Catalytic destruction is an ascendant technology for the abatement of volatile organic compounds(VOCs)originating fromsolvent-based industrial processes.The varied composition tends to influence each VOC’s catalytic ...Catalytic destruction is an ascendant technology for the abatement of volatile organic compounds(VOCs)originating fromsolvent-based industrial processes.The varied composition tends to influence each VOC’s catalytic behavior in the reaction mixture.We investigated the catalytic destruction of multi-component VOCs including dichloromethane(DCM)and ethyl acetate(EA),as representatives from pharmaceutical waste gases,over co-supported HxPO_(4)-RuOx/CeO_(2) catalyst.A mutual inhibitory effect relating to concentrations because of competitive adsorption was verified in the binary VOCs oxidation and EA posed a more negative effect on DCM oxidation owing to EA’s superior adsorption capacity.Preferential adsorption of EA on acidic sites(HxPO_(4)/CeO_(2))promoted DCM activation on basic sites(O^(2−))and the dominating EA oxidation blocked DCM’s access to oxidation centers(RuOx/CeO_(2)),resulting in boosted monochloromethane yield and increased chlorine deposition for DCM oxidation.The impaired redox ability of Ru species owing to chlorine deposition in turn jeopardized deep oxidation of EA and its by-products,leading to increased gaseous by-products such as acetic acid originating fromEA pyrolysis.Notably,DCM at low concentration slightly promoted EA conversion at low temperatures with or without water,consistent with the enhanced EA adsorption in co-adsorption analyses.This was mainly due to that DCM impeded the shielding effect of hydrolysate deposition from rapid EA hydrolysis depending on the decreased acidity.Moreover,water benefited EA hydrolysis but decreased CO_(2) selectivity while the generated water derived from EA was likely to affect DCM transformation.This work may provide theoretical guidance for the promotion of applied catalysts toward industrial applications.展开更多
1.Introduction Changes in land use are key factors promoting global climate change,and the side effects of mining activity that destroy the soil,vegetation,and biodiversity lead to imbalanced carbon cycling in terrest...1.Introduction Changes in land use are key factors promoting global climate change,and the side effects of mining activity that destroy the soil,vegetation,and biodiversity lead to imbalanced carbon cycling in terrestrial ecosystems.展开更多
To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concret...To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concrete T-beams,destructive tests were conducted on full-scale pre-stressed concrete beams.Based on the measurement and ana-lysis of beam deflection,strain,and crack development under various loading levels during the research tests,combined with the verification coefficient indicators specified in the codes,the verification coefficients of bridges at different stages of damage can be examined.The results indicate that the T-beams experience complete,incom-plete linear,and non-linear stages during the destructive test process.In the complete linear elastic stage,both the deflection and bottom strain verification coefficients comply with the specifications,indicating a good structural load-bearing capacity no longer adheres to the code’s requirements.In the non-linear stage,both coefficients exhi-bit a sharp increase,resulting in a further decrease in the structure’s load-bearing capacity.According to the pro-visions of the current code,the beam can be in the incomplete linear stage when both values fall within the code’s specified range.The strain verification coefficient sourced from the compression zone at the bottom of theflange is not recommended for assessing the bridge’s load-bearing capacity.展开更多
Temporomandibular joint(TMJ)disc displacement is one of the most significant subtypes of temporomandibular joint disorders,but its etiology and mechanism are poorly understood.In this study,we elucidated the mechanism...Temporomandibular joint(TMJ)disc displacement is one of the most significant subtypes of temporomandibular joint disorders,but its etiology and mechanism are poorly understood.In this study,we elucidated the mechanisms by which destruction of inflamed collagen fibrils induces alterations in the mechanical properties and positioning of the TMJ disc.By constructing a rat model of TMJ arthritis,we observed anteriorly dislocated TMJ discs with aggravated deformity in vivo from five weeks to six months after a local injection of Freund’s complete adjuvant.By mimicking inflammatory conditions with interleukin-1 beta in vitro,we observed enhanced expression of collagen-synthesis markers in primary TMJ disc cells cultured in a conventional two-dimensional environment.In contrast,three-dimensional(3D)-cultivated disc cell sheets demonstrated the disordered assembly of inflamed collagen fibrils,inappropriate arrangement,and decreased Young’s modulus.Mechanistically,inflammation-related activation of the nuclear factor kappa-B(NF-κB)pathway occurs during the progression of TMJ arthritis.NF-κB inhibition reduced the collagen fibril destruction in the inflamed disc cell sheets in vitro,and early NF-κB blockade alleviated collagen degeneration and dislocation of the TMJ discs in vivo.Therefore,the NF-κB pathway participates in the collagen remodeling in inflamed TMJ discs,offering a potential therapeutic target for disc displacement.展开更多
Photocatalytic disinfection is an eco-friendly strategy for countering bacterial pollution in aquatic environments.Numerous strategies have been devised to facilitate the generation of reactive oxygen species(ROS)with...Photocatalytic disinfection is an eco-friendly strategy for countering bacterial pollution in aquatic environments.Numerous strategies have been devised to facilitate the generation of reactive oxygen species(ROS)within photocatalysts,ultimately leading to the eradication of bacteria.However,the significance of the physical morphology of photocatalysts in the context of sterilization is frequently obscured,and the progress in the development of physical-chemical synergistic sterilization photocatalysts has been relatively limited.Herein,graphitic carbon nitride(g-C_(3)N_(4))is chemically protonated to expose more sharp edges.PL fluorescence and EIS results indicate that the protonation can accelerate photogenerated carrier separation and enhance ROS production.Meanwhile,the sharp edges on the protonated g-C_(3)N_(4)facilitate the physical disruption of cell walls for further promoting oxidative damage.Protonated C_(3)N_(4)demonstrated superior bactericidal performance than that of pristine g-C_(3)N_(4),effectively eliminating Escherichia coli within 40 minutes under irradiation.This work highlights the significance of incorporating physical and chemical synergies in photocatalyst design to enhance the disinfection efficiency of photocatalysis.展开更多
With the continuous advancement of communication and unmanned aerial vehicle(UAV)technologies,the collaborative operations of diverse platforms,including UAVs and ground vehicles,have been significantly promoted.Howev...With the continuous advancement of communication and unmanned aerial vehicle(UAV)technologies,the collaborative operations of diverse platforms,including UAVs and ground vehicles,have been significantly promoted.However,battlefield uncertainties,such as equipment failures and enemy attacks,can impact these collaborative operations'stability and communication efficiency.To this end,we design a highly destruction-resistant air-ground cooperative resilient networking platform that aims to enhance the robustness of network communications by integrating ground vehicle information for UAV network deployment.It then incorporates the concept of virtual guiding force,enabling the UAV swarm to adaptively configure its network layout based on ground vehicle information,thereby improving network destruction resistance.Simulation results demonstrate that the UAV swarm involved in the proposed platform exhibits balanced flight energy consumption and excellent performance in network destruction resistance.展开更多
This research presents a numerical simulation methodology for optimizing circular composite overlays’dimensions and pressure characteristics with orthotropic mechanical properties,specifically,for metal conduits with...This research presents a numerical simulation methodology for optimizing circular composite overlays’dimensions and pressure characteristics with orthotropic mechanical properties,specifically,for metal conduits with temperature-dependent elastoplastic behavior.The primary objective of the proposed method is to prevent crack propagation during pressure surges from operational to critical levels.This study examines the“Beineu-Bozoy-Shymkent”steel gas conduit,examining its performance across a temperature range of−40 to+50℃.This work builds on prior research on extended avalanche destruction in steel gas conduits and crack propagation prevention techniques.Theanalysis was conducted using a dynamic finite-element approach with the ANSYS-19.2/ExplicitDynamics software.Simulations of unprotected conduits revealed that increasing gas-dynamic pressure can convert a partial-depth crack into a through-crack,extending longitudinally to approximately seven times its initial length.Notably,at T=+50℃,the developed crack length was 1.2%longer than that at T=−40℃,highlighting the temperature sensitivity of crack progression.The modeling results indicate that crack propagation can be effectively controlled using a circular composite overlay with a thickness between 37.5%and 50%of the crack depth and a length approximately five times that of the initial crack,centered symmetrically over the crack.In addition,preliminary stress analysis indicated that limiting the overlay-induced pressure to 5%of the operational pressure effectively arrested crack growth without generating significant stress concentrations near the overlay boundaries,thereby preventing conduit integrity.展开更多
Itaconate,a macrophage-specific anti-inflammatory metabolite,has recently emerged as a critical regulator in rheumatoid arthritis pathogenesis.We found that itaconate is a TNF-αresponsive metabolite significantly ele...Itaconate,a macrophage-specific anti-inflammatory metabolite,has recently emerged as a critical regulator in rheumatoid arthritis pathogenesis.We found that itaconate is a TNF-αresponsive metabolite significantly elevated in the serum and synovial fluid of rheumatoid arthritis patients and we demonstrated that itaconate is primarily produced by inflammatory macrophages rather than osteoclasts or osteoblasts.In TNF-transgenic and Irg1−/−hybrid mice,a more severe bone destruction phenotype was observed.展开更多
Air blasts induced by rock-ice avalanches are common natural phenomena known for their far-field destructive impact.In this study,remote sensing images,eyewitness videos and numerical modelling were comprehensively ap...Air blasts induced by rock-ice avalanches are common natural phenomena known for their far-field destructive impact.In this study,remote sensing images,eyewitness videos and numerical modelling were comprehensively applied to analyze the initiation and propagation of the 2021 Chamoli avalancheinduced air blast.Our findings indicate that air blasts are observed from the avalanche source area to the Rishiganga valley,but nearly disappear in the Dhauliganga valley.The most intense air blast is concentrated on the left side of Ronti Gad valley,with maximum velocity and pressure estimated at over 70 m/s and 20 kPa,respectively.Such high pressure results in widespread tree breakage in the area.Based on the analysis of the Chamoli event,we further discussed the potential contribution of the avalanche flow regime,avalanche dynamics and geomorphology to the destructive potential of air blasts.Rapidly moved sliding mass can impart the air blast a high initial momentum,and this process will be exaggerated when the avalanche impacts valley walls at bends.However,when the rock-ice avalanche transforms into a debris-enriched flash flood,free water within the flowing mass can displace air,inhibiting the generation of air blasts.Our work offers new insights into the generation and propagation of rock-ice avalanche-induced air blasts,underscoring the importance of including this type of hazard during avalanche risk assessment in high-altitude glacial regions.展开更多
BACKGROUND Although laparoscopic gastrolithotomy had been widely used in clinical practice,uncommon postoperative complications still require vigilance by medical staff.CASE SUMMARY Here we report a 67-year-old man wh...BACKGROUND Although laparoscopic gastrolithotomy had been widely used in clinical practice,uncommon postoperative complications still require vigilance by medical staff.CASE SUMMARY Here we report a 67-year-old man who suffered for 18 months and underwent surgery several times due to a rare and undetected complication of laparoscopic gastricolithotomy.He presented to multiple hospitals because of sustained left upper quadrant abdominal pain one month after laparoscopic gastricolithotomy due to a large gastric bezoar caused by unrestrained eating of black dates and was diagnosed with possible intercostal neuritis.Many painkillers were used to relieve his symptoms but the condition progressed.Seven months after surgery,he was hospitalized as skin ulceration occurred in the left upper abdominal wall and was subsequently diagnosed with a massive thoracoabdominal wall abscess.One year after surgery,irreversible costal destruction was demonstrated.Both lesions were finally proved to be secondary damage due to a rare chronic gastro-abdominal wall fistula related to laparoscopic gastricolithotomy and the diameter of the gastric fistula reached 2 centimeters(cm).The patient was ultimately cured but underwent multi-regional incisions and drainage of the abscess,drainage of the gastric fistula,partial gastrectomy and removal of damaged ribs,and was followed-up for more than 4 years without recurrence.It is well-known that gastric fistula usually has an acute onset and occurs early after surgery,while chronic gastro-abdominal wall fistula especially with secondary massive thoracoabdominal wall abscess and costal destruction has rarely been reported.CONCLUSION This may be the first reported case of a chronic thoracoabdominal abscess and costal destruction caused by an undetected chronic gastro-abdominal wall fistula.We believe that this is a novel type of gastric fistula and the diagnosis and treatment were challenging.展开更多
BACKGROUND The generation of intrabony defects due to the iatrogenic use of elastic bands is an undesirable situation that can result in persistent gingival inflammation with subsequent bone degradation,thus ultimatel...BACKGROUND The generation of intrabony defects due to the iatrogenic use of elastic bands is an undesirable situation that can result in persistent gingival inflammation with subsequent bone degradation,thus ultimately leading to tooth loss.CASE SUMMARY This clinical case involved a 27-year-old male patient who complained of persistent inflammation and bleeding in the upper anterior region of the gums,despite having undergone dental cleaning for at least 4 years.The dental and medical history indicated the use of removable orthodontic appliances for 8 years,after which braces were placed for 2 years.The intraoral evaluation revealed inflammation and localized suppuration in teeth 11 and 12.Measurements of 2-7 mm for probing depth and 1-5 mm for clinical attachment loss were detected,and combined bone loss was observed via radiographs.Based on the clinical and radiographic findings,localized stage III,grade C periodontitis was diagnosed.During subgingival debridement,two elastic bands emerged around the involved teeth.The bone defects persisted;therefore,they were surgically addressed using a papilla preservation flap and guided tissue regeneration(GTR).CONCLUSION The use of elastic bands of various sizes and elasticities is often essential in multiple orthodontic treatments.However,it is crucial to perform a thorough check-up for each patient during treatment and at the end of treatment to remove any remaining residue of resin,metal bands,or orthodontic bands.Additionally,it is imperative to inform the patients of the importance of attending their follow-up appointments.The use of elastic bands in orthodontics requires special care;moreover,GTR is a management option for intrabony defects associated with the iatrogenic use of bands.展开更多
Intelligent perception,as a cutting-edge field of modern science and technology,is profoundly changing our understanding and interaction with the world.With the rapid development of artificial intelligence,the Interne...Intelligent perception,as a cutting-edge field of modern science and technology,is profoundly changing our understanding and interaction with the world.With the rapid development of artificial intelligence,the Internet of things,big data,and other technologies,intelligent perception systems have shown great potential in non-destructive testing,safety monitoring,human-computer interaction,and precision measurement.Traditional sensing technologies face many challenges in complex scenarios or specific needs,while intelligent perception provides a new path for innovation and breakthroughs in instrumentation and sensing technologies through multidisciplinary integration.展开更多
Dear Editor,I am Yuki Tanaka from Hakodate Central General Hospital,Japan.Mikulicz’s disease is characterized by symmetrical swelling of lacrimal and salivary glands.In 2012,a Japanese study group proposed comprehens...Dear Editor,I am Yuki Tanaka from Hakodate Central General Hospital,Japan.Mikulicz’s disease is characterized by symmetrical swelling of lacrimal and salivary glands.In 2012,a Japanese study group proposed comprehensive diagnostic criteria for immunoglobulin G4-related disease(IgG4-RD)^([1]).They have revealed that Mikulicz’s disease is a systemic IgG4-RD and attracted attentions of ophthalmologists.In 2014,the criteria for IgG4-related ophthalmic disease(IgG4-ROD)were established.展开更多
Pre-reading 1.What did historians believe caused the decline of Easter Island’s population?2.How did the Rapa Nui people grow crops in a harsh environment?Easter Island,which is in the Pacific Ocean to the west of Ch...Pre-reading 1.What did historians believe caused the decline of Easter Island’s population?2.How did the Rapa Nui people grow crops in a harsh environment?Easter Island,which is in the Pacific Ocean to the west of Chile,is famous for its giant stone statues.For a long time,historians believed that the people who once lived there destroyed their environment by using too many natural resources.As the island could support fewer people,the population dwindled.However,new research suggested that this probably wasn’t true.展开更多
This paper is focused on discussing the case of Las Loras UNESCO Global Geopark,in Spain,as an example to show the contribution of Geoparks to the dissemination of science and the relevance of preserving geoheritage b...This paper is focused on discussing the case of Las Loras UNESCO Global Geopark,in Spain,as an example to show the contribution of Geoparks to the dissemination of science and the relevance of preserving geoheritage by implementing simple measures based on communication and prevention.Natural and anthropic hazards derived from climate change are endangering heritage and the well-ness of the society.Geoheritage is vulnerable.Nowadays we are witnessing the destruction of monuments with high emotional significance due to wars,but climate change is also contributing to the loss of the same cultural heritage.Prevention is often the best way to protect geoheritage from disappearing and society is the best agent to implement preventive measures.Citizens are often unaware of the important treasures they have around them.Geoparks have been a great tool to bring awareness in society,since by involving the public in the whole process of recognition and promotion,they protect the space and the cultural and economic values associated with them.It is important to communicate the initiatives taking place in the Geoparks to explain the importance of geology and the risk of losing the geoheritage if natural hazards increase.Las Loras study is a good practice to implement in other Geoparks.展开更多
1.Introduction Microbiologically influenced corrosion(MIC)is the destruction of metal materials caused by the activity of microorganisms and the participation of biofilms[1].Global economic costs caused by marine corr...1.Introduction Microbiologically influenced corrosion(MIC)is the destruction of metal materials caused by the activity of microorganisms and the participation of biofilms[1].Global economic costs caused by marine corrosion come to hundreds of billion dollars per year,with approximately 20% of corrosion losses caused by MIC[2].The MIC poses a serious threat to the integrity and safety of assets in the oil and gas industry,water industry,and nuclear waste storage facili-ties[3-5].展开更多
1.Objectives,A nearly E-W trending Early Mesozoic alkaline and mafic rock belt is exposed on the northern margin of the North China Craton(NCC),and geochemistry and isotope studies indicate that the magmas were origin...1.Objectives,A nearly E-W trending Early Mesozoic alkaline and mafic rock belt is exposed on the northern margin of the North China Craton(NCC),and geochemistry and isotope studies indicate that the magmas were originated from the depleted lithospheric mantle,implying the thinning and destruction of the lithosphere in the northern margin and eastern of the NCC(Zhang SH et al.,2012).The Alxa Block is located in the westernmost part of the NCC,which plays a significant part in understanding the tectonic evolution of the NCC.This paper mainly reports a firstly discovered 217 Ma gabbro from the Yabulai district in the western Alxa Block,where widely exposes Late Paleozoic intermediate-acid intrusive rocks and volcanic rocks(Liu Q et al.,2017).展开更多
Background:Multiple myeloma(MM)remains a formidable clinical challenge due to its high relapse rate and resistance to existing therapies.Estrogen-related receptor gamma(ERRγ),a nuclear receptor critical for cellular ...Background:Multiple myeloma(MM)remains a formidable clinical challenge due to its high relapse rate and resistance to existing therapies.Estrogen-related receptor gamma(ERRγ),a nuclear receptor critical for cellular energy metabolism,has been implicated in various cancers.but its role in MM remains unclear.Methods:ERRγexpres-sion was assessed using bioinformatics and RT-qPCR.Functional studies were conducted through siRNA-mediated ERRγknockdown and treatment with the inverse agonist GSK5182 to examine their effects on MM cell proliferation and apoptosis.Results:ERRγwas significantly upregulated in the bone marrow of MM patients,correlating with advanced clinical stages and pathological fractures.Inhibition of ERRγreduced MM cell expansion both in vitro and in vivo,while promoting mitochondrial-dependent apoptosis.Co-immunoprecipitation assays demonstrated a physical association between ERRγand P65.Inhibition of ERRγattenuated canonical nuclear factor-kappa B(NF-κB)signaling by blocking the nuclear translocation of its key effector p65.Additionally,modulation of ERRγaltered receptor activator of nuclear factor-κB ligand(RANKL)levels,implying a potential role in bone degradation observed in MM cases.Conclusion:Collectively,the data broaden understanding of ERRγ’s contribution to MM development and propose it as a viable target for therapeutic intervention.展开更多
X-ray free-electron lasers(XFELs)can generate bright X-ray pulses with short durations and narrow bandwidths,leading to extensive applica-tions in many disciplines such as biology,materials science,and ultrafast scien...X-ray free-electron lasers(XFELs)can generate bright X-ray pulses with short durations and narrow bandwidths,leading to extensive applica-tions in many disciplines such as biology,materials science,and ultrafast science.Recently,there has been a growing demand for X-ray pulses with high photon energy,especially from developments in“diffraction-before-destruction”applications and in dynamic mesoscale materials science.Here,we propose utilizing the electron beams at XFELs to drive a meter-scale two-bunch plasma wakefield accelerator and double the energy of the accelerated beam in a compact and inexpensive way.Particle-in-cell simulations are performed to study the beam quality degradation under different beam loading scenarios and nonideal issues,and the results show that more than half of the accelerated beam can meet the requirements of XFELs.After its transport to the undulator,the accelerated beam can improve the photon energy to 22 keV by a factor of around four while maintaining the peak power,thus offering a promising pathway toward high-photon-energy XFELs.展开更多
The immune-stromal cell interactions play a key role in health and diseases. In periodontitis, the most prevalent infectious disease in humans, immune cells accumulate in the oral mucosa and promote bone destruction b...The immune-stromal cell interactions play a key role in health and diseases. In periodontitis, the most prevalent infectious disease in humans, immune cells accumulate in the oral mucosa and promote bone destruction by inducing receptor activator of nuclear factor-κB ligand (RANKL) expression in osteogenic cells such as osteoblasts and periodontal ligament cells. However, the detailed mechanism underlying immune–bone cell interactions in periodontitis is not fully understood. Here, we performed single-cell RNAsequencing analysis on mouse periodontal lesions and showed that neutrophil–osteogenic cell crosstalk is involved in periodontitis-induced bone loss. The periodontal lesions displayed marked infiltration of neutrophils, and in silico analyses suggested that the neutrophils interacted with osteogenic cells through cytokine production. Among the cytokines expressed in the periodontal neutrophils, oncostatin M (OSM) potently induced RANKL expression in the primary osteoblasts, and deletion of the OSM receptor in osteogenic cells significantly ameliorated periodontitis-induced bone loss. Epigenomic data analyses identified the OSM-regulated RANKL enhancer region in osteogenic cells, and mice lacking this enhancer showed decreased periodontal bone loss while maintaining physiological bone metabolism. These findings shed light on the role of neutrophils in bone regulation during bacterial infection, highlighting the novel mechanism underlying osteoimmune crosstalk.展开更多
基金supported by the National Natural Science Foundation of China (Nos.21906087 and 52070168)the Key R&D Plan of Zhejiang Province (No.2023C03127)the Fundamental Research Funds for the Central Universities (No.226-2022-00150).
文摘Catalytic destruction is an ascendant technology for the abatement of volatile organic compounds(VOCs)originating fromsolvent-based industrial processes.The varied composition tends to influence each VOC’s catalytic behavior in the reaction mixture.We investigated the catalytic destruction of multi-component VOCs including dichloromethane(DCM)and ethyl acetate(EA),as representatives from pharmaceutical waste gases,over co-supported HxPO_(4)-RuOx/CeO_(2) catalyst.A mutual inhibitory effect relating to concentrations because of competitive adsorption was verified in the binary VOCs oxidation and EA posed a more negative effect on DCM oxidation owing to EA’s superior adsorption capacity.Preferential adsorption of EA on acidic sites(HxPO_(4)/CeO_(2))promoted DCM activation on basic sites(O^(2−))and the dominating EA oxidation blocked DCM’s access to oxidation centers(RuOx/CeO_(2)),resulting in boosted monochloromethane yield and increased chlorine deposition for DCM oxidation.The impaired redox ability of Ru species owing to chlorine deposition in turn jeopardized deep oxidation of EA and its by-products,leading to increased gaseous by-products such as acetic acid originating fromEA pyrolysis.Notably,DCM at low concentration slightly promoted EA conversion at low temperatures with or without water,consistent with the enhanced EA adsorption in co-adsorption analyses.This was mainly due to that DCM impeded the shielding effect of hydrolysate deposition from rapid EA hydrolysis depending on the decreased acidity.Moreover,water benefited EA hydrolysis but decreased CO_(2) selectivity while the generated water derived from EA was likely to affect DCM transformation.This work may provide theoretical guidance for the promotion of applied catalysts toward industrial applications.
基金supported by the National Natural Science Foun dation of China(52374170 and 51974313)the National Key Research and Development Plan Project(2022YFF1303300).
文摘1.Introduction Changes in land use are key factors promoting global climate change,and the side effects of mining activity that destroy the soil,vegetation,and biodiversity lead to imbalanced carbon cycling in terrestrial ecosystems.
文摘To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concrete T-beams,destructive tests were conducted on full-scale pre-stressed concrete beams.Based on the measurement and ana-lysis of beam deflection,strain,and crack development under various loading levels during the research tests,combined with the verification coefficient indicators specified in the codes,the verification coefficients of bridges at different stages of damage can be examined.The results indicate that the T-beams experience complete,incom-plete linear,and non-linear stages during the destructive test process.In the complete linear elastic stage,both the deflection and bottom strain verification coefficients comply with the specifications,indicating a good structural load-bearing capacity no longer adheres to the code’s requirements.In the non-linear stage,both coefficients exhi-bit a sharp increase,resulting in a further decrease in the structure’s load-bearing capacity.According to the pro-visions of the current code,the beam can be in the incomplete linear stage when both values fall within the code’s specified range.The strain verification coefficient sourced from the compression zone at the bottom of theflange is not recommended for assessing the bridge’s load-bearing capacity.
基金supported by the National Natural Science Foundation of China Nos.82370983,81671015(X.W.),82230030(Y.L.),82101043(S.C.)and 82370922(Y.F.)Beijing International Science and Technology Cooperation Project No.Z221100002722003(Y.L.)+4 种基金Beijing Natural Science Foundation Nos.L234017,JL23002(Y.L.),No.7242282(S.C.)and 7232217(Y.G.)Clinical Medicine Plus X-Young Scholars Project of Peking University No.PKU2024LCXQ039(Y.L.)National Program for Multidisciplinary Cooperative Treatment on Major Diseases No.PKUSSNMP-202013(X.W.)Hygiene and Health Development Scientific Research Fostering Plan of Haidian District Beijing No.HP2023-12-509001(J.Z.)Young Clinical Research Fund of the Chinese Stomatological Association No.CSA-02022-03(J.Z.).
文摘Temporomandibular joint(TMJ)disc displacement is one of the most significant subtypes of temporomandibular joint disorders,but its etiology and mechanism are poorly understood.In this study,we elucidated the mechanisms by which destruction of inflamed collagen fibrils induces alterations in the mechanical properties and positioning of the TMJ disc.By constructing a rat model of TMJ arthritis,we observed anteriorly dislocated TMJ discs with aggravated deformity in vivo from five weeks to six months after a local injection of Freund’s complete adjuvant.By mimicking inflammatory conditions with interleukin-1 beta in vitro,we observed enhanced expression of collagen-synthesis markers in primary TMJ disc cells cultured in a conventional two-dimensional environment.In contrast,three-dimensional(3D)-cultivated disc cell sheets demonstrated the disordered assembly of inflamed collagen fibrils,inappropriate arrangement,and decreased Young’s modulus.Mechanistically,inflammation-related activation of the nuclear factor kappa-B(NF-κB)pathway occurs during the progression of TMJ arthritis.NF-κB inhibition reduced the collagen fibril destruction in the inflamed disc cell sheets in vitro,and early NF-κB blockade alleviated collagen degeneration and dislocation of the TMJ discs in vivo.Therefore,the NF-κB pathway participates in the collagen remodeling in inflamed TMJ discs,offering a potential therapeutic target for disc displacement.
基金supported by the National Natural Science Foundation of China(No.2021YFC3200603)the Special Research Assistant Program,Chinese Academy of Sciences.
文摘Photocatalytic disinfection is an eco-friendly strategy for countering bacterial pollution in aquatic environments.Numerous strategies have been devised to facilitate the generation of reactive oxygen species(ROS)within photocatalysts,ultimately leading to the eradication of bacteria.However,the significance of the physical morphology of photocatalysts in the context of sterilization is frequently obscured,and the progress in the development of physical-chemical synergistic sterilization photocatalysts has been relatively limited.Herein,graphitic carbon nitride(g-C_(3)N_(4))is chemically protonated to expose more sharp edges.PL fluorescence and EIS results indicate that the protonation can accelerate photogenerated carrier separation and enhance ROS production.Meanwhile,the sharp edges on the protonated g-C_(3)N_(4)facilitate the physical disruption of cell walls for further promoting oxidative damage.Protonated C_(3)N_(4)demonstrated superior bactericidal performance than that of pristine g-C_(3)N_(4),effectively eliminating Escherichia coli within 40 minutes under irradiation.This work highlights the significance of incorporating physical and chemical synergies in photocatalyst design to enhance the disinfection efficiency of photocatalysis.
基金supported by the Researchers Supporting Project of King Saud University,Riyadh,Saudi Arabia,under Project RSPD2025R681。
文摘With the continuous advancement of communication and unmanned aerial vehicle(UAV)technologies,the collaborative operations of diverse platforms,including UAVs and ground vehicles,have been significantly promoted.However,battlefield uncertainties,such as equipment failures and enemy attacks,can impact these collaborative operations'stability and communication efficiency.To this end,we design a highly destruction-resistant air-ground cooperative resilient networking platform that aims to enhance the robustness of network communications by integrating ground vehicle information for UAV network deployment.It then incorporates the concept of virtual guiding force,enabling the UAV swarm to adaptively configure its network layout based on ground vehicle information,thereby improving network destruction resistance.Simulation results demonstrate that the UAV swarm involved in the proposed platform exhibits balanced flight energy consumption and excellent performance in network destruction resistance.
基金supported by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan(Grant No.AP19680589).
文摘This research presents a numerical simulation methodology for optimizing circular composite overlays’dimensions and pressure characteristics with orthotropic mechanical properties,specifically,for metal conduits with temperature-dependent elastoplastic behavior.The primary objective of the proposed method is to prevent crack propagation during pressure surges from operational to critical levels.This study examines the“Beineu-Bozoy-Shymkent”steel gas conduit,examining its performance across a temperature range of−40 to+50℃.This work builds on prior research on extended avalanche destruction in steel gas conduits and crack propagation prevention techniques.Theanalysis was conducted using a dynamic finite-element approach with the ANSYS-19.2/ExplicitDynamics software.Simulations of unprotected conduits revealed that increasing gas-dynamic pressure can convert a partial-depth crack into a through-crack,extending longitudinally to approximately seven times its initial length.Notably,at T=+50℃,the developed crack length was 1.2%longer than that at T=−40℃,highlighting the temperature sensitivity of crack progression.The modeling results indicate that crack propagation can be effectively controlled using a circular composite overlay with a thickness between 37.5%and 50%of the crack depth and a length approximately five times that of the initial crack,centered symmetrically over the crack.In addition,preliminary stress analysis indicated that limiting the overlay-induced pressure to 5%of the operational pressure effectively arrested crack growth without generating significant stress concentrations near the overlay boundaries,thereby preventing conduit integrity.
基金supported by the National Natural Science Foundation of China(NSFC)(No.82130073,No.82372430,No.31871431,No.31821002,No.32101011,No.22177073)Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System+3 种基金Shanghai Science and Technology Committee(No.23ZR1437600,No.24410710600,No.24141901302)Shenzhen Medical Research Fund(No.B2302005)The Open Project Funding of Shanghai Key Laboratory of Orthopedics(No.KFKT202201)Biomaterials and Regenerative Medicine Institute Cooperative,Research Project,Shanghai Jiao Tong University School of Medicine(No.2022LHA01).
文摘Itaconate,a macrophage-specific anti-inflammatory metabolite,has recently emerged as a critical regulator in rheumatoid arthritis pathogenesis.We found that itaconate is a TNF-αresponsive metabolite significantly elevated in the serum and synovial fluid of rheumatoid arthritis patients and we demonstrated that itaconate is primarily produced by inflammatory macrophages rather than osteoclasts or osteoblasts.In TNF-transgenic and Irg1−/−hybrid mice,a more severe bone destruction phenotype was observed.
基金supported by the National Natural Science Foundation of China(Grant Nos.U2244227,42277126 and 41977215).
文摘Air blasts induced by rock-ice avalanches are common natural phenomena known for their far-field destructive impact.In this study,remote sensing images,eyewitness videos and numerical modelling were comprehensively applied to analyze the initiation and propagation of the 2021 Chamoli avalancheinduced air blast.Our findings indicate that air blasts are observed from the avalanche source area to the Rishiganga valley,but nearly disappear in the Dhauliganga valley.The most intense air blast is concentrated on the left side of Ronti Gad valley,with maximum velocity and pressure estimated at over 70 m/s and 20 kPa,respectively.Such high pressure results in widespread tree breakage in the area.Based on the analysis of the Chamoli event,we further discussed the potential contribution of the avalanche flow regime,avalanche dynamics and geomorphology to the destructive potential of air blasts.Rapidly moved sliding mass can impart the air blast a high initial momentum,and this process will be exaggerated when the avalanche impacts valley walls at bends.However,when the rock-ice avalanche transforms into a debris-enriched flash flood,free water within the flowing mass can displace air,inhibiting the generation of air blasts.Our work offers new insights into the generation and propagation of rock-ice avalanche-induced air blasts,underscoring the importance of including this type of hazard during avalanche risk assessment in high-altitude glacial regions.
文摘BACKGROUND Although laparoscopic gastrolithotomy had been widely used in clinical practice,uncommon postoperative complications still require vigilance by medical staff.CASE SUMMARY Here we report a 67-year-old man who suffered for 18 months and underwent surgery several times due to a rare and undetected complication of laparoscopic gastricolithotomy.He presented to multiple hospitals because of sustained left upper quadrant abdominal pain one month after laparoscopic gastricolithotomy due to a large gastric bezoar caused by unrestrained eating of black dates and was diagnosed with possible intercostal neuritis.Many painkillers were used to relieve his symptoms but the condition progressed.Seven months after surgery,he was hospitalized as skin ulceration occurred in the left upper abdominal wall and was subsequently diagnosed with a massive thoracoabdominal wall abscess.One year after surgery,irreversible costal destruction was demonstrated.Both lesions were finally proved to be secondary damage due to a rare chronic gastro-abdominal wall fistula related to laparoscopic gastricolithotomy and the diameter of the gastric fistula reached 2 centimeters(cm).The patient was ultimately cured but underwent multi-regional incisions and drainage of the abscess,drainage of the gastric fistula,partial gastrectomy and removal of damaged ribs,and was followed-up for more than 4 years without recurrence.It is well-known that gastric fistula usually has an acute onset and occurs early after surgery,while chronic gastro-abdominal wall fistula especially with secondary massive thoracoabdominal wall abscess and costal destruction has rarely been reported.CONCLUSION This may be the first reported case of a chronic thoracoabdominal abscess and costal destruction caused by an undetected chronic gastro-abdominal wall fistula.We believe that this is a novel type of gastric fistula and the diagnosis and treatment were challenging.
文摘BACKGROUND The generation of intrabony defects due to the iatrogenic use of elastic bands is an undesirable situation that can result in persistent gingival inflammation with subsequent bone degradation,thus ultimately leading to tooth loss.CASE SUMMARY This clinical case involved a 27-year-old male patient who complained of persistent inflammation and bleeding in the upper anterior region of the gums,despite having undergone dental cleaning for at least 4 years.The dental and medical history indicated the use of removable orthodontic appliances for 8 years,after which braces were placed for 2 years.The intraoral evaluation revealed inflammation and localized suppuration in teeth 11 and 12.Measurements of 2-7 mm for probing depth and 1-5 mm for clinical attachment loss were detected,and combined bone loss was observed via radiographs.Based on the clinical and radiographic findings,localized stage III,grade C periodontitis was diagnosed.During subgingival debridement,two elastic bands emerged around the involved teeth.The bone defects persisted;therefore,they were surgically addressed using a papilla preservation flap and guided tissue regeneration(GTR).CONCLUSION The use of elastic bands of various sizes and elasticities is often essential in multiple orthodontic treatments.However,it is crucial to perform a thorough check-up for each patient during treatment and at the end of treatment to remove any remaining residue of resin,metal bands,or orthodontic bands.Additionally,it is imperative to inform the patients of the importance of attending their follow-up appointments.The use of elastic bands in orthodontics requires special care;moreover,GTR is a management option for intrabony defects associated with the iatrogenic use of bands.
文摘Intelligent perception,as a cutting-edge field of modern science and technology,is profoundly changing our understanding and interaction with the world.With the rapid development of artificial intelligence,the Internet of things,big data,and other technologies,intelligent perception systems have shown great potential in non-destructive testing,safety monitoring,human-computer interaction,and precision measurement.Traditional sensing technologies face many challenges in complex scenarios or specific needs,while intelligent perception provides a new path for innovation and breakthroughs in instrumentation and sensing technologies through multidisciplinary integration.
文摘Dear Editor,I am Yuki Tanaka from Hakodate Central General Hospital,Japan.Mikulicz’s disease is characterized by symmetrical swelling of lacrimal and salivary glands.In 2012,a Japanese study group proposed comprehensive diagnostic criteria for immunoglobulin G4-related disease(IgG4-RD)^([1]).They have revealed that Mikulicz’s disease is a systemic IgG4-RD and attracted attentions of ophthalmologists.In 2014,the criteria for IgG4-related ophthalmic disease(IgG4-ROD)were established.
文摘Pre-reading 1.What did historians believe caused the decline of Easter Island’s population?2.How did the Rapa Nui people grow crops in a harsh environment?Easter Island,which is in the Pacific Ocean to the west of Chile,is famous for its giant stone statues.For a long time,historians believed that the people who once lived there destroyed their environment by using too many natural resources.As the island could support fewer people,the population dwindled.However,new research suggested that this probably wasn’t true.
文摘This paper is focused on discussing the case of Las Loras UNESCO Global Geopark,in Spain,as an example to show the contribution of Geoparks to the dissemination of science and the relevance of preserving geoheritage by implementing simple measures based on communication and prevention.Natural and anthropic hazards derived from climate change are endangering heritage and the well-ness of the society.Geoheritage is vulnerable.Nowadays we are witnessing the destruction of monuments with high emotional significance due to wars,but climate change is also contributing to the loss of the same cultural heritage.Prevention is often the best way to protect geoheritage from disappearing and society is the best agent to implement preventive measures.Citizens are often unaware of the important treasures they have around them.Geoparks have been a great tool to bring awareness in society,since by involving the public in the whole process of recognition and promotion,they protect the space and the cultural and economic values associated with them.It is important to communicate the initiatives taking place in the Geoparks to explain the importance of geology and the risk of losing the geoheritage if natural hazards increase.Las Loras study is a good practice to implement in other Geoparks.
基金supported by the National Natural Science Foun-dation of China(Nos.52371071,51971228,and 51771212).
文摘1.Introduction Microbiologically influenced corrosion(MIC)is the destruction of metal materials caused by the activity of microorganisms and the participation of biofilms[1].Global economic costs caused by marine corrosion come to hundreds of billion dollars per year,with approximately 20% of corrosion losses caused by MIC[2].The MIC poses a serious threat to the integrity and safety of assets in the oil and gas industry,water industry,and nuclear waste storage facili-ties[3-5].
基金supported by the National Key Research and Development Project of the Ministry of Science and Technology of China(Grant No.2017YFC0601301)the Basic Scientific Research Fund of the Institute of Geology,Chinese Academy of Geological Sciences(No.J2103)+1 种基金the National Natural Science Foundation of China(Grant No.41572190,41972224)the China Geological Survey(Grants No.DD2019004).
文摘1.Objectives,A nearly E-W trending Early Mesozoic alkaline and mafic rock belt is exposed on the northern margin of the North China Craton(NCC),and geochemistry and isotope studies indicate that the magmas were originated from the depleted lithospheric mantle,implying the thinning and destruction of the lithosphere in the northern margin and eastern of the NCC(Zhang SH et al.,2012).The Alxa Block is located in the westernmost part of the NCC,which plays a significant part in understanding the tectonic evolution of the NCC.This paper mainly reports a firstly discovered 217 Ma gabbro from the Yabulai district in the western Alxa Block,where widely exposes Late Paleozoic intermediate-acid intrusive rocks and volcanic rocks(Liu Q et al.,2017).
文摘Background:Multiple myeloma(MM)remains a formidable clinical challenge due to its high relapse rate and resistance to existing therapies.Estrogen-related receptor gamma(ERRγ),a nuclear receptor critical for cellular energy metabolism,has been implicated in various cancers.but its role in MM remains unclear.Methods:ERRγexpres-sion was assessed using bioinformatics and RT-qPCR.Functional studies were conducted through siRNA-mediated ERRγknockdown and treatment with the inverse agonist GSK5182 to examine their effects on MM cell proliferation and apoptosis.Results:ERRγwas significantly upregulated in the bone marrow of MM patients,correlating with advanced clinical stages and pathological fractures.Inhibition of ERRγreduced MM cell expansion both in vitro and in vivo,while promoting mitochondrial-dependent apoptosis.Co-immunoprecipitation assays demonstrated a physical association between ERRγand P65.Inhibition of ERRγattenuated canonical nuclear factor-kappa B(NF-κB)signaling by blocking the nuclear translocation of its key effector p65.Additionally,modulation of ERRγaltered receptor activator of nuclear factor-κB ligand(RANKL)levels,implying a potential role in bone degradation observed in MM cases.Conclusion:Collectively,the data broaden understanding of ERRγ’s contribution to MM development and propose it as a viable target for therapeutic intervention.
基金supported by the National Grand Instrument Project No. SQ2019YFF01014400the Natural Science Foundation of China (Grant Nos. 12375147, 12435011, 12075030)+2 种基金the Beijing Outstanding Young Scientist Project, Project for Young Scientists in Basic Research of Chinese Academy of Sciences (YSBR-115)the Beijing Normal University Scientific Research Initiation Fund for Introducing Talents No. 310432104the Fundamental Research Funds for the Central Universities, Peking University
文摘X-ray free-electron lasers(XFELs)can generate bright X-ray pulses with short durations and narrow bandwidths,leading to extensive applica-tions in many disciplines such as biology,materials science,and ultrafast science.Recently,there has been a growing demand for X-ray pulses with high photon energy,especially from developments in“diffraction-before-destruction”applications and in dynamic mesoscale materials science.Here,we propose utilizing the electron beams at XFELs to drive a meter-scale two-bunch plasma wakefield accelerator and double the energy of the accelerated beam in a compact and inexpensive way.Particle-in-cell simulations are performed to study the beam quality degradation under different beam loading scenarios and nonideal issues,and the results show that more than half of the accelerated beam can meet the requirements of XFELs.After its transport to the undulator,the accelerated beam can improve the photon energy to 22 keV by a factor of around four while maintaining the peak power,thus offering a promising pathway toward high-photon-energy XFELs.
基金supported in part by the Japan Agency for Medical Research and Development (AMED) under grant number JP20ek0410073, JP23ek0410108, JP22ek0410100, AMEDCREST under grant number JP19gm1210008 and AMED-PRIME under grant number JP21gm6310029, the AMED Japan Initiative for World leading Vaccine Research and Development Centers (JP223fa627001)Japan Society for the Promotion of Science (JSPS): Scientific Research S (21H05046), Scientific Research B (21H03104, 22H03195, and 22H02844) and Challenging Research (20K21515 and 21K18254)+3 种基金the JST FOREST Program (JPMJFR2261, JPMJFR205Z)Y.A. was supported by a JSPS Research Fellowship for Young Scientists (23KJ1949)Japanese Society for Immunology (JSI)Kibou Scholarship for Doctoral Students in Immunology。
文摘The immune-stromal cell interactions play a key role in health and diseases. In periodontitis, the most prevalent infectious disease in humans, immune cells accumulate in the oral mucosa and promote bone destruction by inducing receptor activator of nuclear factor-κB ligand (RANKL) expression in osteogenic cells such as osteoblasts and periodontal ligament cells. However, the detailed mechanism underlying immune–bone cell interactions in periodontitis is not fully understood. Here, we performed single-cell RNAsequencing analysis on mouse periodontal lesions and showed that neutrophil–osteogenic cell crosstalk is involved in periodontitis-induced bone loss. The periodontal lesions displayed marked infiltration of neutrophils, and in silico analyses suggested that the neutrophils interacted with osteogenic cells through cytokine production. Among the cytokines expressed in the periodontal neutrophils, oncostatin M (OSM) potently induced RANKL expression in the primary osteoblasts, and deletion of the OSM receptor in osteogenic cells significantly ameliorated periodontitis-induced bone loss. Epigenomic data analyses identified the OSM-regulated RANKL enhancer region in osteogenic cells, and mice lacking this enhancer showed decreased periodontal bone loss while maintaining physiological bone metabolism. These findings shed light on the role of neutrophils in bone regulation during bacterial infection, highlighting the novel mechanism underlying osteoimmune crosstalk.