期刊文献+
共找到13,738篇文章
< 1 2 250 >
每页显示 20 50 100
A Review:From Aquatic Lives Locomotion to Bio-inspired Robot Mechanical Designations
1
作者 Pengxiao Bao Liwei Shi +2 位作者 Lijie Duan Shuxiang Guo Zhengyu Li 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第6期2487-2511,共25页
With the development of camera technology,high-speed cameras have greatly contributed to capturing the movement and posture of animals,which has dramatically promoted experimental biology research.At the same time,wit... With the development of camera technology,high-speed cameras have greatly contributed to capturing the movement and posture of animals,which has dramatically promoted experimental biology research.At the same time,with the concept of bionics gradually gaining popularity among researchers,the design of robots is absorbing more and more biological features,where the interest in the bio-inspired robot is hewed out.Compared with the traditional robot,the bio-inspired robot imitates the motion pattern to achieve similar propulsion features,which may be more effective and reasonable.In this paper,the motion patterns of aquatic animals are divided into four categories according to their propulsion mechanisms:drag-based,lift-based,jet-based,and interface-based.And bio-inspired robots imitating aquatic prototypes are introduced and reviewed.Finally,the prospect of aquatic bio-inspired robots is discussed. 展开更多
关键词 BIONIC Bio-inspired robot Aquatic animal Propelling mechanism Structure design
在线阅读 下载PDF
基于MATLAB App Designer的数字岩心建模软件设计与开发
2
作者 左艳彤 邢兰昌 +1 位作者 贾宁洪 刘宝 《计算机测量与控制》 2026年第1期235-243,共9页
为解决现有商用数字岩心建模软件功能可扩展性弱、成本高等问题,文章基于MATLAB App Designer工具开发了一款集成化的数字岩心建模软件,该软件包括图像处理、图像分析和孔隙网络提取等三大功能模块;图像处理模块集成了中值滤波、高斯滤... 为解决现有商用数字岩心建模软件功能可扩展性弱、成本高等问题,文章基于MATLAB App Designer工具开发了一款集成化的数字岩心建模软件,该软件包括图像处理、图像分析和孔隙网络提取等三大功能模块;图像处理模块集成了中值滤波、高斯滤波、SUSAN平滑、图像锐化及阈值分割等多种图像处理算法;图像分析模块采用多平面切片与序列叠加方法、借助三维交互技术实现了岩心结构的三维可视化、切面展示与旋转浏览;孔隙网络提取模块采用最大球法提取孔隙网络,从而获取配位数、孔隙半径、孔隙体积等关键结构参数,利用直方图对结构参数分布进行统计分析;利用典型岩心样本对所开发的软件进行功能测试,结果表明:该软件功能集成度高、界面友好、操作简便,能够有效提升图像质量、对岩心图像进行三维可视化展示以及准确提取三维岩心的孔隙网络结构特征;软件具备良好的可扩展性和二次开发潜力,为后续开发数字岩心电学、声学、核磁共振等响应的数值仿真模块提供了前提。 展开更多
关键词 数字岩心 MATLAB App Designer 图像处理 图像分析 孔隙网络提取
在线阅读 下载PDF
Progress in MOF-based catalyst design and reaction mechanisms for CO_(2)hydrogenation to methanol
3
作者 YU Zhifu JIANG Lei WU Mingbo 《燃料化学学报(中英文)》 北大核心 2026年第1期146-162,共17页
Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon... Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon neutrality goals.The hydrogenation of CO_(2)to methanol not only enables carbon sequestration and recycling,but also provides a route to produce high value-added fuels and basic chemical feedstocks,holding significant environmental and economic potential.However,this conversion process is thermodynamically and kinetically limited,and traditional catalyst systems(e.g.,Cu/ZnO/Al_(2)O_(3))exhibit inadequate activity,selectivity,and stability under mild conditions.Therefore,the development of novel high-performance catalysts with precisely tunable structures and functionalities is imperative.Metal-organic frameworks(MOFs),as crystalline porous materials with high surface area,tunable pore structures,and diverse metal-ligand compositions,have the great potential in CO_(2)hydrogenation catalysis.Their structural design flexibility allows for the construction of well-dispersed active sites,tailored electronic environments,and enhanced metal-support interactions.This review systematically summarizes the recent advances in MOF-based and MOF-derived catalysts for CO_(2)hydrogenation to methanol,focusing on four design strategies:(1)spatial confinement and in situ construction,(2)defect engineering and ion-exchange,(3)bimetallic synergy and hybrid structure design,and(4)MOF-derived nanomaterial synthesis.These approaches significantly improve CO_(2)conversion and methanol selectivity by optimizing metal dispersion,interfacial structures,and reaction pathways.The reaction mechanism is further explored by focusing on the three main reaction pathways:the formate pathway(HCOO*),the RWGS(Reverse Water Gas Shift reaction)+CO*hydrogenation pathway,and the trans-COOH pathway.In situ spectroscopic studies and density functional theory(DFT)calculations elucidate the formation and transformation of key intermediates,as well as the roles of active sites,metal-support interfaces,oxygen vacancies,and promoters.Additionally,representative catalytic performance data for MOFbased systems are compiled and compared,demonstrating their advantages over traditional catalysts in terms of CO_(2)conversion,methanol selectivity,and space-time yield.Future perspectives for MOF-based CO_(2)hydrogenation catalysts will prioritize two main directions:structural design and mechanistic understanding.The precise construction of active sites through multi-metallic synergy,defect engineering,and interfacial electronic modulation should be made to enhance catalyst selectivity and stability.In addition,advanced in situ characterization techniques combined with theoretical modeling are essential to unravel the detailed reaction mechanisms and intermediate behaviors,thereby guiding rational catalyst design.Moreover,to enable industrial application,challenges related to thermal/hydrothermal stability,catalyst recyclability,and cost-effective large-scale synthesis must be addressed.The development of green,scalable preparation methods and the integration of MOF catalysts into practical reaction systems(e.g.,flow reactors)will be crucial for bridging the gap between laboratory research and commercial deployment.Ultimately,multi-scale structure-performance optimization and catalytic system integration will be vital for accelerating the industrialization of MOF-based CO_(2)-to-methanol technologies. 展开更多
关键词 CO_(2)hydrogenation metal-organic frameworks(MOFs) catalyst design reaction mechanism METHANOL
在线阅读 下载PDF
Synergistic Ferroptosis-Immunotherapy Nanoplatforms:Multidimensional Engineering for Tumor Microenvironment Remodeling and Therapeutic Optimization
4
作者 Xiao Wei Yanqiu Jiang +6 位作者 Feiyang Chenwu Zhi Li Jie Wan Zhengxi Li Lele Zhang Jing Wang Mingzhu Song 《Nano-Micro Letters》 2026年第2期471-538,共68页
Emerging ferroptosis-immunotherapy strategies,integrating functionalized nanoplatforms with ferroptosis-inducing agents and immunomodulatory therapeutics,demonstrate significant potential in managing primary,recurrent... Emerging ferroptosis-immunotherapy strategies,integrating functionalized nanoplatforms with ferroptosis-inducing agents and immunomodulatory therapeutics,demonstrate significant potential in managing primary,recurrent,and metastatic malignancies.Mechanistically,ferroptosis induction not only directly eliminates tumor cells but also promotes immunogenic cell death(ICD),eliciting damage-associated molecular patterns(DAMPs)release to activate partial antitumor immunity.However,standalone ferroptosis therapy fails to initiate robust systemic antitumor immune responses due to inherent limitations:low tumor immunogenicity,immunosuppressive microenvironment constraints,and tumor microenvironment(TME)-associated physiological barriers(e.g.,hypoxia,dense extracellular matrix).To address these challenges,synergistic approaches have been developed to enhance immune cell infiltration and reestablish immunosurveillance,encompassing(1)direct amplification of antitumor immunity,(2)disruption of immunosuppressive tumor niches,and(3)biophysical hallmark remodeling in TME.Rational nanocarrier design has emerged as a critical enabler for overcoming biological delivery barriers and optimizing therapeutic efficacy.Unlike prior studies solely addressing ferroptosis or nanotechnology in tumor therapy,this work first systematically outlines the synergistic potential of nanoparticles in combined ferroptosis-immunotherapy strategies.It advances multidimensional nanoplatform design principles for material selection,structural configuration,physicochemical modulation,multifunctional integration,and artificial intelligence-enabled design,providing a scientific basis for efficacy optimization.Moreover,it examines translational challenges of ferroptosis-immunotherapy nanoplatforms across preclinical and clinical stages,proposing actionable solutions while envisioning future onco-immunotherapy directions.Collectively,it provides systematic insights into advanced nanomaterial design principles and therapeutic optimization strategies,offering a roadmap for accelerating clinical translation in onco-immunotherapy research. 展开更多
关键词 Ferroptosis-immunotherapy Nanoplatforms Tumor microenvironment Synergistic strategies Nanocarrier design
暂未订购
Inverse design framework of hybrid honeycomb structure with high impact resistance based on active learning
5
作者 Xingyu Shen Ke Yan +5 位作者 Difeng Zhu Hao Wu Shijun Luo Shaobo Qi Mengqi Yuan Xinming Qian 《Defence Technology(防务技术)》 2026年第1期407-421,共15页
In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honey... In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honeycomb cells,was created by constructing arrangement matrices to achieve structural lightweight.The machine learning(ML)framework consisted of a neural network(NN)forward regression model for predicting impact resistance and a multi-objective optimization algorithm for generating high-performance designs.The surrogate of the local design space was initially realized by establishing the NN in the small sample dataset,and the active learning strategy was used to continuously extended the local optimal design until the model converged in the global space.The results indicated that the active learning strategy significantly improved the inference capability of the NN model in unknown design domains.By guiding the iteration direction of the optimization algorithm,lightweight designs with high impact resistance were identified.The energy absorption capacity of the optimal design reached 94.98%of the EARE honeycomb,while the initial peak stress and mass decreased by 28.85%and 19.91%,respectively.Furthermore,Shapley Additive Explanations(SHAP)for global explanation of the NN indicated a strong correlation between the arrangement mode of HCS and its impact resistance.By reducing the stiffness of the cells at the top boundary of the structure,the initial impact damage sustained by the structure can be significantly improved.Overall,this study proposed a general lightweight design method for array structures under impact loads,which is beneficial for the widespread application of honeycomb-based protective structures. 展开更多
关键词 Re-entrant honeycomb Hybrid structures Inverse design Impact resistance LIGHTWEIGHT
在线阅读 下载PDF
Recent advances and perspectives in interface engineering of high-performance alloys
6
作者 Yuan Zhu Tongbo Jiang +7 位作者 Honghui Wu Faguo Hou Xiaoye Zhou Feiyang Wang Shuize Wang Junheng Gao Haitao Zhao Chaolei Zhang 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期53-67,共15页
High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by t... High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by the alloy interface structures.Despite substantial efforts,a comprehensive overview of interface engineering of high-performance alloys has not been presented so far.In this study,the interfaces in high-performance alloys,particularly grain and phase boundaries,were systematically examined,with emphasis on their crystallographic characteristics and chemical element segregations.The effects of the interfaces on the electrical conductivity,mechanical strength,toughness,hydrogen embrittlement resistance,and thermal stability of the alloys were elucidated.Moreover,correlations among various types of interfaces and advanced experimental and computational techniques were examined using big data analytics,enabling robust design strategies.Challenges currently faced in the field of interface engineering and emerging opportunities in the field are also discussed.The study results would guide the development of next-generation high-performance alloys. 展开更多
关键词 interface engineering crystallographic boundary chemical boundary alloy design
在线阅读 下载PDF
A dual-power supply system for the Solar Close Observations and Proximity Experiments(SCOPE)mission
7
作者 Ziyuan Wang Jiang Tian +1 位作者 Zhenhua Ge Jing Feng 《Astronomical Techniques and Instruments》 2026年第1期1-9,共9页
Previous solar probes have relied on solar energy for power,but in the near-solar environment,traditional solar panels are prone to overheating and radiation damage,increasing system complexity and reducing power reli... Previous solar probes have relied on solar energy for power,but in the near-solar environment,traditional solar panels are prone to overheating and radiation damage,increasing system complexity and reducing power reliability.This study introduces a dual-power system integrating solar-thermal thermoelectric generation with photovoltaic technology.First,suitable thermoelectric materials are screened,the geometric structure of the thermoelectric devices is simulated,and then the fabricated thermoelectric devices are subjected to cyclic heatingcooling power generation tests and long-duration high-temperature power generation tests.The results demonstrate that a single thermoelectric device can stably provide 3.5 W of power with excellent cycling stability.Additionally,this study discusses design concepts for energy storage and intelligent energy management systems required by the dualpower system.Designed for the Solar Close Observations and Proximity Experiments(SCOPE)mission,this dualpower supply system integrates the benefits of both to address demands under varying environmental conditions. 展开更多
关键词 SCOPE Thermoelectric generation Dual-power design
在线阅读 下载PDF
Tackling Challenges and Exploring Opportunities in Cathode Binder Innovation
8
作者 Tingrun Lai Li Wang +3 位作者 Zhibei Liu Adnan Murad Bhayo Yude Wang Xiangming He 《Nano-Micro Letters》 2026年第1期198-228,共31页
Long-life energy storage batteries are integral to energy storage systems and electric vehicles,with lithium-ion batteries(LIBs)currently being the preferred option for extended usage-life energy storage.To further ex... Long-life energy storage batteries are integral to energy storage systems and electric vehicles,with lithium-ion batteries(LIBs)currently being the preferred option for extended usage-life energy storage.To further extend the life span of LIBs,it is essential to intensify investments in battery design,manufacturing processes,and the advancement of ancillary materials.The pursuit of long durability introduces new challenges for battery energy density.The advent of electrode material offers effective support in enhancing the battery’s long-duration performance.Often underestimated as part of the cathode composition,the binder plays a pivotal role in the longevity and electrochemical performance of the electrode.Maintaining the mechanical integrity of the electrode through judicious binder design is a fundamental requirement for achieving consistent long-life cycles and high energy density.This paper primarily concentrates on the commonly employed cathode systems in lithium-ion batteries,elucidates the significance of binders for both,discusses the application status,strengths,and weaknesses of novel binders,and ultimately puts forth corresponding optimization strategies.It underscores the critical function of binders in enhancing battery performance and advancing the sustainable development of lithium-ion batteries,aiming to offer fresh insights and perspectives for the design of high-performance LIBs. 展开更多
关键词 Cathode Binder Lithium-Ion Battery Performance Optimization Sustainable Development Innovative Design
在线阅读 下载PDF
Skin-Inspired Ultra-Linear Flexible Iontronic Pressure Sensors for Wearable Musculoskeletal Monitoring
9
作者 Pei Li Shipan Lang +6 位作者 Lei Xie Yong Zhang Xin Gou Chao Zhang Chenhui Dong Chunbao Li Jun Yang 《Nano-Micro Letters》 2026年第2期454-470,共17页
The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision.While flexible pressure-sensing insoles show... The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision.While flexible pressure-sensing insoles show clinical potential,their development has been hindered by the intrinsic trade-off between high sensitivity and full-range linearity(R^(2)>0.99 up to 1 MPa)in conventional designs.Inspired by the tactile sensing mechanism of human skin,where dermal stratification enables wide-range pressure adaptation and ion-channelregulated signaling maintains linear electrical responses,we developed a dual-mechanism flexible iontronic pressure sensor(FIPS).This innovative design synergistically combines two bioinspired components:interdigitated fabric microstructures enabling pressure-proportional contact area expansion(αP1/3)and iontronic film facilitating self-adaptive ion concentration modulation(αP^(2/3)),which together generate a linear capacitance-pressure response(CαP).The FIPS achieves breakthrough performance:242 kPa^(-1)sensitivity with 0.997linearity across 0-1 MPa,yielding a record linear sensing factor(LSF=242,000).The design is validated across various substrates and ionic materials,demonstrating its versatility.Finally,the FIPS-driven design enables a smart insole demonstrating 1.8%error in tibial load assessment during gait analysis,outperforming nonlinear counterparts(6.5%error)in early fracture-risk prediction.The biomimetic design framework establishes a universal approach for developing high-performance linear sensors,establishing generalized principles for medical-grade wearable devices. 展开更多
关键词 Iontronic sensor Skin-inspired design Linear range Linear sensing factor Biomechanical monitoring
在线阅读 下载PDF
Advanced Design for High-Performance and AI Chips
10
作者 Ying Cao Yuejiao Chen +2 位作者 Xi Fan Hong Fu Bingang Xu 《Nano-Micro Letters》 2026年第1期306-336,共31页
Recent years have witnessed transformative changes brought about by artificial intelligence(AI)techniques with billions of parameters for the realization of high accuracy,proposing high demand for the advanced and AI ... Recent years have witnessed transformative changes brought about by artificial intelligence(AI)techniques with billions of parameters for the realization of high accuracy,proposing high demand for the advanced and AI chip to solve these AI tasks efficiently and powerfully.Rapid progress has been made in the field of advanced chips recently,such as the development of photonic computing,the advancement of the quantum processors,the boost of the biomimetic chips,and so on.Designs tactics of the advanced chips can be conducted with elaborated consideration of materials,algorithms,models,architectures,and so on.Though a few reviews present the development of the chips from their unique aspects,reviews in the view of the latest design for advanced and AI chips are few.Here,the newest development is systematically reviewed in the field of advanced chips.First,background and mechanisms are summarized,and subsequently most important considerations for co-design of the software and hardware are illustrated.Next,strategies are summed up to obtain advanced and AI chips with high excellent performance by taking the important information processing steps into consideration,after which the design thought for the advanced chips in the future is proposed.Finally,some perspectives are put forward. 展开更多
关键词 Artificial intelligence Advanced chips AI chips Design tactics Review and perspective
在线阅读 下载PDF
Nature-Inspired Upward Hanging Evaporator with Photothermal 3D Spacer Fabric for Zero-Liquid-Discharge Desalination
11
作者 Ye Peng Yang Shao +3 位作者 Longqing Zheng Haoxuan Li Meifang Zhu Zhigang Chen 《Nano-Micro Letters》 2026年第1期545-561,共17页
While desalination is a key solution for global freshwater scarcity,its implementation faces environmental challenges due to concentrated brine byproducts mainly disposed of via coastal discharge systems.Solar interfa... While desalination is a key solution for global freshwater scarcity,its implementation faces environmental challenges due to concentrated brine byproducts mainly disposed of via coastal discharge systems.Solar interfacial evaporation offers sustainable management potential,yet inevitable salt nucleation at evaporation interfaces degrades photothermal conversion and operational stability via light scattering and pathway blockage.Inspired by the mangrove leaf,we propose a photothermal 3D polydopamine and polypyrrole polymerized spacer fabric(PPSF)-based upward hanging model evaporation configuration with a reverse water feeding mechanism.This design enables zero-liquiddischarge(ZLD)desalination through phase-separation crystallization.The interconnected porous architecture and the rough surface of the PPSF enable superior water transport,achieving excellent solar-absorbing efficiency of 97.8%.By adjusting the tilt angle(θ),the evaporator separates the evaporation and salt crystallization zones via controlled capillary-driven brine transport,minimizing heat dissipation from brine discharge.At an optimal tilt angle of 52°,the evaporator reaches an evaporation rate of 2.81 kg m^(−2) h^(−1) with minimal heat loss(0.366 W)under 1-sun illumination while treating a 7 wt%waste brine solution.Furthermore,it sustains an evaporation rate of 2.71 kg m^(−2) h^(−1) over 72 h while ensuring efficient salt recovery.These results highlight a scalable,energy-efficient approach for sustainable ZLD desalination. 展开更多
关键词 DESALINATION Solar interfacial evaporation Biomimetic design Zero liquid discharge Thermal management
在线阅读 下载PDF
Low-Temperature Electrolytes for Lithium-Ion Batteries:Current Challenges,Development,and Perspectives
12
作者 Yang Zhao Limin Geng +1 位作者 Weijia Meng Jiaye Ye 《Nano-Micro Letters》 2026年第2期692-741,共50页
Lithium-ion batteries(LIBs),while dominant in energy storage due to high energy density and cycling stability,suffer from severe capacity decay,rate capability degradation,and lithium dendrite formation under low-temp... Lithium-ion batteries(LIBs),while dominant in energy storage due to high energy density and cycling stability,suffer from severe capacity decay,rate capability degradation,and lithium dendrite formation under low-temperature(LT)operation.Therefore,a more comprehensive and systematic understanding of LIB behavior at LT is urgently required.This review article comprehensively reviews recent advancements in electrolyte engineering strategies aimed at improving the low-temperature operational capabilities of LIBs.The study methodically examines critical performance-limiting mechanisms through fundamental analysis of four primary challenges:insufficient ionic conductivity under cryogenic conditions,kinetically hindered charge transfer processes,Li+transport limitations across the solidelectrolyte interphase(SEI),and uncontrolled lithium dendrite growth.The work elaborates on innovative optimization approaches encompassing lithium salt molecular design with tailored dissociation characteristics,solvent matrix optimization through dielectric constant and viscosity regulation,interfacial engineering additives for constructing low-impedance SEI layers,and gel-polymer composite electrolyte systems.Notably,particular emphasis is placed on emerging machine learning-guided electrolyte formulation strategies that enable high-throughput virtual screening of constituent combinations and prediction of structure-property relationships.These artificial intelligence-assisted rational design frameworks demonstrate significant potential for accelerating the development of next-generation LT electrolytes by establishing quantitative composition-performance correlations through advanced data-driven methodologies. 展开更多
关键词 Lithium-ion batteries Low-temperature electrolyte Solid electrolyte interphase Solvation structure Artificial intelligence-assisted design
在线阅读 下载PDF
Optical design of wide-field and broadband light field camera for high-precision optical surface defect detection
13
作者 Chengchen Zhou Yukun Wang +7 位作者 Yue Ding Dacheng Wang Jiucheng Nie Jialong Li Zhixi Li Zheng Zhou Shuangshuang Zhang Xiaokun Wang 《Astronomical Techniques and Instruments》 2026年第1期64-74,共11页
To address the challenges of high-precision optical surface defect detection,we propose a novel design for a wide-field and broadband light field camera in this work.The proposed system can achieve a 50°field of ... To address the challenges of high-precision optical surface defect detection,we propose a novel design for a wide-field and broadband light field camera in this work.The proposed system can achieve a 50°field of view and operates at both visible and near-infrared wavelengths.Using the principles of light field imaging,the proposed design enables 3D reconstruction of optical surfaces,thus enabling vertical surface height measurements with enhanced accuracy.Using Zemax-based simulations,we evaluate the system’s modulation transfer function,its optical aberrations,and its tolerance to shape variations through Zernike coefficient adjustments.The results demonstrate that this camera can achieve the required spatial resolution while also maintaining high imaging quality and thus offers a promising solution for advanced optical surface defect inspection. 展开更多
关键词 Optical design Defect detection Wide-field camera Broadband light field camera
在线阅读 下载PDF
Design of 400 V-10 kV Multi-Voltage Grades of Dual Winding Induction Generator for Grid Maintenance Vehicle
14
作者 Tiankui Sun Shuyi Zhuang +3 位作者 Yongling Lu Wenqiang Xie Ning Guo Sudi Xu 《Energy Engineering》 2026年第1期356-372,共17页
To ensure an uninterrupted power supply,mobile power sources(MPS)are widely deployed in power grids during emergencies.Comprising mobile emergency generators(MEGs)and mobile energy storage systems(MESS),MPS are capabl... To ensure an uninterrupted power supply,mobile power sources(MPS)are widely deployed in power grids during emergencies.Comprising mobile emergency generators(MEGs)and mobile energy storage systems(MESS),MPS are capable of supplying power to critical loads and serving as backup sources during grid contingencies,offering advantages such as flexibility and high resilience through electricity delivery via transportation networks.This paper proposes a design method for a 400 V–10 kV Dual-Winding Induction Generator(DWIG)intended for MEG applications,employing an improved particle swarmoptimization(PSO)algorithmbased on a back-propagation neural network(BPNN).A parameterized finite element(FE)model of the DWIG is established to derive constraints on its dimensional parameters,thereby simplifying the optimization space.Through sensitivity analysis between temperature rise and electromagnetic loss of the DWIG,the main factors influencing the machine’s temperature are identified,and electromagnetic loss is determined as the optimization objective.To obtain an accurate fitting function between electromagnetic loss and dimensional parameters,the BPNN is employed to predict the nonlinear relationship between the optimization objective and the parameters.The Latin hypercube sampling(LHS)method is used for random sampling in the FE model analysis for training,testing,and validation,which is then applied to compute the cost function in the PSO.Based on the relationships obtained by the BPNN,the PSO algorithm evaluates the fitness and cost functions to determine the optimal design point.The proposed optimization method is validated by comparing simulation results between the initial design and the optimized design. 展开更多
关键词 Dual winding induction generator mobile emergency generator optimization design BP neural network
在线阅读 下载PDF
基于OpenRoads Designer的桥梁下部结构设计应用研究
15
作者 李昊 胡霜 《四川建材》 2026年第1期115-119,共5页
为积极推动BIM技术在我国桥梁工程领域的发展和落地应用,研究将桥梁下部结构的参数化设计与快速建模作为切入点。以Bentley平台为基础,以中国公路桥梁设计规范为依据,对OpenRoads Designer软件进行二次开发。通过分析当前桥梁建模软件... 为积极推动BIM技术在我国桥梁工程领域的发展和落地应用,研究将桥梁下部结构的参数化设计与快速建模作为切入点。以Bentley平台为基础,以中国公路桥梁设计规范为依据,对OpenRoads Designer软件进行二次开发。通过分析当前桥梁建模软件的现状及不足,系统阐述二次开发技术路线、参数化设计理念以及下部结构批量化布置方法。结合实际工程案例验证表明,该二次开发成果显著提升桥梁下部结构建模效率与准确性,为桥梁工程BIM技术的持续深化应用提供实践参考。 展开更多
关键词 BIM OpenRoads Designer 二次开发 桥梁下部结构 参数化设计
在线阅读 下载PDF
Progress in Offshore Oilfield Development Planning
16
作者 L.M.R.Silva C.Guedes Soares 《哈尔滨工程大学学报(英文版)》 2026年第1期136-161,共26页
This study examines the methods to plan the development of offshore oilfields over the years,which are used to support the decision-making on the development of offshore oilfields.About 100 papers are analysed and cat... This study examines the methods to plan the development of offshore oilfields over the years,which are used to support the decision-making on the development of offshore oilfields.About 100 papers are analysed and categorised into different groups of main early-stage decisions.The present study stands in contrast to the contributions of the operations research and system engineering review articles,on the one hand,and the petroleum engineering review articles,on the other.This is because it does not focus on one methodological approach,nor does it limit the literature analysis by offshore oilfield characteristics.Consequently,the present analysis may offer valuable insights,for instance,by identifying environmental planning decisions as a recent yet highly significant concern that is currently being imposed on decision-making process.Thus,it is evident that the incorporation of safety criteria within the technical-economic decision-making process for the design of production systems would be a crucial requirement at development phase. 展开更多
关键词 Offshore oilfield development Oilfield planning decisions Production system design Decision-making process
在线阅读 下载PDF
CAPGen: An MLLM-Based Framework Integrated with Iterative Optimization Mechanism for Cultural Artifacts Poster Generation
17
作者 Qianqian Hu Chuhan Li +1 位作者 Mohan Zhang Fang Liu 《Computers, Materials & Continua》 2026年第1期494-510,共17页
Due to the digital transformation tendency among cultural institutions and the substantial influence of the social media platform,the demands of visual communication keep increasing for promoting traditional cultural ... Due to the digital transformation tendency among cultural institutions and the substantial influence of the social media platform,the demands of visual communication keep increasing for promoting traditional cultural artifacts online.As an effective medium,posters serve to attract public attention and facilitate broader engagement with cultural artifacts.However,existing poster generation methods mainly rely on fixed templates and manual design,which limits their scalability and adaptability to the diverse visual and semantic features of the artifacts.Therefore,we propose CAPGen,an automated aesthetic Cultural Artifacts Poster Generation framework built on a Multimodal Large Language Model(MLLM)with integrated iterative optimization.During our research,we collaborated with designers to define principles of graphic design for cultural artifact posters,to guide the MLLM in generating layout parameters.Later,we generated these parameters into posters.Finally,we refined the posters using an MLLM integrated with a multi-round iterative optimization mechanism.Qualitative results show that CAPGen consistently outperforms baseline methods in both visual quality and aesthetic performance.Furthermore,ablation studies indicate that the prompt,iterative optimization mechanism,and design principles significantly enhance the effectiveness of poster generation. 展开更多
关键词 Aesthetic poster generation prompt engineering multimodal large language models iterative optimization design principles
在线阅读 下载PDF
Advancing device-level strategies for MXene-based green electromagnetic shielding:From attenuation mechanisms to architecture design
18
作者 Siteng Li Jincheng Shu +3 位作者 Yulin Guo Zhifang Liu Yilin Sun Weijia Luo 《Nano Research》 2026年第1期1299-1328,共30页
The widespread proliferation of modern wireless devices coupled with overlapping power emissions has brought about electromagnetic(EM)pollution issues,posing many challenges to environment and human health.Therefore,t... The widespread proliferation of modern wireless devices coupled with overlapping power emissions has brought about electromagnetic(EM)pollution issues,posing many challenges to environment and human health.Therefore,the development of EM shielding devices with high green shielding index(gs)is essential,as they offer absorption-dominant protection that minimizes reflections and safeguards both health and electronics.MXene,with its intrinsic ultra-high electrical conductivity,liquid-phase tunable surface chemistry,low density,large specific surface area,thermal stability,and mechanical stability,has become the leading two-dimensional(2D)material driving the development of green EM shielding devices.In this review we emphasize device-level strategies with engineered architectures for MXene-based green EM shielding.We first examine MXene’s crystal and electronic structure and the fundamental attenuation mechanisms in MXene-based devices.Then we survey fabrication and assembly methods,analyzing three device-level strategies for MXene-based green EM shielded devices:3D architectures,metastructure/meta-surfaces,and external stimulus.Throughout,we highlight how MXene’s distinguished properties enable green EM interference(EMI)shielding devices that minimize secondary interference.Finally,we discuss the challenges faced in the effective utilization of MXene-based in green EM shielding devices,provide insights into these challenges,and offer guidelines for developing the solutions of next-generation green MXene-based EM shielding devices. 展开更多
关键词 MXene attenuation mechanisms architecture design green electromagnetic(EM)shielding
原文传递
Automatic gating and riser system design and defect control for K4169 superalloy guide blade casting based on parametric 3D modeling-simulation integrated system
19
作者 Le-chuan Li Ya-jun Yin +4 位作者 Bing-zheng Fan Guo-yan Shui Xiao-yuan Ji Jian-xin Zhou Lei Jin 《China Foundry》 2026年第1期20-30,共11页
Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical si... Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical simulation plays a significant role in quantitatively evaluating current processes and making targeted improvements,but its limitations lie in the inability to dynamically reflect the formation outcomes of castings under varying process conditions,making real-time adjustments to gating and riser designs challenging.In this study,an automated design model for gating and riser systems based on integrated parametric 3D modeling-simulation framework is proposed,which enhances the flexibility and usability of evaluating the casting process by simulation.Firstly,geometric feature extraction technology is employed to obtain the geometric information of the target casting.Based on this information,an automated design framework for gating and riser systems is established,incorporating multiple structural parameters for real-time process control.Subsequently,the simulation results for various structural parameters are analyzed,and the influence of these parameters on casting formation is thoroughly investigated.Finally,the optimal design scheme is generated and validated through experimental verification.Simulation analysis and experimental results show that using a larger gate neck(24 mm in side length) and external risers promotes a more uniform temperature distribution and a more stable flow state,effectively eliminating shrinkage cavities and enhancing process yield by 15%. 展开更多
关键词 numerical simulation automatic design investment casting parametric 3D modeling gating and riser system
在线阅读 下载PDF
Curtain Wall Systems as Climate-Adaptive Energy Infrastructures:A Critical Review of Their Role in Sustainable Building Performance
20
作者 Samira Rastbod Mehdi Jahangiri +1 位作者 Behrang Moradi Haleh Nazari 《Energy Engineering》 2026年第1期27-55,共29页
Curtain wall systems have evolved from aesthetic facade elements into multifunctional building envelopes that actively contribute to energy efficiency and climate responsiveness.This reviewpresents a comprehensive exa... Curtain wall systems have evolved from aesthetic facade elements into multifunctional building envelopes that actively contribute to energy efficiency and climate responsiveness.This reviewpresents a comprehensive examination of curtain walls from an energy-engineering perspective,highlighting their structural typologies(Stick and Unitized),material configurations,and integration with smart technologies such as electrochromic glazing,parametric design algorithms,and Building Management Systems(BMS).Thestudy explores the thermal,acoustic,and solar performance of curtain walls across various climatic zones,supported by comparative analyses and iconic case studies including Apple Park,Burj Khalifa,and Milad Tower.Key challenges—including installation complexity,high maintenance costs,and climate sensitivity—are critically assessed alongside proposed solutions.A central innovation of this work lies in framing curtain walls not only as passive architectural elements but as dynamic interfaces that modulate energy flows,reduce HVAC loads,and enhance occupant comfort.The reviewed data indicate that optimized curtain wall configurations—especially those integrating electrochromic glazing and BIPV modules—can achieve annual energy consumption reductions ranging fromapproximately 5%to 27%,depending on climate,control strategy,and facade typology.The findings offer a valuable reference for architects,energy engineers,and decision-makers seeking to integrate high-performance facades into future-ready building designs. 展开更多
关键词 Curtain wall systems energy efficiency climate-responsive design smart facades electrochromic glass parametric architecture building envelope technologies
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部