An efficient despeclding algorithm is proposed based on stationary wavelet transform (SWT) for synthetic aperture radar (SAR) images. The statistical model of wavelet coefficients is analyzed and its performance i...An efficient despeclding algorithm is proposed based on stationary wavelet transform (SWT) for synthetic aperture radar (SAR) images. The statistical model of wavelet coefficients is analyzed and its performance is modeled with a mixture density of two zero-mean Gaussian distributions. A fuzzy shrinkage factor is derived based on the minimum mean square error (MMSE) criteria with Bayesian estimation. In the case above, the ideas of region division and fuzzy shrinkage arc adopted according to the interscale dependencies among wavelet coefficients. The noise-free wavelet coefficients are estimated accurately. Experimental results show that the algorithm proposed is superior to the refined Lee filter, wavelet soft thresbolding shrinkage and SWT shrinkage algorithms in terms of smoothing effects and edges preservation.展开更多
A novel and efficient speckle noise reduction algorithm based on Bayesian wavelet shrinkage using cycle spinning is proposed. First, the sub-band decompositions of non-logarithmically transformed SAR images are shown....A novel and efficient speckle noise reduction algorithm based on Bayesian wavelet shrinkage using cycle spinning is proposed. First, the sub-band decompositions of non-logarithmically transformed SAR images are shown. Then, a Bayesian wavelet shrinkage factor is applied to the decomposed data to estimate noise-free wavelet coefficients. The method is based on the Mixture Gaussian Distributed (MGD) modeling of sub-band coefficients. Finally, multi-resolution wavelet coefficients are reconstructed by wavelet-threshold using cycle spinning. Experimental results show that the proposed despeclding algorithm is possible to achieve an excellent balance between suppresses speckle effectively and preserves as many image details and sharpness as possible. The new method indicated its higher performance than the other speckle noise reduction techniques and minimizing the effect of pseudo-Gibbs phenomena.展开更多
基金A Postdoctoral Science Foundation of China (J63104020156) National Defence Foundation of China
文摘An efficient despeclding algorithm is proposed based on stationary wavelet transform (SWT) for synthetic aperture radar (SAR) images. The statistical model of wavelet coefficients is analyzed and its performance is modeled with a mixture density of two zero-mean Gaussian distributions. A fuzzy shrinkage factor is derived based on the minimum mean square error (MMSE) criteria with Bayesian estimation. In the case above, the ideas of region division and fuzzy shrinkage arc adopted according to the interscale dependencies among wavelet coefficients. The noise-free wavelet coefficients are estimated accurately. Experimental results show that the algorithm proposed is superior to the refined Lee filter, wavelet soft thresbolding shrinkage and SWT shrinkage algorithms in terms of smoothing effects and edges preservation.
基金Supported by the Education Foundation of Anhui Province (No.2005kj058)
文摘A novel and efficient speckle noise reduction algorithm based on Bayesian wavelet shrinkage using cycle spinning is proposed. First, the sub-band decompositions of non-logarithmically transformed SAR images are shown. Then, a Bayesian wavelet shrinkage factor is applied to the decomposed data to estimate noise-free wavelet coefficients. The method is based on the Mixture Gaussian Distributed (MGD) modeling of sub-band coefficients. Finally, multi-resolution wavelet coefficients are reconstructed by wavelet-threshold using cycle spinning. Experimental results show that the proposed despeclding algorithm is possible to achieve an excellent balance between suppresses speckle effectively and preserves as many image details and sharpness as possible. The new method indicated its higher performance than the other speckle noise reduction techniques and minimizing the effect of pseudo-Gibbs phenomena.