,catalytic oxidized 4,6-DMDBT to the product of 4,6-DMDBTO_(2),thereby enabling both deep desulfurization and recovery of high-value 4,6-DMDBTO_(2).These findings offer an alternative strategy to achieve ultra deep desulfurization as well as separate and recover high economic value sulfone substances from diesel.展开更多
With the acceleration of industrialization,the pollution problem of sulfur dioxide(SO_(2))emitted from coal-fired power plants has become increasingly severe.Although wet flue gas desulfurization(FGD)technology can re...With the acceleration of industrialization,the pollution problem of sulfur dioxide(SO_(2))emitted from coal-fired power plants has become increasingly severe.Although wet flue gas desulfurization(FGD)technology can remove about 95%of SO_(2),its high energy consumption and the corrosion risk of downstream equipment caused by residual SO_(2)(500–3000 ppm)still need to be addressed[1].Previous porous materials(such as MOFs)achieve selective adsorption of SO_(2) through open metal sites,M–OH sites or functional organic groups,but the problem of CO_(2) co-adsorption limits their practical application[2].In recent years,hydrogen-bonded organic frameworks(HOFs)have emerged as a research hotspot due to their reversible hydrogen-bonding networks and flexible structures[3],but their stability under extreme conditions and efficient separation performance still need to be improved[4].展开更多
In petroleum,mercaptan impurities generate malodorous fumes that pose risks to both human health and the environment,and leading to substandard oil quality.Lye desulfurization is a widely employed technique for elimin...In petroleum,mercaptan impurities generate malodorous fumes that pose risks to both human health and the environment,and leading to substandard oil quality.Lye desulfurization is a widely employed technique for eliminating mercaptans from oil.In traditional scrubber towers,lye and oil are poorly mixed,the desulfurization efficiency is low,and the lye consumption is high.To enhance washing efficiency,a droplet micromixer and corresponding fiber coalescence separator were developed.By optimizing the structure and operating parameters,more effective mixing and separation were achieved,and both caustic washing and desulfurization were enhanced.The proposed mixer/separator outperforms the industry standard by reducing the caustic loading by 30%and offers superior economic and engineering performances.The results of this study offer a direction for designing and optimizing a mercaptan removal unit to enhance the scrubbing effectiveness and decrease expenses to achieve more efficient and green production process.展开更多
The chemical composition of seawater affects the desulfurization of chalcopyrite in flotation.In this study,desulfurization experiments of chalcopyrite were conducted in both deionized(DI)water and seawater.The result...The chemical composition of seawater affects the desulfurization of chalcopyrite in flotation.In this study,desulfurization experiments of chalcopyrite were conducted in both deionized(DI)water and seawater.The results showed that,the copper grade of the concentrate obtained from seawater flotation decreased to 24.30%,compared to 24.60%in DI water.Concurrently,the recovery of chalcopyrite decreased from 51.39%to 38.67%,while the selectivity index(SI)also had a reduction from 2.006 to 1.798.The incorporation of ethylene diamine tetraacetic acid(EDTA),sodium silicate(SS),and sodium hexametaphosphate(SHMP)yielded an enhancement in the SI value,elevating it from 1.798 to 1.897,2.250 and 2.153,separately.It is particularly noteworthy that an excess of EDTA resulted in a SI value of merely 1.831.The mechanism of action was elucidated through analysis of surface charge measurements,X-ray photoelectron spectroscopy(XPS),Fourier transform infrared spectroscopy(FT-IR),extended Derjaguin-Landau Verwey-Overbeek(E-DLVO)theory,and density functional theory(DFT)calculations.展开更多
The development of an efficient dual-function catalytic-sorption system,which seamlessly integrates reaction and separation into a single step for extractant-free systems,represents a transformative advancement in oxi...The development of an efficient dual-function catalytic-sorption system,which seamlessly integrates reaction and separation into a single step for extractant-free systems,represents a transformative advancement in oxidative desulfurization(ODS)process.In this work,we introduce a novel dualfunction amphiphilic biochar(Mo/CBC)catalyst,functionalized with MoO_(3-x)featuring abundant oxygen vacancies,for highly effective extractant-free ODS.The polarity of the biochar was precisely tailored by varying the amount of KOH,leading to the creation of amphiphilic carriers.Subsequent ball milling facilitated the successful loading of MoO_(3-x)onto the biochar surface via an impregnation-calcination route leveraging carbon reduction,resulting in the synthesis of amphiphilic Mo/CBC catalysts.The amphiphilic nature of these catalysts ensures their stable dispersion within the oil phase,while also facilitating their interaction with the oxidant H2O2 and the adsorption of sulfur-containing oxidation products.Characterization techniques,including EPR,XPS,and in situ XRD,verified the existence of abundant oxygen vacancies obtained by carbon reduction on the amphiphilic Mo/CBC catalysts,which significantly boosted their activity in an extractant-free ODs system.Remarkably,the amphiphilic Mo/CBC catalyst displayed exceptional catalytic performance,achieving a desulfurization efficiency of 99.6%in just 10 min without extraction solvent.DFT theoretical calculations further revealed that H_(2)O_(2)readily dissociates into two OH radicals on the O_(vac)-MoO_(3),overcoming a low energy barrier.This process was identified as a key contributor to the catalyst's outstanding ODS performance.Furthermore,other biochar sources,such as rice straw,bamboo,rapeseed oil cake,and walnut oil cake,were investigated to produce Mo-based amphiphilic biochar catalysts,which all showed excellent desulfurization performance.This work establishes a versatile and highly efficient dual-function catalytic-sorption system by designing amphiphilic biochar catalysts enriched with oxygen vacancies,paving the way for the development of universally applicable ODS catalysts for industrial applications.展开更多
As a pyrometallurgical process,circulating fluidized bed(CFB) roasting has good potential for application in desulfurization of high-sulfur bauxite.The gas-solid distribution and reaction during CFB roasting of high-s...As a pyrometallurgical process,circulating fluidized bed(CFB) roasting has good potential for application in desulfurization of high-sulfur bauxite.The gas-solid distribution and reaction during CFB roasting of high-sulfur bauxite were simulated using the computational particle fluid dynamics(CPFD) method.The effect of primary air flow velocity on particle velocity,particle volume distribution,furnace temperature distribution and pressure distribution were investigated.Under the condition of the same total flow of natural gas,the impact of the number of inlets on the desulfurization efficiency,atmosphere mass fraction distribution and temperature distribution in the furnace was further investigated.展开更多
Practical applications of desulfurization gypsum are limited owing to its brittleness and low strength.To overcome these challenges,researchers have developed engineered desulfurization gypsum composites(EDGCs)by inco...Practical applications of desulfurization gypsum are limited owing to its brittleness and low strength.To overcome these challenges,researchers have developed engineered desulfurization gypsum composites(EDGCs)by incorporating ultrahigh molecular weight polyethylene(UHMWPE)fiber and sulfoaluminate cement(SAC).The mix ratio was optimized using response surface methodology(RSM).Experimental testing of EDGC under compressive and tensile loads led to the creation of a regression model that investigates the influence of variables and their interactions on the material’s compressive and tensile strengths.Additionally,microscopic morphology and hydration product composition were analyzed to explore the influence mechanism.The results indicated that EDGC’s compressive strength increased by up to 38.4%owing to a decreased water-binder ratio and higher SAC content.Similarly,tensile strength increased by up to 38.6%owing to increased SAC and fiber content.Moreover,EDGC demonstrated excellent strain-hardening behavior and multiple cracking characteristics,achieving a maximum tensile strain of nearly 3%.The research findings provide valuable insights for optimizing the performance of desulfurization gypsum.展开更多
The development of highly active functionalized ionic liquids(ILs)as both extractants and catalysts for use in achieving deep desulfurization continues to pose challenges.In this study,a highly efficient oxidative des...The development of highly active functionalized ionic liquids(ILs)as both extractants and catalysts for use in achieving deep desulfurization continues to pose challenges.In this study,a highly efficient oxidative desulfurization system was constructed,composed of dual-acidic ionic liquids(DILs)and H_(2)O_(2)-AcOH.The investigation results of four DILs prepared from different metal chlorides([HSO_(3)C_(3)NEt_(3)]Cl-MnCl_(n),MnCl_(n)=AlCl_(3),ZnCl_(2),CuCl_(2),FeCl_(3))in oxidative desulfurization showed that[HSO_(3)C_(3)NEt_(3)]Cl-AlCl_(3)had an outstanding catalytic effect and significantly promoted the oxidation of sulfides.With a 0.2 g[HSO_(3)C_(3)NEt_(3)]Cl-AlCl_(3),the removal rate of dibenzothiophene(DBT)reached 100%in 10 mL model oil under mild conditions at 55℃for 20 min.The key is its ability to induce the dismutation of su-peroxide anions(·O_(2)^(-)),which facilitates the generation of singlet oxygen(1 O_(2)).The efficient oxidation of DBT is accomplished through a predominantly^(1)O_(2)-mediated_(n)on-radical mechanism.[HSO_(3)C_(3)NEt_(3)]Cl-AlCl_(3)serves as a favorable medium for contact to be made between^(1)O_(2)and sulfides,which indicates an efficient catalytic-adsorption synergy.展开更多
Desulfurization technology is rather difficult and urgently needed for carbon dioxide(CO_(2))utilization in industry.A new Cu(I)-based adsorbent was synthesized and examined for the capacity of removing carbonyl sulfi...Desulfurization technology is rather difficult and urgently needed for carbon dioxide(CO_(2))utilization in industry.A new Cu(I)-based adsorbent was synthesized and examined for the capacity of removing carbonyl sulfide(COS)from a CO_(2)stream in an effort to solve the competitive adsorption between CO_(2)and COS and to seek opportunity to advance adsorption capacity.A wide range of character-ization techniques were used to investigate the physicochemical properties of the synthesized Cu(I)adsorbent featuringπ-complexation and their correlations with the adsorption performance.Meanwhile,the first principal calculation software CP2K was used to develop an understanding of the adsorption mechanism,which can offer useful guidance for the adsorbent regeneration.The synthesized Cu(I)adsorbent,prepared by using copper citrate and citric acid on the ZSM-5(SiO_(2)/Al_(2)O_(3)=25)carrier,outperformed other adsorbents with varying formulations and carriers in adsorption capacities.Through optimization of the preparation and adsorption conditions for various adsorbents,the breakthrough adsorption capacity(Qb)for COS was further enhanced from 2.19 mg/g to 15.36 mg/g.The formed stableπ-complex bonds between COS and Cu(I),as confirmed by density func-tional theory calculations,were verified by the significant improvement in the adsorption capacity after regeneration at 600°C.The above advantages render the novel synthesized Cu(I)adsorbent a promising candidate featuring cost-effectiveness,high efficacy and good regenerability for desulfurization from a CO_(2)stream.展开更多
Development of clean desulfurization process that combines both efficient and environmentally friendly remains a significant challenge for diesel production.The photocatalytic oxidation desulfurization technology is r...Development of clean desulfurization process that combines both efficient and environmentally friendly remains a significant challenge for diesel production.The photocatalytic oxidation desulfurization technology is regarded as a promising process depending on the superior electron transfer and visible light utilization of photocatalyst.Herein,the nonstoichiometry MoO_(3-x)with outstanding photoresponse ability is prepared and modified by imidazole-based ionic liquid[C_(12)mim]Cl to upgrade electronic structure.The interface H-bonding between MoO_(3-x)and[C_(12)mim]Cl regard as electronic transfer channel and the recombination of e^(-)-h^(+)pairs is effectively inhibited with the modification of[C_(12)mim]Cl.Deep desulfurization rate of 96.6%can be reached within 60 min and the MoO_(3-x)/[C_(12)mim]Cl(MoC_(12))photocatalyst demonstrated outstanding cyclic stability within 7 cycles in an extraction coupled photocatalytic oxidation desulfurization(ECPODS)system.The study provides a new perspective on enhancing photocatalytic desulfurization through defect engineering and surface modification.展开更多
For the treatment of the mixed flue gas desulfurization wastewater with high salinity by the biological fluidized bed process,the optimum temperature was 25-35℃,and the optimum hydraulic retention time was 10 h.When ...For the treatment of the mixed flue gas desulfurization wastewater with high salinity by the biological fluidized bed process,the optimum temperature was 25-35℃,and the optimum hydraulic retention time was 10 h.When the influent quality was stable,the average concentration of COD,NH_(4)^(+)-N and TN in the inlet water was 210,11 and 16.3 mg/L,respectively,and their average concentration in the effluent was 54,0.32 and 4.09 mg/L,respectively.The treatment effect was good.When the incoming water quality of flue gas desulfurization wastewater fluctuated greatly,the effluent quality was still relatively stable after being treated by the biological fluidized bed,indicating that the biological fluidized bed process had a good ability to resist the impact of water quality in the treatment of high-salinity flue gas desulfurization wastewater.At the same time,the biological fluidized bed process provides a reference for high-salinity wastewater that is difficult to be biologically treated.展开更多
Fe-based ionic liquid (Fe-IL) was synthesized by mixing FeCl3·6H2O and 1-butyl-3-methylimidazolium chloride [Bmim]C1 in this paper. The phase diagram of a ternary Fe-IL, ethanol and water system was investigate...Fe-based ionic liquid (Fe-IL) was synthesized by mixing FeCl3·6H2O and 1-butyl-3-methylimidazolium chloride [Bmim]C1 in this paper. The phase diagram of a ternary Fe-IL, ethanol and water system was investigated to construct a ternary desulfurization solution for wet flue gas desulfurization. The effects of flow rate and concentration of SO2, reaction temperature, pH and Fe-IL fraction in aqueous desulfurization solution on the desulfiariza- tion efficiency were investigated. The results shows that the best composition of ternary desulfurization solution of Fe-IL, ethanol and water is 1 : 1.5 : 3 by volume ratio, and pH should be controlled at 2.0. Under such conditions, a desulfurization rate greater than 90% could be obtained. The product of sulfuric acid had inhibition effect on the wet desulfurization process. With applying this new ternary desulfurization solution, not only the catalyst Fe-IL can be recycled and reused, but also the product sulfuric acid can be separated directly from the ternary desulfurization system.展开更多
The effects of operating parameters on desulfurization efficiency of a dual-alkali FGD process in a rotating-stream-tray(RST)scrubber are investigated.A dimensionless factor,ε,is proposed in this study to predict des...The effects of operating parameters on desulfurization efficiency of a dual-alkali FGD process in a rotating-stream-tray(RST)scrubber are investigated.A dimensionless factor,ε,is proposed in this study to predict desulfurization efficiency of this dual-alkali FGD system.ε represents the desulfurization ability of a dual alkali FGD system,determined by five main operating parameters such as sodium ion concentration,ratio of absorbent flow rate to flue gas flow rate,pH value of absorbent solution,ratio of sulfate ion to total sulfur ion in absorbent solution,and sulfur dioxide concentration of inlet flue gas.The empirical expression for predicting desulfurization efficiency at different temperatures is obtained through the experimental study and theoretical calculation.It provides useful guide for engineering design.展开更多
A series of crystalline compounds were obtained from simple one-step hydrothermal reaction of copper nitrate, benzentricaboxylate and different Keggin polyoxometalates. Phosphotungstic acid immobilized in host matrix ...A series of crystalline compounds were obtained from simple one-step hydrothermal reaction of copper nitrate, benzentricaboxylate and different Keggin polyoxometalates. Phosphotungstic acid immobilized in host matrix was selected for the first time as a recyclable and efficient catalyst in oxidative desulfurization process, under eco-sustainable conditions supported by the green oxidant O2 and the green extracting agent distilled water. The efficiency of desulfurization with air was studied and it is possible to use air as green oxidant in desulfurization. Moreover, the catalyst is effective for the desulfurization of real diesel.展开更多
Aiming at deep desulfurization of gasoline,three amphiphilic catalysts [C18H37N(CH3)3]3+x [PMo12-xVxO40](x=1,2,or 3) were prepared and characterized.The amphiphilic vanadium(V)-substituted polyoxometalates were dissol...Aiming at deep desulfurization of gasoline,three amphiphilic catalysts [C18H37N(CH3)3]3+x [PMo12-xVxO40](x=1,2,or 3) were prepared and characterized.The amphiphilic vanadium(V)-substituted polyoxometalates were dissolved in water-immiscible ionic liquid([Bmim]PF6),forming a H2O2-in-[Bmim]PF6 emulsion desulfurization system with 30 m% H2O2 serving as the oxidant.The catalytic oxidation of sulfur-containing model oil has been studied in detail under various reaction conditions using this system.The ionic liquid emulsion system showed high catalytic oxidative activity in the treatment of commodity gasoline.Furthermore,the mechanism of catalytic oxidative desulfurization was also elaborated.展开更多
Porous ionic liquids have demonstrated excellent performance in the field of separation,attributed to their high specific surface area and efficient mass transfer.Herein,task-specific protic porous ionic liquids(PPILs...Porous ionic liquids have demonstrated excellent performance in the field of separation,attributed to their high specific surface area and efficient mass transfer.Herein,task-specific protic porous ionic liquids(PPILs)were prepared by employing a novel one-step coupling neutralization reaction strategy for extractive desulfurization.The single-extraction efficiency of PPILs reached 75.0%for dibenzothiophene.Moreover,adding aromatic hydrocarbon interferents resulted in a slight decrease in the extraction efficiency of PPILs(from 45.2%to 37.3%,37.9%,and 33.5%),indicating the excellent extraction selectivity of PPILs.The experimental measurements and density functional theory calculations reveal that the surface channels of porous structures can selectively capture dibenzothiophene by the stronger electrophilicity(Eint(HS surface channel/DBT)=-39.8 kcal mol^(-1)),and the multiple extraction sites of ion pairs can effectively enrich and transport dibenzothiophene from the oil phase into PPILs throughπ...π,C-H...πand hydrogen bonds interactions.Furthermore,this straightforward synthetic strategy can be employed in preparing porous liquids,offering new possibilities for synthesizing PPILs with tailored functionalities.展开更多
Low desulfurization efficiency impedes the wide application of dry desulfurization technology,which is a low-cost and simple process,and one significant solution is the development and manufacture of high-performance ...Low desulfurization efficiency impedes the wide application of dry desulfurization technology,which is a low-cost and simple process,and one significant solution is the development and manufacture of high-performance desulfurizers.In this study,firstly,a steam jet mill was used to digest quicklime;then,we utilized numerical simulation to study the flow field distribution and analyze the driving factors of quicklime digestion;and lastly,the desulfurization performance of the desulfurizer was evaluated under different relative humidities.The results show that the desulfurizer prepared via the steam jet mill had better apparent activity than traditional desulfurizers.Also,the entire jet flow field of the steam jet mill is in a supersonic and highly turbulent flow state,with high crushing intensity and good particle acceleration performance.Sufficient contact with the nascent surface maximizes the formation of slaked lime.The experiments demonstrated that the operating time with 100%desulfurization efficiency and the“break-through”time for the desulfurizer prepared via the steam jet mill is longer than that of traditional desulfurizers,and has significant advantages,especially at low flue gas relative humidity.Compared with traditional desulfurizers,the desulfurizer prepared via steam jet mill expands the range of acceptable flue gas temperature,and the failure temperature is 1.625 times that of traditional desulfurizers.This work breaks through the technical bottleneck of low dry desulfurization efficiency,which is an important step in pushing forward the application of dry desulfurization.展开更多
Polyurethane/desulfurization ash(PU/DA)composites were synthesized using"one-pot method",with the incorporation of a silane coupling agent(KH550)as a"molecular bridge"to facilitate the integration ...Polyurethane/desulfurization ash(PU/DA)composites were synthesized using"one-pot method",with the incorporation of a silane coupling agent(KH550)as a"molecular bridge"to facilitate the integration of DA as hard segments into the PU molecular chain.The effects of DA content(φ)on the mechanical properties,thermal stability,and hydrophobicity of PU,both before and after the addition of KH550,were thoroughly examined.The results of microscopic mechanism analysis confirmed that KH550 chemically modified the surface of DA,facilitating its incorporation into the polyurethane molecular chain,thereby significantly enhancing the compatibility and dispersion of DA within the PU matrix.When the mass fraction of modified DA(MDA)reached 12%,the mechanical properties,thermal stability,and hydrophobicity of the composites were substantially improved,with the tensile strength reaching 14.9 MPa,and the contact angle measuring 100.6°.展开更多
基金The Special Funds for State Key Projects for Fun- damental Research (G1999022201-04).
文摘Application of particle image velocity (PIV) techniques for measuringparticle size distribution and total number in an activation chamber of desulfurization system isintroduced. Watersheld algorithm is used to choose the suitable initial gray level threshold whichis used to change the gray level images taken by PIV to black and white ones, then every particle inan image is isolated totally. For every isolating particle, its contour is tracked by the edgeenhancement filter function and kept by Freeman s chain code. Based on a set of particle s chincode, its size and size distribution are calculated and sorted. Finally, the experimental data ofcalcium particles and water drops, separately injected into the activation chamber, and the erroranalysis of data are given out.
基金supported by the National Natural Science Foundation of China(Nos.51576039 and 51576039).
文摘Selective catalytic reduction(SCR) denitration may increase the emission of NH4+and NH3.The removal and transformation characteristics of ammonium sulfate aerosols and ammonia slip during the wet flue gas desulfurization(WFGD) process, as well as the effect of desulfurization parameters, were investigated in an experimental system equipped with a simulated SCR flue gas generation system and a limestone-based WFGD system.The results indicate that the ammonium sulfate aerosols and ammonia slip in the flue gas from SCR can be partly removed by slurry scrubbing, while the entrainment and evaporation of desulfurization slurry with accumulated NH4+will generate new ammoniumcontaining particles and gaseous ammonia.The ammonium-containing particles formed by desulfurization are not only derived from the entrainment of slurry droplets, but also from the re-condensation of gaseous ammonia generated by slurry evaporation.Therefore,even if the concentration of NH4+in the desulfurization slurry is quite low, a high level of NH4+was still contained in the fine particles at the outlet of the scrubber.When the accumulated NH4+in the desulfurization slurry was high enough, the WFGD system promoted the conversion of NH3 to NH4+and increased the additional emission of primary NH4+aerosols.With the decline of the liquid/gas ratio and flue gas temperature, the removal efficiency of ammonia sulfate aerosols increased, and the NH4+emitted from entrainment and evaporation of the desulfurization slurry decreased.In addition, the volatile ammonia concentration after the WFGD system was reduced with the decrease of the NH4+concentration and p H values of the slurry.
基金supported by the Natural Science Foundation of Guangdong Province(2024A1515010908,2025A1515011103)Opening Project of Hubei Key Laboratory of Plasma Chemistry and Advanced Materials(2024P11)+2 种基金Postdoctoral Fellowship Program of CPSF(GZC20233104)National Natural Science Foundation of China(22202087)Opening Project of Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing&Finishing(STRZ202418)。
文摘Catalytic oxidation desulfurization(CODS)technology has shown great promise for diesel desulfurization by virtue of its low cost,mild reaction conditions,and superior desulfurization performance.Herein,a series of FeMoO_(x)/LaTiO_(y)-z samples with diverse Fe/Mo ratios were prepared via a facile citric acid-assisted method.The impact of Fe incorporation on the dispersion and surface elemental states of Mo species,as well as oxygen species content of the synthesized FeMoO_(x)/LaTiO_(y)-z catalysts were systematically characterized using TEM,BET,UV-vis DRS,XPS,XANES,and reaction kinetics,and their CODS performances were examined for 4,6-DMDBT removal.Experimental results demonstrated that Fe/Mo ratio significantly affected the Ti−O bond strength,surface dispersion and electronic structure of Mo O_(2)species on FeMoO_(x)/LaTiO_(y)-z catalysts.FeMoO_(x)/LaTiO_(y)-2 catalyst showed outstanding cycling durability and the best CODS performance with almost 100%removal of 4,6-DMDBT from model oil within 75 min due to its proper MoO3 dispersion,optimal redox property,and the most oxygen vacancy concentration.Nevertheless,further enhancing Fe content led to the increased dispersion of Mo species,while the decrease active Mo species as well as the increase of steric effect for 4,6-DMDBT accessing to the catalytic reactive sites considerably increase the apparent activation energy of FeMoO_(x)/LaTiO_(y)-z(z>2)catalysts during the CODS process,thereby seriously suppressing their CODS performances.Moreover,Radical trapping experiments reveal that the·,generated by the activation of O_(2)at the active sites,catalytic oxidized 4,6-DMDBT to the product of 4,6-DMDBTO_(2),thereby enabling both deep desulfurization and recovery of high-value 4,6-DMDBTO_(2).These findings offer an alternative strategy to achieve ultra deep desulfurization as well as separate and recover high economic value sulfone substances from diesel.
基金the support of the National Natural Science Foundation of China(Nos.22205207 and 22378369).
文摘With the acceleration of industrialization,the pollution problem of sulfur dioxide(SO_(2))emitted from coal-fired power plants has become increasingly severe.Although wet flue gas desulfurization(FGD)technology can remove about 95%of SO_(2),its high energy consumption and the corrosion risk of downstream equipment caused by residual SO_(2)(500–3000 ppm)still need to be addressed[1].Previous porous materials(such as MOFs)achieve selective adsorption of SO_(2) through open metal sites,M–OH sites or functional organic groups,but the problem of CO_(2) co-adsorption limits their practical application[2].In recent years,hydrogen-bonded organic frameworks(HOFs)have emerged as a research hotspot due to their reversible hydrogen-bonding networks and flexible structures[3],but their stability under extreme conditions and efficient separation performance still need to be improved[4].
基金supported by the National Natural Science Foundation of China(52025103)the Xplorer Prize(XPLORER-2022-1034).
文摘In petroleum,mercaptan impurities generate malodorous fumes that pose risks to both human health and the environment,and leading to substandard oil quality.Lye desulfurization is a widely employed technique for eliminating mercaptans from oil.In traditional scrubber towers,lye and oil are poorly mixed,the desulfurization efficiency is low,and the lye consumption is high.To enhance washing efficiency,a droplet micromixer and corresponding fiber coalescence separator were developed.By optimizing the structure and operating parameters,more effective mixing and separation were achieved,and both caustic washing and desulfurization were enhanced.The proposed mixer/separator outperforms the industry standard by reducing the caustic loading by 30%and offers superior economic and engineering performances.The results of this study offer a direction for designing and optimizing a mercaptan removal unit to enhance the scrubbing effectiveness and decrease expenses to achieve more efficient and green production process.
基金Project(52174239)supported by the National Natural Science Foundation of ChinaProject(2021YFC2902400)supported by the National Key R&D Program of China。
文摘The chemical composition of seawater affects the desulfurization of chalcopyrite in flotation.In this study,desulfurization experiments of chalcopyrite were conducted in both deionized(DI)water and seawater.The results showed that,the copper grade of the concentrate obtained from seawater flotation decreased to 24.30%,compared to 24.60%in DI water.Concurrently,the recovery of chalcopyrite decreased from 51.39%to 38.67%,while the selectivity index(SI)also had a reduction from 2.006 to 1.798.The incorporation of ethylene diamine tetraacetic acid(EDTA),sodium silicate(SS),and sodium hexametaphosphate(SHMP)yielded an enhancement in the SI value,elevating it from 1.798 to 1.897,2.250 and 2.153,separately.It is particularly noteworthy that an excess of EDTA resulted in a SI value of merely 1.831.The mechanism of action was elucidated through analysis of surface charge measurements,X-ray photoelectron spectroscopy(XPS),Fourier transform infrared spectroscopy(FT-IR),extended Derjaguin-Landau Verwey-Overbeek(E-DLVO)theory,and density functional theory(DFT)calculations.
基金supported by the National Natural Science Foundation of China(22162008)the Science and Technology Supporting Project of Guizhou Province([2022]208)+1 种基金the Guizhou Province Local Government Overseas Study Programthe open project of Guizhou Provincial Double Carbon and Renewable Energy Technology Innovation Research Institute.
文摘The development of an efficient dual-function catalytic-sorption system,which seamlessly integrates reaction and separation into a single step for extractant-free systems,represents a transformative advancement in oxidative desulfurization(ODS)process.In this work,we introduce a novel dualfunction amphiphilic biochar(Mo/CBC)catalyst,functionalized with MoO_(3-x)featuring abundant oxygen vacancies,for highly effective extractant-free ODS.The polarity of the biochar was precisely tailored by varying the amount of KOH,leading to the creation of amphiphilic carriers.Subsequent ball milling facilitated the successful loading of MoO_(3-x)onto the biochar surface via an impregnation-calcination route leveraging carbon reduction,resulting in the synthesis of amphiphilic Mo/CBC catalysts.The amphiphilic nature of these catalysts ensures their stable dispersion within the oil phase,while also facilitating their interaction with the oxidant H2O2 and the adsorption of sulfur-containing oxidation products.Characterization techniques,including EPR,XPS,and in situ XRD,verified the existence of abundant oxygen vacancies obtained by carbon reduction on the amphiphilic Mo/CBC catalysts,which significantly boosted their activity in an extractant-free ODs system.Remarkably,the amphiphilic Mo/CBC catalyst displayed exceptional catalytic performance,achieving a desulfurization efficiency of 99.6%in just 10 min without extraction solvent.DFT theoretical calculations further revealed that H_(2)O_(2)readily dissociates into two OH radicals on the O_(vac)-MoO_(3),overcoming a low energy barrier.This process was identified as a key contributor to the catalyst's outstanding ODS performance.Furthermore,other biochar sources,such as rice straw,bamboo,rapeseed oil cake,and walnut oil cake,were investigated to produce Mo-based amphiphilic biochar catalysts,which all showed excellent desulfurization performance.This work establishes a versatile and highly efficient dual-function catalytic-sorption system by designing amphiphilic biochar catalysts enriched with oxygen vacancies,paving the way for the development of universally applicable ODS catalysts for industrial applications.
基金supported by the National Key Research and Development Program of China(2022YFC2904400)Guangxi Science and Technology Major Project(Gui Ke AA23023033)。
文摘As a pyrometallurgical process,circulating fluidized bed(CFB) roasting has good potential for application in desulfurization of high-sulfur bauxite.The gas-solid distribution and reaction during CFB roasting of high-sulfur bauxite were simulated using the computational particle fluid dynamics(CPFD) method.The effect of primary air flow velocity on particle velocity,particle volume distribution,furnace temperature distribution and pressure distribution were investigated.Under the condition of the same total flow of natural gas,the impact of the number of inlets on the desulfurization efficiency,atmosphere mass fraction distribution and temperature distribution in the furnace was further investigated.
基金The National Natural Science Foundation of China(No.51978504).
文摘Practical applications of desulfurization gypsum are limited owing to its brittleness and low strength.To overcome these challenges,researchers have developed engineered desulfurization gypsum composites(EDGCs)by incorporating ultrahigh molecular weight polyethylene(UHMWPE)fiber and sulfoaluminate cement(SAC).The mix ratio was optimized using response surface methodology(RSM).Experimental testing of EDGC under compressive and tensile loads led to the creation of a regression model that investigates the influence of variables and their interactions on the material’s compressive and tensile strengths.Additionally,microscopic morphology and hydration product composition were analyzed to explore the influence mechanism.The results indicated that EDGC’s compressive strength increased by up to 38.4%owing to a decreased water-binder ratio and higher SAC content.Similarly,tensile strength increased by up to 38.6%owing to increased SAC and fiber content.Moreover,EDGC demonstrated excellent strain-hardening behavior and multiple cracking characteristics,achieving a maximum tensile strain of nearly 3%.The research findings provide valuable insights for optimizing the performance of desulfurization gypsum.
基金support provided by South Africa National Research Foundation(UID 95983,113648,137947)Foundation for Innovative Research Groups of the Natural Science Foundation of Hebei Province(no.B2021208005).
文摘The development of highly active functionalized ionic liquids(ILs)as both extractants and catalysts for use in achieving deep desulfurization continues to pose challenges.In this study,a highly efficient oxidative desulfurization system was constructed,composed of dual-acidic ionic liquids(DILs)and H_(2)O_(2)-AcOH.The investigation results of four DILs prepared from different metal chlorides([HSO_(3)C_(3)NEt_(3)]Cl-MnCl_(n),MnCl_(n)=AlCl_(3),ZnCl_(2),CuCl_(2),FeCl_(3))in oxidative desulfurization showed that[HSO_(3)C_(3)NEt_(3)]Cl-AlCl_(3)had an outstanding catalytic effect and significantly promoted the oxidation of sulfides.With a 0.2 g[HSO_(3)C_(3)NEt_(3)]Cl-AlCl_(3),the removal rate of dibenzothiophene(DBT)reached 100%in 10 mL model oil under mild conditions at 55℃for 20 min.The key is its ability to induce the dismutation of su-peroxide anions(·O_(2)^(-)),which facilitates the generation of singlet oxygen(1 O_(2)).The efficient oxidation of DBT is accomplished through a predominantly^(1)O_(2)-mediated_(n)on-radical mechanism.[HSO_(3)C_(3)NEt_(3)]Cl-AlCl_(3)serves as a favorable medium for contact to be made between^(1)O_(2)and sulfides,which indicates an efficient catalytic-adsorption synergy.
基金supported by the National Key Research and Development Program of China(2022YFA1504402)National Energy R&D Center of Petroleum Refining Technology(RIPP,SINOPEC)+2 种基金the National Natural Science Foundation of China(22472016 and U23B20169)Key R&D Program of Ningbo(No.2023Z144)the Fundamental Research Funds for the Central Universities(DUT22LAB601).
文摘Desulfurization technology is rather difficult and urgently needed for carbon dioxide(CO_(2))utilization in industry.A new Cu(I)-based adsorbent was synthesized and examined for the capacity of removing carbonyl sulfide(COS)from a CO_(2)stream in an effort to solve the competitive adsorption between CO_(2)and COS and to seek opportunity to advance adsorption capacity.A wide range of character-ization techniques were used to investigate the physicochemical properties of the synthesized Cu(I)adsorbent featuringπ-complexation and their correlations with the adsorption performance.Meanwhile,the first principal calculation software CP2K was used to develop an understanding of the adsorption mechanism,which can offer useful guidance for the adsorbent regeneration.The synthesized Cu(I)adsorbent,prepared by using copper citrate and citric acid on the ZSM-5(SiO_(2)/Al_(2)O_(3)=25)carrier,outperformed other adsorbents with varying formulations and carriers in adsorption capacities.Through optimization of the preparation and adsorption conditions for various adsorbents,the breakthrough adsorption capacity(Qb)for COS was further enhanced from 2.19 mg/g to 15.36 mg/g.The formed stableπ-complex bonds between COS and Cu(I),as confirmed by density func-tional theory calculations,were verified by the significant improvement in the adsorption capacity after regeneration at 600°C.The above advantages render the novel synthesized Cu(I)adsorbent a promising candidate featuring cost-effectiveness,high efficacy and good regenerability for desulfurization from a CO_(2)stream.
基金supports from National Natural Science Foundation of China(Nos.22172066,22378176)supported by State Key Laboratory of Heavy Oil Processing.Supported by Jiangsu Collaborative Innovation Center of TechnologyMaterial of Water Treatment,Suzhou University of Science and Technology.
文摘Development of clean desulfurization process that combines both efficient and environmentally friendly remains a significant challenge for diesel production.The photocatalytic oxidation desulfurization technology is regarded as a promising process depending on the superior electron transfer and visible light utilization of photocatalyst.Herein,the nonstoichiometry MoO_(3-x)with outstanding photoresponse ability is prepared and modified by imidazole-based ionic liquid[C_(12)mim]Cl to upgrade electronic structure.The interface H-bonding between MoO_(3-x)and[C_(12)mim]Cl regard as electronic transfer channel and the recombination of e^(-)-h^(+)pairs is effectively inhibited with the modification of[C_(12)mim]Cl.Deep desulfurization rate of 96.6%can be reached within 60 min and the MoO_(3-x)/[C_(12)mim]Cl(MoC_(12))photocatalyst demonstrated outstanding cyclic stability within 7 cycles in an extraction coupled photocatalytic oxidation desulfurization(ECPODS)system.The study provides a new perspective on enhancing photocatalytic desulfurization through defect engineering and surface modification.
文摘For the treatment of the mixed flue gas desulfurization wastewater with high salinity by the biological fluidized bed process,the optimum temperature was 25-35℃,and the optimum hydraulic retention time was 10 h.When the influent quality was stable,the average concentration of COD,NH_(4)^(+)-N and TN in the inlet water was 210,11 and 16.3 mg/L,respectively,and their average concentration in the effluent was 54,0.32 and 4.09 mg/L,respectively.The treatment effect was good.When the incoming water quality of flue gas desulfurization wastewater fluctuated greatly,the effluent quality was still relatively stable after being treated by the biological fluidized bed,indicating that the biological fluidized bed process had a good ability to resist the impact of water quality in the treatment of high-salinity flue gas desulfurization wastewater.At the same time,the biological fluidized bed process provides a reference for high-salinity wastewater that is difficult to be biologically treated.
基金Supported by the National Natural Science Foundation of China (21076019,90610007)the National High Technology Research and Development Program of China (2007AA06Z115)+1 种基金the Ph.D. Programs Foundation of Ministry of Education of China (20090010110003)the Fundamental Research Funds for the Central Universities (ZD1001)
文摘Fe-based ionic liquid (Fe-IL) was synthesized by mixing FeCl3·6H2O and 1-butyl-3-methylimidazolium chloride [Bmim]C1 in this paper. The phase diagram of a ternary Fe-IL, ethanol and water system was investigated to construct a ternary desulfurization solution for wet flue gas desulfurization. The effects of flow rate and concentration of SO2, reaction temperature, pH and Fe-IL fraction in aqueous desulfurization solution on the desulfiariza- tion efficiency were investigated. The results shows that the best composition of ternary desulfurization solution of Fe-IL, ethanol and water is 1 : 1.5 : 3 by volume ratio, and pH should be controlled at 2.0. Under such conditions, a desulfurization rate greater than 90% could be obtained. The product of sulfuric acid had inhibition effect on the wet desulfurization process. With applying this new ternary desulfurization solution, not only the catalyst Fe-IL can be recycled and reused, but also the product sulfuric acid can be separated directly from the ternary desulfurization system.
基金Supported by the National Hi-tech Researchand Development Program(863program)of China(No.2001AA642030-1)Key Research Project of Zhejiang Province(No.2004C23028)New Century Excellent Scholar Program of Ministry of Education of the People's Republic of China(No.NCET-04-0549)
文摘The effects of operating parameters on desulfurization efficiency of a dual-alkali FGD process in a rotating-stream-tray(RST)scrubber are investigated.A dimensionless factor,ε,is proposed in this study to predict desulfurization efficiency of this dual-alkali FGD system.ε represents the desulfurization ability of a dual alkali FGD system,determined by five main operating parameters such as sodium ion concentration,ratio of absorbent flow rate to flue gas flow rate,pH value of absorbent solution,ratio of sulfate ion to total sulfur ion in absorbent solution,and sulfur dioxide concentration of inlet flue gas.The empirical expression for predicting desulfurization efficiency at different temperatures is obtained through the experimental study and theoretical calculation.It provides useful guide for engineering design.
基金financial support from the National Natural Science Foundation of China (Nos. 20976097, 21076116, 21211120165, 21311120297)Petro China Scientific and Technical Innovation Project (No. 2010D-5006-0405)Natural Science Foundation of Shandong Province (No. ZR2011BM023)
文摘A series of crystalline compounds were obtained from simple one-step hydrothermal reaction of copper nitrate, benzentricaboxylate and different Keggin polyoxometalates. Phosphotungstic acid immobilized in host matrix was selected for the first time as a recyclable and efficient catalyst in oxidative desulfurization process, under eco-sustainable conditions supported by the green oxidant O2 and the green extracting agent distilled water. The efficiency of desulfurization with air was studied and it is possible to use air as green oxidant in desulfurization. Moreover, the catalyst is effective for the desulfurization of real diesel.
基金the National Nature Science Foundation of China(No.51077013,50873026)Production and Research Prospective Joint Project of Jiangsu Province of China(BY2009153)+2 种基金the Key Program for the Scientific Research Guiding Fund of Basic Scientific Research Operation Expenditure,Southeast University(3207040103)333 High-level Talent Training Project,Jiangsu Province of China (BRA2010033)Student Research Training Program of Southeast University(No.091028644) for financial support
文摘Aiming at deep desulfurization of gasoline,three amphiphilic catalysts [C18H37N(CH3)3]3+x [PMo12-xVxO40](x=1,2,or 3) were prepared and characterized.The amphiphilic vanadium(V)-substituted polyoxometalates were dissolved in water-immiscible ionic liquid([Bmim]PF6),forming a H2O2-in-[Bmim]PF6 emulsion desulfurization system with 30 m% H2O2 serving as the oxidant.The catalytic oxidation of sulfur-containing model oil has been studied in detail under various reaction conditions using this system.The ionic liquid emulsion system showed high catalytic oxidative activity in the treatment of commodity gasoline.Furthermore,the mechanism of catalytic oxidative desulfurization was also elaborated.
基金financially supported by the National Natural Science Foundation of China (Nos.22078135,21808092,21978119,22202088)。
文摘Porous ionic liquids have demonstrated excellent performance in the field of separation,attributed to their high specific surface area and efficient mass transfer.Herein,task-specific protic porous ionic liquids(PPILs)were prepared by employing a novel one-step coupling neutralization reaction strategy for extractive desulfurization.The single-extraction efficiency of PPILs reached 75.0%for dibenzothiophene.Moreover,adding aromatic hydrocarbon interferents resulted in a slight decrease in the extraction efficiency of PPILs(from 45.2%to 37.3%,37.9%,and 33.5%),indicating the excellent extraction selectivity of PPILs.The experimental measurements and density functional theory calculations reveal that the surface channels of porous structures can selectively capture dibenzothiophene by the stronger electrophilicity(Eint(HS surface channel/DBT)=-39.8 kcal mol^(-1)),and the multiple extraction sites of ion pairs can effectively enrich and transport dibenzothiophene from the oil phase into PPILs throughπ...π,C-H...πand hydrogen bonds interactions.Furthermore,this straightforward synthetic strategy can be employed in preparing porous liquids,offering new possibilities for synthesizing PPILs with tailored functionalities.
基金supported by the Southwest University of Science and Technology(No.22zx7168)the Sichuan Science and Technology Program(No.2020YFG0186)。
文摘Low desulfurization efficiency impedes the wide application of dry desulfurization technology,which is a low-cost and simple process,and one significant solution is the development and manufacture of high-performance desulfurizers.In this study,firstly,a steam jet mill was used to digest quicklime;then,we utilized numerical simulation to study the flow field distribution and analyze the driving factors of quicklime digestion;and lastly,the desulfurization performance of the desulfurizer was evaluated under different relative humidities.The results show that the desulfurizer prepared via the steam jet mill had better apparent activity than traditional desulfurizers.Also,the entire jet flow field of the steam jet mill is in a supersonic and highly turbulent flow state,with high crushing intensity and good particle acceleration performance.Sufficient contact with the nascent surface maximizes the formation of slaked lime.The experiments demonstrated that the operating time with 100%desulfurization efficiency and the“break-through”time for the desulfurizer prepared via the steam jet mill is longer than that of traditional desulfurizers,and has significant advantages,especially at low flue gas relative humidity.Compared with traditional desulfurizers,the desulfurizer prepared via steam jet mill expands the range of acceptable flue gas temperature,and the failure temperature is 1.625 times that of traditional desulfurizers.This work breaks through the technical bottleneck of low dry desulfurization efficiency,which is an important step in pushing forward the application of dry desulfurization.
基金Funded by the National Key Research and Development Project(No.2019YFC1908204)the Guiding Projects in Fujian Province(No.2023H0023)the Fuzhou Science and Technology Plan Project(No.2022-P-012)。
文摘Polyurethane/desulfurization ash(PU/DA)composites were synthesized using"one-pot method",with the incorporation of a silane coupling agent(KH550)as a"molecular bridge"to facilitate the integration of DA as hard segments into the PU molecular chain.The effects of DA content(φ)on the mechanical properties,thermal stability,and hydrophobicity of PU,both before and after the addition of KH550,were thoroughly examined.The results of microscopic mechanism analysis confirmed that KH550 chemically modified the surface of DA,facilitating its incorporation into the polyurethane molecular chain,thereby significantly enhancing the compatibility and dispersion of DA within the PU matrix.When the mass fraction of modified DA(MDA)reached 12%,the mechanical properties,thermal stability,and hydrophobicity of the composites were substantially improved,with the tensile strength reaching 14.9 MPa,and the contact angle measuring 100.6°.