We investigate an optical compact triplexer based on two photonic crystal waveguides and resonant cavities. For performing wavelength selection, we use three core-shell rods as the resonant cavities. The core rods are...We investigate an optical compact triplexer based on two photonic crystal waveguides and resonant cavities. For performing wavelength selection, we use three core-shell rods as the resonant cavities. The core rods are created by introducing air holes in the center of the silicon rods. By varying the radii of the air holes, three specific wavelengths 1.31, 1.49 and 1.55μm can be obtained. This structure is designed and its performance is verified by the finite-difference time-domain method, which is highly suitable for photonic integrated circuits (PICs). The average output transmission efficiency and quality factor are more than 98.85% and 560, respectively. The mean value of the crosstalk between output channels is about -36.49 dB. The present device is extremely compact with total size 96.24μm2, which is suitable for PICs and can be utilized in the fiber-to-the-home system.展开更多
Deliberately introducing defects into photonic crystals is an important way to functionalize the photonic crystals. We prepare a special large-scale three-dimensional (3D) photonic crystal (PC) with designed defec...Deliberately introducing defects into photonic crystals is an important way to functionalize the photonic crystals. We prepare a special large-scale three-dimensional (3D) photonic crystal (PC) with designed defects by an easy and low-cost method. The defect layer consists of photoresist strips or air-core strips. Field emission scanning electron microscopy (FESEM) shows that the 3D PC is of good quality and the defect layer is uniform. Different defect states shown in the ultraviolet-visible spectra are induced by the photoresist strip layer and air-core strip layer. The special large-scale 3D PC can be tested for integrated optical circuits, and the defects can act as optical waveguides.展开更多
The idea of genetic engineering is introduced into the area of product design to improve the design efficiency. A method towards design process optimization based on the design process gene is proposed through analyzi...The idea of genetic engineering is introduced into the area of product design to improve the design efficiency. A method towards design process optimization based on the design process gene is proposed through analyzing the correlation between the design process gene and characteristics of the design process. The concept of the design process gene is analyzed and categorized into five categories that are the task specification gene, the concept design gene, the overall design gene, the detailed design gene and the processing design gene in the light of five design phases. The elements and their interactions involved in each kind of design process gene signprocess gene mapping is drawn with its structure disclosed based on its function that process gene.展开更多
Crystalline@amorphous NiCo_(2)S_(4)@MoS_(2)(v-NCS@MS)nanostructures were designed and constructed via an ethylene glycol-induced strategy with hydrothermal synthesis and solvothermal method,which simultaneously realiz...Crystalline@amorphous NiCo_(2)S_(4)@MoS_(2)(v-NCS@MS)nanostructures were designed and constructed via an ethylene glycol-induced strategy with hydrothermal synthesis and solvothermal method,which simultaneously realized the defect regulation of crystal NiCo_(2)S_(4) in the core.Taking advantage of the flexible protection of an amor-phous shell and the high capacity of a conductive core with defects,the v-NCS@MS electrode exhibited high specif-ic capacity(1034 mAh·g^(-1) at 1 A·g^(-1))and outstanding rate capability.Moreover,a hybrid supercapacitor was assembled with v-NCS@MS as cathode and activated carbon(AC)as anode,which can achieve remarkably high specific energy of 111 Wh·kg^(-1) at a specific power of 219 W·kg^(-1) and outstanding capacity retention of 80.5%after 15000 cycling at different current densities.展开更多
Although defect engineering opens up new opportunities in the field of gas sensors,the introduction of defects to enhance the gas sensing properties of metal oxide semiconductors(MOSs)has long been neglected.In this r...Although defect engineering opens up new opportunities in the field of gas sensors,the introduction of defects to enhance the gas sensing properties of metal oxide semiconductors(MOSs)has long been neglected.In this review,defect engineering strategies have been systematically introduced,with a focus on employing them for improved gas sensing performances.To keep the subject focused,we take SnO_(2) nanomaterials as an example.Various synthesis methods for defective SnO_(2),including ion/electron/ray/laser-beam irradiation,plasma treatment,heating protocol,chemical reduction,tailoring specially exposed crystal facets and atoms doping,are emphasized.Different roles of defects on the gas sensing process of SnO_(2) are discussed.Finally,critical issues and future directions of defect engineering are presented.This paper provides a platform for better understanding the relationships between synthesis,defect types and gas sensing performances of MOSs.It is also expected to unpack an important research direction for controlled synthesis of defective nanomaterials with other applications,including advanced energy conversion and storage.展开更多
Software defect prevention is an important way to reduce the defect introduction rate.As the primary cause of software defects,human error can be the key to understanding and preventing software defects.This paper pro...Software defect prevention is an important way to reduce the defect introduction rate.As the primary cause of software defects,human error can be the key to understanding and preventing software defects.This paper proposes a defect prevention approach based on human error mechanisms:DPe HE.The approach includes both knowledge and regulation training in human error prevention.Knowledge training provides programmers with explicit knowledge on why programmers commit errors,what kinds of errors tend to be committed under different circumstances,and how these errors can be prevented.Regulation training further helps programmers to promote the awareness and ability to prevent human errors through practice.The practice is facilitated by a problem solving checklist and a root cause identification checklist.This paper provides a systematic framework that integrates knowledge across disciplines,e.g.,cognitive science,software psychology and software engineering to defend against human errors in software development.Furthermore,we applied this approach in an international company at CMM Level 5 and a software development institution at CMM Level 1 in the Chinese Aviation Industry.The application cases show that the approach is feasible and effective in promoting developers' ability to prevent software defects,independent of process maturity levels.展开更多
文摘We investigate an optical compact triplexer based on two photonic crystal waveguides and resonant cavities. For performing wavelength selection, we use three core-shell rods as the resonant cavities. The core rods are created by introducing air holes in the center of the silicon rods. By varying the radii of the air holes, three specific wavelengths 1.31, 1.49 and 1.55μm can be obtained. This structure is designed and its performance is verified by the finite-difference time-domain method, which is highly suitable for photonic integrated circuits (PICs). The average output transmission efficiency and quality factor are more than 98.85% and 560, respectively. The mean value of the crosstalk between output channels is about -36.49 dB. The present device is extremely compact with total size 96.24μm2, which is suitable for PICs and can be utilized in the fiber-to-the-home system.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91122022 and 51172209)the Program for Changjiang Scholars and Innovative Research Team(PCSIRT)in University,China(Grant No.IRT13097)
文摘Deliberately introducing defects into photonic crystals is an important way to functionalize the photonic crystals. We prepare a special large-scale three-dimensional (3D) photonic crystal (PC) with designed defects by an easy and low-cost method. The defect layer consists of photoresist strips or air-core strips. Field emission scanning electron microscopy (FESEM) shows that the 3D PC is of good quality and the defect layer is uniform. Different defect states shown in the ultraviolet-visible spectra are induced by the photoresist strip layer and air-core strip layer. The special large-scale 3D PC can be tested for integrated optical circuits, and the defects can act as optical waveguides.
文摘The idea of genetic engineering is introduced into the area of product design to improve the design efficiency. A method towards design process optimization based on the design process gene is proposed through analyzing the correlation between the design process gene and characteristics of the design process. The concept of the design process gene is analyzed and categorized into five categories that are the task specification gene, the concept design gene, the overall design gene, the detailed design gene and the processing design gene in the light of five design phases. The elements and their interactions involved in each kind of design process gene signprocess gene mapping is drawn with its structure disclosed based on its function that process gene.
文摘Crystalline@amorphous NiCo_(2)S_(4)@MoS_(2)(v-NCS@MS)nanostructures were designed and constructed via an ethylene glycol-induced strategy with hydrothermal synthesis and solvothermal method,which simultaneously realized the defect regulation of crystal NiCo_(2)S_(4) in the core.Taking advantage of the flexible protection of an amor-phous shell and the high capacity of a conductive core with defects,the v-NCS@MS electrode exhibited high specif-ic capacity(1034 mAh·g^(-1) at 1 A·g^(-1))and outstanding rate capability.Moreover,a hybrid supercapacitor was assembled with v-NCS@MS as cathode and activated carbon(AC)as anode,which can achieve remarkably high specific energy of 111 Wh·kg^(-1) at a specific power of 219 W·kg^(-1) and outstanding capacity retention of 80.5%after 15000 cycling at different current densities.
基金supported by the National Natural Science Foundation of China(No.51872173)the Taishan Scholars Program of Shandong Province,China(No.tsqn201812068)+3 种基金the Opening Fund of State Key Laboratory of Heavy Oil Processing,China(No.SKLOP202002006)the Higher School Youth Innovation Team of Shandong Province,China(No.2019KJA013)the Science and Technology Special Project of Qingdao City,Shandong Province,China(No.20-3-4-3-nsh)financial support provided by the Natural Science Foundation of Shandong Province,China(No.ZR2021QE092).
文摘Although defect engineering opens up new opportunities in the field of gas sensors,the introduction of defects to enhance the gas sensing properties of metal oxide semiconductors(MOSs)has long been neglected.In this review,defect engineering strategies have been systematically introduced,with a focus on employing them for improved gas sensing performances.To keep the subject focused,we take SnO_(2) nanomaterials as an example.Various synthesis methods for defective SnO_(2),including ion/electron/ray/laser-beam irradiation,plasma treatment,heating protocol,chemical reduction,tailoring specially exposed crystal facets and atoms doping,are emphasized.Different roles of defects on the gas sensing process of SnO_(2) are discussed.Finally,critical issues and future directions of defect engineering are presented.This paper provides a platform for better understanding the relationships between synthesis,defect types and gas sensing performances of MOSs.It is also expected to unpack an important research direction for controlled synthesis of defective nanomaterials with other applications,including advanced energy conversion and storage.
文摘Software defect prevention is an important way to reduce the defect introduction rate.As the primary cause of software defects,human error can be the key to understanding and preventing software defects.This paper proposes a defect prevention approach based on human error mechanisms:DPe HE.The approach includes both knowledge and regulation training in human error prevention.Knowledge training provides programmers with explicit knowledge on why programmers commit errors,what kinds of errors tend to be committed under different circumstances,and how these errors can be prevented.Regulation training further helps programmers to promote the awareness and ability to prevent human errors through practice.The practice is facilitated by a problem solving checklist and a root cause identification checklist.This paper provides a systematic framework that integrates knowledge across disciplines,e.g.,cognitive science,software psychology and software engineering to defend against human errors in software development.Furthermore,we applied this approach in an international company at CMM Level 5 and a software development institution at CMM Level 1 in the Chinese Aviation Industry.The application cases show that the approach is feasible and effective in promoting developers' ability to prevent software defects,independent of process maturity levels.