One of the most important factors influencing on a tunnel blast efficiency is the proper design of blasting pattern. Among blasting parameters, blasthole diameter and tunnel face area are more significant so that any ...One of the most important factors influencing on a tunnel blast efficiency is the proper design of blasting pattern. Among blasting parameters, blasthole diameter and tunnel face area are more significant so that any change in these parameters could finally affect on specific charge and specific drilling. There are mainly two groups of methods for tunnel blast design categorized based on the parallel cuts and angular cuts. In this research, a software for tunnel blast design was developed to analyze the effect and sensitiveness of blasthole diameter and the tunnel face area on blasting results in different blast design models. Using the software, it is quickly possible to determine specific charge, specific drilling and number of blastholes for each blast design model. The relations between both of blasthole diameters and the tunnel face area with the above parameters in different blast design models were then investigated to yield a set of equations with the highest correlations to compare the methods. The results showed that angular method requires more blasthole numbers than parallel method in similar condition(blasthole diameter and tunnel face area). Moreover, the specific charge values yielded by the two methods are approximately the same and very close together.展开更多
The main focus of this paper is the analysis on how social business recent management proposals fit to a media/journalistic business environment. The discussion was based on three research questions focusing on: the ...The main focus of this paper is the analysis on how social business recent management proposals fit to a media/journalistic business environment. The discussion was based on three research questions focusing on: the drivers and the constraints of disruption innovation strategies; the adequate social business design framework to promote innovation; and an evaluation over the practices/experiences related to disruption, innovation, and creativity in journalistic businesses. A conceptual framework the Latour/Law Actor-Network Theory (ANT) has been taken as. Six possible dimensions of action to make this framework valuable some successful practices have also been identified, and in this paper the authors view over these concepts. The main conclusion goes through the understanding of journalistic culture and legitimacy embedded for centuries over society, and to change this will depend on multiple enablers.展开更多
This study integrated instrumental and relational approaches to the teaching and learning of solids in a preservice teacher's class. The researcher guided the preservice teachers to gather various prisms, pyramids, a...This study integrated instrumental and relational approaches to the teaching and learning of solids in a preservice teacher's class. The researcher guided the preservice teachers to gather various prisms, pyramids, and spheres to study the total surface areas and volumes. At the end of the integrated models, the test scores showed closed relationships in the concurrent instructional strategies of the integrated models. The researcher therefore, recommended the design models for the teaching and learning of solids in mathematics.展开更多
With the continuous improvement of signal processing accuracy requirements in modern electronic systems,the demand for high-precision analog-to-digital converters(ADCs)is increasing.Sigma-Delta modulator,as the most i...With the continuous improvement of signal processing accuracy requirements in modern electronic systems,the demand for high-precision analog-to-digital converters(ADCs)is increasing.Sigma-Delta modulator,as the most important component of high-precision ADC,is widely used in high-quality audio,high-precision instrument measurement,and other fields due to its advantages of high precision,strong noise resistance,and low hardware cost.This article designs a discrete structure third-order four-bit high-precision Sigma-Delta modulator through modeling,with an oversampling rate set to 512.Under ideal conditions,the simulation results show that the SDNR reaches 152.7db and the ENOB is 25.24bits.After introducing non-ideal noise,the system performance has decreased.The simulation results show that the SDNR is as high as 124.5db and the ENOB is 20.39bits.This indicates that the design can achieve high-precision conversion and provide assistance for further research in the future.展开更多
The penetration of ogival-nosed projectiles into ship plates represents a complex impact dynamics issue essential for analyzing structural failuremechanisms.Although stiffenedplates are vital in ship construction,fews...The penetration of ogival-nosed projectiles into ship plates represents a complex impact dynamics issue essential for analyzing structural failuremechanisms.Although stiffenedplates are vital in ship construction,fewstudies have addressed the issue of model equivalence under penetration loading.This study employs numerical simulation to validate an experiment with an ogival-nosed projectile penetrating a Q345 steel plate.Four equivalent stiffened plate methods are proposed based on the area,flexural modulus,moment of inertia,and thickness.The results indicate that thickness equivalence(DM4)is unsuitable for penetration-loaded stiffened plates,except under low-speed,nonpenetrating through impacts,and yields less accuracy than DM1/DM3.DM1,DM2,and DM3 each perform optimally with specific velocity ranges:DM1 at very low(critical)and high velocities,DM3 at low velocities,and DM2 at high speeds.Furthermore,in penetration scenarios,T-shaped stiffeners can be replacedwith rectangular ones,as both exhibit similar failure behaviors and deflection trends,simplifying the design while preserving key structural characteristics.These findings provide valuable insights into the design of protective ship structures.展开更多
Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard ...Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard to build a good-quality model of this batch process.Besides,due to the properties of this process,the reliability of the model must be taken into consideration when optimizing the MVs.In this work,an optimal design strategy based on the self-learning Gaussian process model(GPM) is proposed to control this kind of spatial batch process.The GPM is utilized as the internal model to predict the thicknesses of thin films on all spatial-distributed wafers using the limited data.Unlike the conventional model based design,the uncertainties of predictions provided by GPM are taken into consideration to guide the optimal design of manipulated variables so that the designing can be more prudent Besides,the GPM is also actively enhanced using as little data as possible based on the predictive uncertainties.The effectiveness of the proposed strategy is successfully demonstrated in an LPCVD process.展开更多
Product-service system design(PSSD)plays a significant role in both design theory and practice with increasing importance.Although scholars have made significant efforts to delineate its definition,methods,and applica...Product-service system design(PSSD)plays a significant role in both design theory and practice with increasing importance.Although scholars have made significant efforts to delineate its definition,methods,and applications,misunderstandings about PSSD persist widely across design agencies and academia.This study aims to outline the various types and models of product-service systems(PSSs)based on inputs from product design agencies.To achieve this purpose,this study applies a two-step research method,comprising a Q-sorting procedure followed by hypothesis testing.This allows us to study the business scope and design model of each design agency from a field research perspective.We propose a design framework with four basic types of PSSs,11 extended types of PSSs,and 4P-8D PSSD models.The current study has theoretical and practical implications.For academics,our models are clearly classified and validated.For practitioners,our models of PSSs can support design agencies in clearly recognizing their position within the design industry,allowing them to select the appropriate types and models to facilitate their future development.Our study also provides helpful guidances for college graduates,cutting-edge designers,and new design studios.展开更多
The task of student action recognition in the classroom is to precisely capture and analyze the actions of students in classroom videos,providing a foundation for realizing intelligent and accurate teaching.However,th...The task of student action recognition in the classroom is to precisely capture and analyze the actions of students in classroom videos,providing a foundation for realizing intelligent and accurate teaching.However,the complex nature of the classroom environment has added challenges and difficulties in the process of student action recognition.In this research article,with regard to the circumstances where students are prone to be occluded and classroom computing resources are restricted in real classroom scenarios,a lightweight multi-modal fusion action recognition approach is put forward.This proposed method is capable of enhancing the accuracy of student action recognition while concurrently diminishing the number of parameters of the model and the Computation Amount,thereby achieving a more efficient and accurate recognition performance.In the feature extraction stage,this method fuses the keypoint heatmap with the RGB(Red-Green-Blue color model)image.In order to fully utilize the unique information of different modalities for feature complementarity,a Feature Fusion Module(FFE)is introduced.The FFE encodes and fuses the unique features of the two modalities during the feature extraction process.This fusion strategy not only achieves fusion and complementarity between modalities,but also improves the overall model performance.Furthermore,to reduce the computational load and parameter scale of the model,we use keypoint information to crop RGB images.At the same time,the first three networks of the lightweight feature extraction network X3D are used to extract dual-branch features.These methods significantly reduce the computational load and parameter scale.The number of parameters of the model is 1.40 million,and the computation amount is 5.04 billion floating-point operations per second(GFLOPs),achieving an efficient lightweight design.In the Student Classroom Action Dataset(SCAD),the accuracy of the model is 88.36%.In NTU 60(Nanyang Technological University Red-Green-Blue-Depth RGB+Ddataset with 60 categories),the accuracies on X-Sub(The people in the training set are different from those in the test set)and X-View(The perspectives of the training set and the test set are different)are 95.76%and 98.82%,respectively.On the NTU 120 dataset(Nanyang Technological University Red-Green-Blue-Depth dataset with 120 categories),RGB+Dthe accuracies on X-Sub and X-Set(the perspectives of the training set and the test set are different)are 91.97%and 93.45%,respectively.The model has achieved a balance in terms of accuracy,computation amount,and the number of parameters.展开更多
Convolutional neural networks(CNNs)exhibit superior performance in image feature extraction,making them extensively used in the area of traffic sign recognition.However,the design of existing traffic sign recognition ...Convolutional neural networks(CNNs)exhibit superior performance in image feature extraction,making them extensively used in the area of traffic sign recognition.However,the design of existing traffic sign recognition algorithms often relies on expert knowledge to enhance the image feature extraction networks,necessitating image preprocessing and model parameter tuning.This increases the complexity of the model design process.This study introduces an evolutionary neural architecture search(ENAS)algorithm for the automatic design of neural network models tailored for traffic sign recognition.By integrating the construction parameters of residual network(ResNet)into evolutionary algorithms(EAs),we automatically generate lightweight networks for traffic sign recognition,utilizing blocks as the fundamental building units.Experimental evaluations on the German traffic sign recognition benchmark(GTSRB)dataset reveal that the algorithm attains a recognition accuracy of 99.32%,with a mere 2.8×10^(6)parameters.Experimental results comparing the proposed method with other traffic sign recognition algorithms demonstrate that the method can more efficiently discover neural network architectures,significantly reducing the number of network parameters while maintaining recognition accuracy.展开更多
To understand fundamental problems in hypersonic laminar-turbulent boundary layer transition for three-dimensional complex vehicles,a new standard model with typical lifting-body features has been proposed,named as hy...To understand fundamental problems in hypersonic laminar-turbulent boundary layer transition for three-dimensional complex vehicles,a new standard model with typical lifting-body features has been proposed,named as hypersonic transition research vehicle(HyTRV).The configuration of HyTRV is fully analytical,and details of the design process are discussed in this study.The transition characteristics for HyTRV are investigated using three combined methods,i.e.,theoretical analyses,numerical simulations,and wind tunnel experiments.Results show that the fully analytic parameterization design of HyTRV can satisfy the model simplification requirements from both numerical simulations and wind tunnel experiments.Meanwhile,the flow field of HyTRV reveals typical transition mechanisms in six relatively separated regions,including the streamwise vortex instability,crossflow instability,secondary instability,and attachment-line instability.Therefore,the proposed HyTRV model is valuable for fundamental researches in hypersonic boundary layer transition.展开更多
Based on a bionic concept and combing air-cushion techniques and track driving mechanisms, a novel semi-floating hybrid concept vehicle is proposed to meet the transportation requirements on soft terrain. First, the v...Based on a bionic concept and combing air-cushion techniques and track driving mechanisms, a novel semi-floating hybrid concept vehicle is proposed to meet the transportation requirements on soft terrain. First, the vehicle scheme and its improved duel-spring flexible suspension design are described. Then, its fuel consumption model is proposed accordingly with respect to two vehicle operating parameters. Aiming at minimizing the fuel consumption, two Genetic Algorithms (GAs) are designed and implemented. For the initial one (GA-1), despite getting an acceptable result, there still existed some problems in its optimiza- tion process. Based on an analysis of the defects of GA-1, an improved algorithm GA-2 was developed whose effectiveness and stability were embodied in the optimization process and results. The proposed design scheme and optimization approaches can provide valuable references for this new kind of vehicle with industry, military or scientific exploitations, etc. promising applications in the areas of agriculture, petroleum industry, military or scientific explaitations, etc.展开更多
The optimization of metamorphic mechanisms is different from that of the conventional mechanisms for its characteristics of multi-configuration. There exist complex coupled design variables and constraints in its mult...The optimization of metamorphic mechanisms is different from that of the conventional mechanisms for its characteristics of multi-configuration. There exist complex coupled design variables and constraints in its multiple different configuration optimization models. To achieve the compatible optimized results of these coupled design variables, an optimization method for metamorphic mechanisms is developed in the paper based on the principle of multidisciplinary design optimization(MDO). Firstly, the optimization characteristics of the metamorphic mechanism are summarized distinctly by proposing the classification of design variables and constraints as well as coupling interactions among its different configuration optimization models. Further, collaborative optimization technique which is used in MDO is adopted for achieving the overall optimization performance. The whole optimization process is then proposed by constructing a two-level hierarchical scheme with global optimizer and configuration optimizer loops. The method is demonstrated by optimizing a planar five-bar metamorphic mechanism which has two configurations,and results show that it can achieve coordinated optimization results for the same parameters in different configuration optimization models.展开更多
The Schwarz primitive triply periodic minimal surface(P-type TPMS)lattice structures are widely used.However,these lattice structures have weak load-bearing capacity compared with other cellular structures.In this pap...The Schwarz primitive triply periodic minimal surface(P-type TPMS)lattice structures are widely used.However,these lattice structures have weak load-bearing capacity compared with other cellular structures.In this paper,an adaptive enhancement design method based on the non-uniform stress distribution in structures with uniform thickness is proposed to design the P-type TPMS lattice structures with higher mechanical properties.Two types of structures are designed by adjusting the adaptive thickness distribution in the TPMS.One keeps the same relative density,and the other keeps the same of non-enhanced region thickness.Compared with the uniform lattice structure,the elastic modulus for the structure with the same relative density increases by more than 17%,and the yield strength increases by more than 10.2%.Three kinds of TPMS lattice structures are fabricated by laser powder bed fusion(L-PBF)with 316L stainless steel to verify the proposed enhanced design.The manufacture-induced geometric deviation between the as-design and as-printed models is measured by micro X-ray computed tomography(μ-CT)scans.The quasi-static compression experimental results of P-type TPMS lattice structures show that the reinforced structures have stronger elastic moduli,ultimate strengths,and energy absorption capabilities than the homogeneous P-TPMS lattice structure.展开更多
Because the larger metallic surrounds are heated by the eddy current, which is generated by the AC current flowing through the AC busbar in the International Thermonuclear ExperimentM Reactor (ITER) poloidal field ...Because the larger metallic surrounds are heated by the eddy current, which is generated by the AC current flowing through the AC busbar in the International Thermonuclear ExperimentM Reactor (ITER) poloidal field (PF) converter system, shielding of the AC busbar is required to decrease the temperature rise of the surrounds to satisfy the design requirement. Three special types of AC busbar with natural cooling, air cooling and water cooling busbar structure have been proposed and investigated in this paper. For each cooling scheme, a 3D finite model based on the proposed structure has been developed to perform the electromagnetic and thermal analysis to predict their operation behavior. Comparing the analysis results of the three different cooling patterns, water cooling has more advantages than the other patterns and it is selected to be the thermal dissipation pattern for the AC busbar of ITER PF converter unit. The approach to qualify the suitable cooling scheme in this paper can be provided as a reference on the thermal dissipation design of AC busbar in the converter system.展开更多
Many problems in rock engineering are limited by our imperfect knowledge of the material properties and failure mechanics of rock masses. Mining problems are somewhat unique, however, in that plenty of real world expe...Many problems in rock engineering are limited by our imperfect knowledge of the material properties and failure mechanics of rock masses. Mining problems are somewhat unique, however, in that plenty of real world experience is generally available and can be turned into valuable experimental data.Every pillar that is developed, or stope that is mined, represents a full-scale test of a rock mechanics design. By harvesting these data, and then using the appropriate statistical techniques to interpret them,mining engineers have developed powerful design techniques that are widely used around the world.Successful empirical methods are readily accepted because they are simple, transparent, practical, and firmly tethered to reality. The author has been intimately associated with empirical design for his entire career, but his previous publications have described the application of individual techniques to specific problems. The focus of this paper is the process used to develop a successful empirical method. A sixstage process is described: identification of the problem, and of the end users of the final product; development of a conceptual rock mechanics model, and identification of the key parameters in that model;identification of measures for each of the key parameters, and the development of new measures(such as rating scales) where necessary; data sources and data collection; statistical analysis; and packaging of the final product. Each of these stages has its own potential rewards and pitfalls, which will be illustrated by incidents from the author's own experience. The ultimate goal of this paper is to provide a new and deeper appreciation for empirical techniques, as well as some guidelines and opportunities for future developers.展开更多
Based on the consideration of operation environment and structural property, an optimum design model of offshore jacket platform is developed in this paper, namely, the reliability-based full-life cycle optimum design...Based on the consideration of operation environment and structural property, an optimum design model of offshore jacket platform is developed in this paper, namely, the reliability-based full-life cycle optimum design model. In this model, the time-dependent reliability assessment method for structural members is established by combination of the decrease of sectional size and performance deterioration of material. The initial investment, maintenance cost and failure loss cost are assembled into the model. The total cost of the platform structure system in its full service period is chosen as the objective function, and the initial reliabilities of the layer elements partitioned in advance are taken as the design variables. Different models are obtained, depending on whether the system reliability constraint is considered or not. This optimum design model can result in the lowest full-life cost and the optimal initial layer reliability of an offshore jacket platform in the design of marine structures. The feasibility of this model is illustrated with an actual jacket platform in the Liaodong Gulf as an example.展开更多
This work was focused on the model-based design method of two-axis four-actuator(TAFA) fast steering mirror system(FSM), in order to improve the design efficiency. The structure and operation principle commonality of ...This work was focused on the model-based design method of two-axis four-actuator(TAFA) fast steering mirror system(FSM), in order to improve the design efficiency. The structure and operation principle commonality of normal TAFA FSM were investigated. Based on the structure and the commonality, the conditions of single-axis idea, high-frequency resonance and coupling were modeled gradually. Combining these models, a holonomic system model was established to reflect and predict the performance of TAFA FSM. A model-based design method was proposed based on the holonomic system model. The design flow and design concept of the method were described. In accordance with the method, a TAFA FSM was designed. Simulations and experiments of the FSM were done, and the results of them were compared. The compared results indicate that the holonomic system model can well reflect and predict the performance of TAFA FSM. The bandwidth of TAFA FSM is more than 250 Hz; adjust time is less than 15 ms;overshoot is less than 8%; position accuracy is better than 10 μrad; the FSM prototype can satisfy the requirements.展开更多
A newly emerging design pattern, named as adaptable design (AD), which aims at developing products that are adaptable from design to post-life cycle, is discussed. AD consists of four main phases: product modeling,...A newly emerging design pattern, named as adaptable design (AD), which aims at developing products that are adaptable from design to post-life cycle, is discussed. AD consists of four main phases: product modeling, design platform, specific design and product redesign. A new process-based design data model (PDDM) is presented which is organized according to the principles of convenient knowledge extraction, data representation, layout, sharing and reuse. Based on the PDDM, a universal design platform for product family development is established, which has characters of modularity, parameter-driven, variant design, etc. The framework of the platform is also proposed as a conceptual structure and overall logical organization for generating a family of products. AD methodology is successfully applied to develop a family of tunnel boring machine (TBM) for different engineering projects, with the efficiency of our developing team being greatly increased.展开更多
Due to advances in numerical modelling, it is possible to capture complex support-ground interaction intwo dimensions and three dimensions for mechanical analysis of complex tunnel support systems,although such analys...Due to advances in numerical modelling, it is possible to capture complex support-ground interaction intwo dimensions and three dimensions for mechanical analysis of complex tunnel support systems,although such analysis may still be too complex for routine design calculations. One such system is theforepole element, installed within the umbrella arch temporary support system for tunnels, whichwarrants such support measures. A review of engineering literature illustrates that a lack of designstandards exists regarding the use of forepole elements. Therefore, when designing such support, designersmust employ complex numerical models combined with engineering judgement. With referenceto past developments by others and new investigations conducted by the authors on the Driskos tunnelin Greece and the Istanbul metro, this paper illustrates how advanced numerical modelling tools canfacilitate understanding of the influences of design parameters associated with the use of forepole elements.In addition, this paper highlights the complexity of the ground-support interaction whensimulated with two-dimensional (2D) finite element software using a homogenous reinforced region,and three-dimensional (3D) finite difference software using structural elements. This paper further illustratessequential optimisation of two design parameters (spacing and overlap) using numericalmodelling. With regard to capturing system behaviour in the region between forepoles for the purpose ofdimensioning spacing, this paper employs three distinctive advanced numerical models: particle codes,continuous finite element models with joint set and Voronoi blocks. Finally, to capture the behaviour/failure ahead of the tunnel face (overlap parameter), 2D axisymmetric models are employed. Finally,conclusions of 2D and 3D numerical assessment on the Driskos tunnel are drawn. The data enriched casestudy is examined to determine an optimum design, based on the proposed optimisation of designparameters, of forepole elements related to the site-specific considerations. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
Associated dynamic performance of the clamping force control valve used in continuously variable transmission (CVT) is optimized. Firstly, the structure and working principle of the valve are analyzed, and then a dy...Associated dynamic performance of the clamping force control valve used in continuously variable transmission (CVT) is optimized. Firstly, the structure and working principle of the valve are analyzed, and then a dynamic model is set up by means of mechanism analysis. For the purpose of checking the validity of the modeling method, a prototype workpiece of the valve is manufactured for comparison test, and its simulation result follows the experimental result quite well. An associated performance index is founded considering the response time, overshoot and saving energy, and five structural parameters are selected to adjust for deriving the optimal associated performance index. The optimization problem is solved by the genetic algorithm (GA) with necessary constraints. Finally, the properties of the optimized valve are compared with those of the prototype workpiece, and the results prove that the dynamic performance indexes of the optimized valve are much better than those of the prototype workpiece.展开更多
文摘One of the most important factors influencing on a tunnel blast efficiency is the proper design of blasting pattern. Among blasting parameters, blasthole diameter and tunnel face area are more significant so that any change in these parameters could finally affect on specific charge and specific drilling. There are mainly two groups of methods for tunnel blast design categorized based on the parallel cuts and angular cuts. In this research, a software for tunnel blast design was developed to analyze the effect and sensitiveness of blasthole diameter and the tunnel face area on blasting results in different blast design models. Using the software, it is quickly possible to determine specific charge, specific drilling and number of blastholes for each blast design model. The relations between both of blasthole diameters and the tunnel face area with the above parameters in different blast design models were then investigated to yield a set of equations with the highest correlations to compare the methods. The results showed that angular method requires more blasthole numbers than parallel method in similar condition(blasthole diameter and tunnel face area). Moreover, the specific charge values yielded by the two methods are approximately the same and very close together.
文摘The main focus of this paper is the analysis on how social business recent management proposals fit to a media/journalistic business environment. The discussion was based on three research questions focusing on: the drivers and the constraints of disruption innovation strategies; the adequate social business design framework to promote innovation; and an evaluation over the practices/experiences related to disruption, innovation, and creativity in journalistic businesses. A conceptual framework the Latour/Law Actor-Network Theory (ANT) has been taken as. Six possible dimensions of action to make this framework valuable some successful practices have also been identified, and in this paper the authors view over these concepts. The main conclusion goes through the understanding of journalistic culture and legitimacy embedded for centuries over society, and to change this will depend on multiple enablers.
文摘This study integrated instrumental and relational approaches to the teaching and learning of solids in a preservice teacher's class. The researcher guided the preservice teachers to gather various prisms, pyramids, and spheres to study the total surface areas and volumes. At the end of the integrated models, the test scores showed closed relationships in the concurrent instructional strategies of the integrated models. The researcher therefore, recommended the design models for the teaching and learning of solids in mathematics.
文摘With the continuous improvement of signal processing accuracy requirements in modern electronic systems,the demand for high-precision analog-to-digital converters(ADCs)is increasing.Sigma-Delta modulator,as the most important component of high-precision ADC,is widely used in high-quality audio,high-precision instrument measurement,and other fields due to its advantages of high precision,strong noise resistance,and low hardware cost.This article designs a discrete structure third-order four-bit high-precision Sigma-Delta modulator through modeling,with an oversampling rate set to 512.Under ideal conditions,the simulation results show that the SDNR reaches 152.7db and the ENOB is 25.24bits.After introducing non-ideal noise,the system performance has decreased.The simulation results show that the SDNR is as high as 124.5db and the ENOB is 20.39bits.This indicates that the design can achieve high-precision conversion and provide assistance for further research in the future.
基金supported by Natural Science Foundation of Fujian Province(2022I0019)Scientific Research Foundation for Jimei University(ZQ2024041,ZQ2024042).
文摘The penetration of ogival-nosed projectiles into ship plates represents a complex impact dynamics issue essential for analyzing structural failuremechanisms.Although stiffenedplates are vital in ship construction,fewstudies have addressed the issue of model equivalence under penetration loading.This study employs numerical simulation to validate an experiment with an ogival-nosed projectile penetrating a Q345 steel plate.Four equivalent stiffened plate methods are proposed based on the area,flexural modulus,moment of inertia,and thickness.The results indicate that thickness equivalence(DM4)is unsuitable for penetration-loaded stiffened plates,except under low-speed,nonpenetrating through impacts,and yields less accuracy than DM1/DM3.DM1,DM2,and DM3 each perform optimally with specific velocity ranges:DM1 at very low(critical)and high velocities,DM3 at low velocities,and DM2 at high speeds.Furthermore,in penetration scenarios,T-shaped stiffeners can be replacedwith rectangular ones,as both exhibit similar failure behaviors and deflection trends,simplifying the design while preserving key structural characteristics.These findings provide valuable insights into the design of protective ship structures.
基金Supported by the National High Technology Research and Development Program of China(2014AA041803)the National Natural Science Foundation of China(61320106009)
文摘Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard to build a good-quality model of this batch process.Besides,due to the properties of this process,the reliability of the model must be taken into consideration when optimizing the MVs.In this work,an optimal design strategy based on the self-learning Gaussian process model(GPM) is proposed to control this kind of spatial batch process.The GPM is utilized as the internal model to predict the thicknesses of thin films on all spatial-distributed wafers using the limited data.Unlike the conventional model based design,the uncertainties of predictions provided by GPM are taken into consideration to guide the optimal design of manipulated variables so that the designing can be more prudent Besides,the GPM is also actively enhanced using as little data as possible based on the predictive uncertainties.The effectiveness of the proposed strategy is successfully demonstrated in an LPCVD process.
基金Shanghai Pujiang Program,China(No.19PJC003)Fundamental Research Funds for the Central Universities,China(No.107-10-0108027)。
文摘Product-service system design(PSSD)plays a significant role in both design theory and practice with increasing importance.Although scholars have made significant efforts to delineate its definition,methods,and applications,misunderstandings about PSSD persist widely across design agencies and academia.This study aims to outline the various types and models of product-service systems(PSSs)based on inputs from product design agencies.To achieve this purpose,this study applies a two-step research method,comprising a Q-sorting procedure followed by hypothesis testing.This allows us to study the business scope and design model of each design agency from a field research perspective.We propose a design framework with four basic types of PSSs,11 extended types of PSSs,and 4P-8D PSSD models.The current study has theoretical and practical implications.For academics,our models are clearly classified and validated.For practitioners,our models of PSSs can support design agencies in clearly recognizing their position within the design industry,allowing them to select the appropriate types and models to facilitate their future development.Our study also provides helpful guidances for college graduates,cutting-edge designers,and new design studios.
基金supported by the National Natural Science Foundation of China under Grant 62107034the Major Science and Technology Project of Yunnan Province(202402AD080002)Yunnan International Joint R&D Center of China-Laos-Thailand Educational Digitalization(202203AP140006).
文摘The task of student action recognition in the classroom is to precisely capture and analyze the actions of students in classroom videos,providing a foundation for realizing intelligent and accurate teaching.However,the complex nature of the classroom environment has added challenges and difficulties in the process of student action recognition.In this research article,with regard to the circumstances where students are prone to be occluded and classroom computing resources are restricted in real classroom scenarios,a lightweight multi-modal fusion action recognition approach is put forward.This proposed method is capable of enhancing the accuracy of student action recognition while concurrently diminishing the number of parameters of the model and the Computation Amount,thereby achieving a more efficient and accurate recognition performance.In the feature extraction stage,this method fuses the keypoint heatmap with the RGB(Red-Green-Blue color model)image.In order to fully utilize the unique information of different modalities for feature complementarity,a Feature Fusion Module(FFE)is introduced.The FFE encodes and fuses the unique features of the two modalities during the feature extraction process.This fusion strategy not only achieves fusion and complementarity between modalities,but also improves the overall model performance.Furthermore,to reduce the computational load and parameter scale of the model,we use keypoint information to crop RGB images.At the same time,the first three networks of the lightweight feature extraction network X3D are used to extract dual-branch features.These methods significantly reduce the computational load and parameter scale.The number of parameters of the model is 1.40 million,and the computation amount is 5.04 billion floating-point operations per second(GFLOPs),achieving an efficient lightweight design.In the Student Classroom Action Dataset(SCAD),the accuracy of the model is 88.36%.In NTU 60(Nanyang Technological University Red-Green-Blue-Depth RGB+Ddataset with 60 categories),the accuracies on X-Sub(The people in the training set are different from those in the test set)and X-View(The perspectives of the training set and the test set are different)are 95.76%and 98.82%,respectively.On the NTU 120 dataset(Nanyang Technological University Red-Green-Blue-Depth dataset with 120 categories),RGB+Dthe accuracies on X-Sub and X-Set(the perspectives of the training set and the test set are different)are 91.97%and 93.45%,respectively.The model has achieved a balance in terms of accuracy,computation amount,and the number of parameters.
基金supported by the National Natural Science Foundation of China(No.62066041).
文摘Convolutional neural networks(CNNs)exhibit superior performance in image feature extraction,making them extensively used in the area of traffic sign recognition.However,the design of existing traffic sign recognition algorithms often relies on expert knowledge to enhance the image feature extraction networks,necessitating image preprocessing and model parameter tuning.This increases the complexity of the model design process.This study introduces an evolutionary neural architecture search(ENAS)algorithm for the automatic design of neural network models tailored for traffic sign recognition.By integrating the construction parameters of residual network(ResNet)into evolutionary algorithms(EAs),we automatically generate lightweight networks for traffic sign recognition,utilizing blocks as the fundamental building units.Experimental evaluations on the German traffic sign recognition benchmark(GTSRB)dataset reveal that the algorithm attains a recognition accuracy of 99.32%,with a mere 2.8×10^(6)parameters.Experimental results comparing the proposed method with other traffic sign recognition algorithms demonstrate that the method can more efficiently discover neural network architectures,significantly reducing the number of network parameters while maintaining recognition accuracy.
基金This work was supported by the National Natural Science Foundation of China(Grant 11702315,92052301)the National Key Research and Development Program of China(Grant 2016YFA0401200).
文摘To understand fundamental problems in hypersonic laminar-turbulent boundary layer transition for three-dimensional complex vehicles,a new standard model with typical lifting-body features has been proposed,named as hypersonic transition research vehicle(HyTRV).The configuration of HyTRV is fully analytical,and details of the design process are discussed in this study.The transition characteristics for HyTRV are investigated using three combined methods,i.e.,theoretical analyses,numerical simulations,and wind tunnel experiments.Results show that the fully analytic parameterization design of HyTRV can satisfy the model simplification requirements from both numerical simulations and wind tunnel experiments.Meanwhile,the flow field of HyTRV reveals typical transition mechanisms in six relatively separated regions,including the streamwise vortex instability,crossflow instability,secondary instability,and attachment-line instability.Therefore,the proposed HyTRV model is valuable for fundamental researches in hypersonic boundary layer transition.
文摘Based on a bionic concept and combing air-cushion techniques and track driving mechanisms, a novel semi-floating hybrid concept vehicle is proposed to meet the transportation requirements on soft terrain. First, the vehicle scheme and its improved duel-spring flexible suspension design are described. Then, its fuel consumption model is proposed accordingly with respect to two vehicle operating parameters. Aiming at minimizing the fuel consumption, two Genetic Algorithms (GAs) are designed and implemented. For the initial one (GA-1), despite getting an acceptable result, there still existed some problems in its optimiza- tion process. Based on an analysis of the defects of GA-1, an improved algorithm GA-2 was developed whose effectiveness and stability were embodied in the optimization process and results. The proposed design scheme and optimization approaches can provide valuable references for this new kind of vehicle with industry, military or scientific exploitations, etc. promising applications in the areas of agriculture, petroleum industry, military or scientific explaitations, etc.
基金the fundamental support of the National Natural Science Foundation of China (Nos. 51105013, 51125020)the Beijing Natural Science Foundation of China (No. 3133042)the fundamental support provided by the China Scholarship Council and the State Key Laboratory of Robotics and System (HIT)
文摘The optimization of metamorphic mechanisms is different from that of the conventional mechanisms for its characteristics of multi-configuration. There exist complex coupled design variables and constraints in its multiple different configuration optimization models. To achieve the compatible optimized results of these coupled design variables, an optimization method for metamorphic mechanisms is developed in the paper based on the principle of multidisciplinary design optimization(MDO). Firstly, the optimization characteristics of the metamorphic mechanism are summarized distinctly by proposing the classification of design variables and constraints as well as coupling interactions among its different configuration optimization models. Further, collaborative optimization technique which is used in MDO is adopted for achieving the overall optimization performance. The whole optimization process is then proposed by constructing a two-level hierarchical scheme with global optimizer and configuration optimizer loops. The method is demonstrated by optimizing a planar five-bar metamorphic mechanism which has two configurations,and results show that it can achieve coordinated optimization results for the same parameters in different configuration optimization models.
基金supported by the National Natural Science Foundation of China(Nos.12002031,12122202U22B2083)+1 种基金the China Postdoctoral Science Foundation(Nos.BX2021038 and 2021M700428)the National Key Research and Development of China(No.2022YFB4601901)。
文摘The Schwarz primitive triply periodic minimal surface(P-type TPMS)lattice structures are widely used.However,these lattice structures have weak load-bearing capacity compared with other cellular structures.In this paper,an adaptive enhancement design method based on the non-uniform stress distribution in structures with uniform thickness is proposed to design the P-type TPMS lattice structures with higher mechanical properties.Two types of structures are designed by adjusting the adaptive thickness distribution in the TPMS.One keeps the same relative density,and the other keeps the same of non-enhanced region thickness.Compared with the uniform lattice structure,the elastic modulus for the structure with the same relative density increases by more than 17%,and the yield strength increases by more than 10.2%.Three kinds of TPMS lattice structures are fabricated by laser powder bed fusion(L-PBF)with 316L stainless steel to verify the proposed enhanced design.The manufacture-induced geometric deviation between the as-design and as-printed models is measured by micro X-ray computed tomography(μ-CT)scans.The quasi-static compression experimental results of P-type TPMS lattice structures show that the reinforced structures have stronger elastic moduli,ultimate strengths,and energy absorption capabilities than the homogeneous P-TPMS lattice structure.
基金supported by National Natural Science Foundation of China(No.51407179)
文摘Because the larger metallic surrounds are heated by the eddy current, which is generated by the AC current flowing through the AC busbar in the International Thermonuclear ExperimentM Reactor (ITER) poloidal field (PF) converter system, shielding of the AC busbar is required to decrease the temperature rise of the surrounds to satisfy the design requirement. Three special types of AC busbar with natural cooling, air cooling and water cooling busbar structure have been proposed and investigated in this paper. For each cooling scheme, a 3D finite model based on the proposed structure has been developed to perform the electromagnetic and thermal analysis to predict their operation behavior. Comparing the analysis results of the three different cooling patterns, water cooling has more advantages than the other patterns and it is selected to be the thermal dissipation pattern for the AC busbar of ITER PF converter unit. The approach to qualify the suitable cooling scheme in this paper can be provided as a reference on the thermal dissipation design of AC busbar in the converter system.
文摘Many problems in rock engineering are limited by our imperfect knowledge of the material properties and failure mechanics of rock masses. Mining problems are somewhat unique, however, in that plenty of real world experience is generally available and can be turned into valuable experimental data.Every pillar that is developed, or stope that is mined, represents a full-scale test of a rock mechanics design. By harvesting these data, and then using the appropriate statistical techniques to interpret them,mining engineers have developed powerful design techniques that are widely used around the world.Successful empirical methods are readily accepted because they are simple, transparent, practical, and firmly tethered to reality. The author has been intimately associated with empirical design for his entire career, but his previous publications have described the application of individual techniques to specific problems. The focus of this paper is the process used to develop a successful empirical method. A sixstage process is described: identification of the problem, and of the end users of the final product; development of a conceptual rock mechanics model, and identification of the key parameters in that model;identification of measures for each of the key parameters, and the development of new measures(such as rating scales) where necessary; data sources and data collection; statistical analysis; and packaging of the final product. Each of these stages has its own potential rewards and pitfalls, which will be illustrated by incidents from the author's own experience. The ultimate goal of this paper is to provide a new and deeper appreciation for empirical techniques, as well as some guidelines and opportunities for future developers.
文摘Based on the consideration of operation environment and structural property, an optimum design model of offshore jacket platform is developed in this paper, namely, the reliability-based full-life cycle optimum design model. In this model, the time-dependent reliability assessment method for structural members is established by combination of the decrease of sectional size and performance deterioration of material. The initial investment, maintenance cost and failure loss cost are assembled into the model. The total cost of the platform structure system in its full service period is chosen as the objective function, and the initial reliabilities of the layer elements partitioned in advance are taken as the design variables. Different models are obtained, depending on whether the system reliability constraint is considered or not. This optimum design model can result in the lowest full-life cost and the optimal initial layer reliability of an offshore jacket platform in the design of marine structures. The feasibility of this model is illustrated with an actual jacket platform in the Liaodong Gulf as an example.
基金Projects(51135009)supported by the National Natural Science Foundation of China
文摘This work was focused on the model-based design method of two-axis four-actuator(TAFA) fast steering mirror system(FSM), in order to improve the design efficiency. The structure and operation principle commonality of normal TAFA FSM were investigated. Based on the structure and the commonality, the conditions of single-axis idea, high-frequency resonance and coupling were modeled gradually. Combining these models, a holonomic system model was established to reflect and predict the performance of TAFA FSM. A model-based design method was proposed based on the holonomic system model. The design flow and design concept of the method were described. In accordance with the method, a TAFA FSM was designed. Simulations and experiments of the FSM were done, and the results of them were compared. The compared results indicate that the holonomic system model can well reflect and predict the performance of TAFA FSM. The bandwidth of TAFA FSM is more than 250 Hz; adjust time is less than 15 ms;overshoot is less than 8%; position accuracy is better than 10 μrad; the FSM prototype can satisfy the requirements.
文摘A newly emerging design pattern, named as adaptable design (AD), which aims at developing products that are adaptable from design to post-life cycle, is discussed. AD consists of four main phases: product modeling, design platform, specific design and product redesign. A new process-based design data model (PDDM) is presented which is organized according to the principles of convenient knowledge extraction, data representation, layout, sharing and reuse. Based on the PDDM, a universal design platform for product family development is established, which has characters of modularity, parameter-driven, variant design, etc. The framework of the platform is also proposed as a conceptual structure and overall logical organization for generating a family of products. AD methodology is successfully applied to develop a family of tunnel boring machine (TBM) for different engineering projects, with the efficiency of our developing team being greatly increased.
基金funded by the Natural Sciences and Engineering Research Council of Canadathe Department of National Defence (Canada) as well as graduate funding obtained at Queen’s University and the Royal Military College of Canada
文摘Due to advances in numerical modelling, it is possible to capture complex support-ground interaction intwo dimensions and three dimensions for mechanical analysis of complex tunnel support systems,although such analysis may still be too complex for routine design calculations. One such system is theforepole element, installed within the umbrella arch temporary support system for tunnels, whichwarrants such support measures. A review of engineering literature illustrates that a lack of designstandards exists regarding the use of forepole elements. Therefore, when designing such support, designersmust employ complex numerical models combined with engineering judgement. With referenceto past developments by others and new investigations conducted by the authors on the Driskos tunnelin Greece and the Istanbul metro, this paper illustrates how advanced numerical modelling tools canfacilitate understanding of the influences of design parameters associated with the use of forepole elements.In addition, this paper highlights the complexity of the ground-support interaction whensimulated with two-dimensional (2D) finite element software using a homogenous reinforced region,and three-dimensional (3D) finite difference software using structural elements. This paper further illustratessequential optimisation of two design parameters (spacing and overlap) using numericalmodelling. With regard to capturing system behaviour in the region between forepoles for the purpose ofdimensioning spacing, this paper employs three distinctive advanced numerical models: particle codes,continuous finite element models with joint set and Voronoi blocks. Finally, to capture the behaviour/failure ahead of the tunnel face (overlap parameter), 2D axisymmetric models are employed. Finally,conclusions of 2D and 3D numerical assessment on the Driskos tunnel are drawn. The data enriched casestudy is examined to determine an optimum design, based on the proposed optimisation of designparameters, of forepole elements related to the site-specific considerations. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金Key Science-Technology Foundation of Hunan Province, China (No. 05GK2007).
文摘Associated dynamic performance of the clamping force control valve used in continuously variable transmission (CVT) is optimized. Firstly, the structure and working principle of the valve are analyzed, and then a dynamic model is set up by means of mechanism analysis. For the purpose of checking the validity of the modeling method, a prototype workpiece of the valve is manufactured for comparison test, and its simulation result follows the experimental result quite well. An associated performance index is founded considering the response time, overshoot and saving energy, and five structural parameters are selected to adjust for deriving the optimal associated performance index. The optimization problem is solved by the genetic algorithm (GA) with necessary constraints. Finally, the properties of the optimized valve are compared with those of the prototype workpiece, and the results prove that the dynamic performance indexes of the optimized valve are much better than those of the prototype workpiece.