期刊文献+
共找到785篇文章
< 1 2 40 >
每页显示 20 50 100
The Convergence of the Steepest Descent Algorithm for D.C.Optimization 被引量:1
1
作者 SONG Chun-ling XIA Zun-quan 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2007年第1期131-136,共6页
Some properties of a class of quasi-differentiable functions(the difference of two finite convex functions) are considered in this paper. And the convergence of the steepest descent algorithm for unconstrained and c... Some properties of a class of quasi-differentiable functions(the difference of two finite convex functions) are considered in this paper. And the convergence of the steepest descent algorithm for unconstrained and constrained quasi-differentiable programming is proved. 展开更多
关键词 nonsmooth optimization D. C. optimization upper semi-continuous lower semi-continuous steepest descent algorithm CONVERGENCE
在线阅读 下载PDF
Channel estimation for MIMO-OFDM systems using steepest-descent algorithm 被引量:1
2
作者 L UXin XU Jun 《通讯和计算机(中英文版)》 2009年第11期64-68,共5页
关键词 最速下降算法 信道估计 OFDM系统 MIMO 快衰落信道 最速下降法 估计方法 分配模式
在线阅读 下载PDF
Merit functions for nonsmooth complementarity problems and related descent algorithm
3
作者 DU Shou-qiang GAO Yan 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2010年第1期78-84,共7页
Under some assumptions, the solution set of a nonlinear complementarity problem coincides with the set of local minima of the corresponding minimization problem. This paper uses a family of new merit functions to deal... Under some assumptions, the solution set of a nonlinear complementarity problem coincides with the set of local minima of the corresponding minimization problem. This paper uses a family of new merit functions to deal with nonlinear complementarity problem where the underlying function is assumed to be a continuous but not necessarily locally Lipschitzian map and gives a descent algorithm for solving the nonsmooth continuous complementarity problems. In addition, the global convergence of the derivative free descent algorithm is also proved. 展开更多
关键词 Nonsmooth complementarity problem merit function nonsmooth continuous map descent algorithm.
在线阅读 下载PDF
Gradient Descent Algorithm for Small UAV Parameter Estimation System
4
作者 Guo Jiandong Liu Qingwen Wang Kang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第6期680-687,共8页
A gradient descent algorithm with adjustable parameter for attitude estimation is developed,aiming at the attitude measurement for small unmanned aerial vehicle(UAV)in real-time flight conditions.The accelerometer and... A gradient descent algorithm with adjustable parameter for attitude estimation is developed,aiming at the attitude measurement for small unmanned aerial vehicle(UAV)in real-time flight conditions.The accelerometer and magnetometer are introduced to construct an error equation with the gyros,thus the drifting characteristics of gyroscope can be compensated by solving the error equation utilized by the gradient descent algorithm.Performance of the presented algorithm is evaluated using a self-proposed micro-electro-mechanical system(MEMS)based attitude heading reference system which is mounted on a tri-axis turntable.The on-ground,turntable and flight experiments indicate that the estimation attitude has a good accuracy.Also,the presented system is compared with an open-source flight control system which runs extended Kalman filter(EKF),and the results show that the attitude control system using the gradient descent method can estimate the attitudes for UAV effectively. 展开更多
关键词 gradient descent algorithm attitude estimation QUATERNIONS small unmanned aerial vehicle(UAV)
在线阅读 下载PDF
Research on three-dimensional attack area based on improved backtracking and ALPS-GP algorithms of air-to-air missile
5
作者 ZHANG Haodi WANG Yuhui HE Jiale 《Journal of Systems Engineering and Electronics》 2025年第1期292-310,共19页
In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of t... In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios. 展开更多
关键词 air combat three-dimensional attack area improved backtracking algorithm age-layered population structure genetic programming(ALPS-GP) gradient descent algorithm
在线阅读 下载PDF
不同训练算法下光子神经网络鲁棒性能研究
6
作者 陆鸣豪 陆云清 +3 位作者 曹雯 刘美玉 邵晓锋 王瑾 《自动化技术与应用》 2026年第1期17-21,共5页
优化了训练算法和学习率组合以提高光子神经网络(optical neural network,ONN)对器件误差的鲁棒性能,同时确保其对数字图像的高精确识别。仿真搭建两种全连接ONN架构,即GridNet和FFTNet,其中使用马赫曾德尔干涉仪(mach-zehnder interfer... 优化了训练算法和学习率组合以提高光子神经网络(optical neural network,ONN)对器件误差的鲁棒性能,同时确保其对数字图像的高精确识别。仿真搭建两种全连接ONN架构,即GridNet和FFTNet,其中使用马赫曾德尔干涉仪(mach-zehnder interferometers,MZI)作为光子器件,并对含有器件误差的ONN进行了不同算法的训练,包括随机梯度下降(stochastic gradient descent,SGD)、均方根传递(root mean square prop,RMSprop)、适应性矩估计(adaptive moment estimation,Adam)和自适应梯度下降(adaptive gradient,Adagrad)。结果表明,在不同程度的器件误差下,FFTNet型ONN比GridNet型ONN更鲁棒。具体来说,采用学习率为0.005的RMSprop和Adam算法以及学习率为0.5的Adagrad算法训练的FFTNet型ONN在数字图像识别精度和器件误差鲁棒性上表现最佳。优化训练算法和学习率的组合可以有效提高ONN的鲁棒性能。 展开更多
关键词 光子神经网络 器件误差 马赫曾德尔干涉仪 梯度下降算法 学习率
在线阅读 下载PDF
欺骗性干扰场景下的功率带宽联合分配策略
7
作者 李辉 武会斌 +2 位作者 王伟东 张恺 侯庆华 《电子科技》 2026年第2期19-27,共9页
针对欺骗性干扰导致的雷达性能下降问题,文中提出了一种功率带宽联合分配方案来提高雷达的探测精度,并借助高探测性能来提高雷达的抗干扰决策能力。以欺骗性距离的三维CRLB(Cramer-Rao Lower Bound)来代表雷达的探测精度,并将CRLB作为... 针对欺骗性干扰导致的雷达性能下降问题,文中提出了一种功率带宽联合分配方案来提高雷达的探测精度,并借助高探测性能来提高雷达的抗干扰决策能力。以欺骗性距离的三维CRLB(Cramer-Rao Lower Bound)来代表雷达的探测精度,并将CRLB作为目标函数建立优化问题。在考虑资源有限情况下,将优化问题中的功率资源总量和带宽资源总量限制在固定范围内。根据资源优化分配问题的非凸非线性特点提出了循环最小化算法和投影梯度下降算法相结合的解决方案。在不同雷达布局下进行仿真实验。仿真结果表明,相较于未优化的分配方案,资源联合优化的分配方案的CRLB数值降低了20%~30%,从而提高了雷达的探测精度,并缓解了欺骗性干扰导致的性能下降问题。 展开更多
关键词 分布式MIMO雷达 欺骗性干扰 假目标辨识 雷达资源分配 CRLB 循环最小化算法 非凸优化问题求解 投影梯度下降算法
在线阅读 下载PDF
A Primal-Dual SGD Algorithm for Distributed Nonconvex Optimization 被引量:7
8
作者 Xinlei Yi Shengjun Zhang +2 位作者 Tao Yang Tianyou Chai Karl Henrik Johansson 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第5期812-833,共22页
The distributed nonconvex optimization problem of minimizing a global cost function formed by a sum of n local cost functions by using local information exchange is considered.This problem is an important component of... The distributed nonconvex optimization problem of minimizing a global cost function formed by a sum of n local cost functions by using local information exchange is considered.This problem is an important component of many machine learning techniques with data parallelism,such as deep learning and federated learning.We propose a distributed primal-dual stochastic gradient descent(SGD)algorithm,suitable for arbitrarily connected communication networks and any smooth(possibly nonconvex)cost functions.We show that the proposed algorithm achieves the linear speedup convergence rate O(1/(√nT))for general nonconvex cost functions and the linear speedup convergence rate O(1/(nT)) when the global cost function satisfies the Polyak-Lojasiewicz(P-L)condition,where T is the total number of iterations.We also show that the output of the proposed algorithm with constant parameters linearly converges to a neighborhood of a global optimum.We demonstrate through numerical experiments the efficiency of our algorithm in comparison with the baseline centralized SGD and recently proposed distributed SGD algorithms. 展开更多
关键词 Distributed nonconvex optimization linear speedup Polyak-Lojasiewicz(P-L)condition primal-dual algorithm stochastic gradient descent
在线阅读 下载PDF
Efficient and High-quality Recommendations via Momentum-incorporated Parallel Stochastic Gradient Descent-Based Learning 被引量:7
9
作者 Xin Luo Wen Qin +2 位作者 Ani Dong Khaled Sedraoui MengChu Zhou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第2期402-411,共10页
A recommender system(RS)relying on latent factor analysis usually adopts stochastic gradient descent(SGD)as its learning algorithm.However,owing to its serial mechanism,an SGD algorithm suffers from low efficiency and... A recommender system(RS)relying on latent factor analysis usually adopts stochastic gradient descent(SGD)as its learning algorithm.However,owing to its serial mechanism,an SGD algorithm suffers from low efficiency and scalability when handling large-scale industrial problems.Aiming at addressing this issue,this study proposes a momentum-incorporated parallel stochastic gradient descent(MPSGD)algorithm,whose main idea is two-fold:a)implementing parallelization via a novel datasplitting strategy,and b)accelerating convergence rate by integrating momentum effects into its training process.With it,an MPSGD-based latent factor(MLF)model is achieved,which is capable of performing efficient and high-quality recommendations.Experimental results on four high-dimensional and sparse matrices generated by industrial RS indicate that owing to an MPSGD algorithm,an MLF model outperforms the existing state-of-the-art ones in both computational efficiency and scalability. 展开更多
关键词 Big data industrial application industrial data latent factor analysis machine learning parallel algorithm recommender system(RS) stochastic gradient descent(SGD)
在线阅读 下载PDF
A gradually descent method for discrete global optimization 被引量:1
10
作者 杨永建 张连生 《Journal of Shanghai University(English Edition)》 CAS 2007年第1期39-44,共6页
In this paper, a new method named as the gradually descent method was proposed to solve the discrete global optimization problem. With the aid of an auxiliary function, this method enables to convert the problem of fi... In this paper, a new method named as the gradually descent method was proposed to solve the discrete global optimization problem. With the aid of an auxiliary function, this method enables to convert the problem of finding one discrete minimizer of the objective function f to that of finding another at each cycle. The auxiliary function can ensure that a point, except a prescribed point, is not its integer stationary point if the value of objective function at the point is greater than the scalar which is chosen properly. This property leads to a better minimizer of f found more easily by some classical local search methods. The computational results show that this algorithm is quite efficient and reliable for solving nonlinear integer programming problems. 展开更多
关键词 gradually descent method nonlinear integer programming integer programming algorithm
在线阅读 下载PDF
Hooke and Jeeves algorithm for linear support vector machine 被引量:1
11
作者 Yeqing Liu Sanyang Liu Mingtao Gu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期138-141,共4页
Coordinate descent method is a unconstrained optimization technique. When it is applied to support vector machine (SVM), at each step the method updates one component of w by solving a one-variable sub-problem while... Coordinate descent method is a unconstrained optimization technique. When it is applied to support vector machine (SVM), at each step the method updates one component of w by solving a one-variable sub-problem while fixing other components. All components of w update after one iteration. Then go to next iteration. Though the method converges and converges fast in the beginning, it converges slow for final convergence. To improve the speed of final convergence of coordinate descent method, Hooke and Jeeves algorithm which adds pattern search after every iteration in coordinate descent method was applied to SVM and a global Newton algorithm was used to solve one-variable subproblems. We proved the convergence of the algorithm. Experimental results show Hooke and Jeeves' method does accelerate convergence specially for final convergence and achieves higher testing accuracy more quickly in classification. 展开更多
关键词 support vector machine CLASSIFICATION pattern search Hooke and Jeeves coordinate descent global Newton algorithm.
在线阅读 下载PDF
Improved CoSaMP Reconstruction Algorithm Based on Residual Update 被引量:1
12
作者 Dongxue Lu Guiling Sun +1 位作者 Zhouzhou Li Shijie Wang 《Journal of Computer and Communications》 2019年第6期6-14,共9页
A large number of sparse signal reconstruction algorithms have been continuously proposed, but almost all greedy algorithms add a fixed number of indices to the support set in each iteration. Although the mechanism of... A large number of sparse signal reconstruction algorithms have been continuously proposed, but almost all greedy algorithms add a fixed number of indices to the support set in each iteration. Although the mechanism of selecting the fixed number of indexes improves the reconstruction efficiency, it also brings the problem of low index selection accuracy. Based on the full study of the theory of compressed sensing, we propose a dynamic indexes selection strategy based on residual update to improve the performance of the compressed sampling matching pursuit algorithm (CoSaMP). As an extension of CoSaMP algorithm, the proposed algorithm adopts a residual comparison strategy to improve the accuracy of backtracking selected indexes. This backtracking strategy can efficiently select backtracking indexes. And without increasing the computational complexity, the proposed improvement algorithm has a higher exact reconstruction rate and peak signal to noise ratio (PSNR). Simulation results demonstrate the proposed algorithm significantly outperforms the CoSaMP for image recovery and one-dimensional signal. 展开更多
关键词 Compressed SENSING RESIDUAL descent RECONSTRUCTION algorithm BACKTRACKING
在线阅读 下载PDF
An algorithm for computed tomography image reconstruction from limited-view projections 被引量:5
13
作者 王林元 李磊 +3 位作者 闫镔 江成顺 王浩宇 包尚联 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第8期642-647,共6页
With the development of the compressive sensing theory, the image reconstruction from the projections viewed in limited angles is one of the hot problems in the research of computed tomography technology. This paper d... With the development of the compressive sensing theory, the image reconstruction from the projections viewed in limited angles is one of the hot problems in the research of computed tomography technology. This paper develops an iterative algorithm for image reconstruction, which can fit the most cases. This method gives an image reconstruction flow with the difference image vector, which is based on the concept that the difference image vector between the reconstructed and the reference image is sparse enough. Then the l1-norm minimization method is used to reconstruct the difference vector to recover the image for flat subjects in limited angles. The algorithm has been tested with a thin planar phantom and a real object in limited-view projection data. Moreover, all the studies showed the satisfactory results in accuracy at a rather high reconstruction speed. 展开更多
关键词 limited-view problem computed tomography image reconstruction algorithms reconstruction-reference difference algorithm adaptive steepest descent-projection onto convex sets algorithm
原文传递
PROJECTED GRADIENT DESCENT BASED ON SOFT THRESHOLDING IN MATRIX COMPLETION 被引量:1
14
作者 Zhao Yujuan Zheng Baoyu Chen Shouning 《Journal of Electronics(China)》 2013年第6期517-524,共8页
Matrix completion is the extension of compressed sensing.In compressed sensing,we solve the underdetermined equations using sparsity prior of the unknown signals.However,in matrix completion,we solve the underdetermin... Matrix completion is the extension of compressed sensing.In compressed sensing,we solve the underdetermined equations using sparsity prior of the unknown signals.However,in matrix completion,we solve the underdetermined equations based on sparsity prior in singular values set of the unknown matrix,which also calls low-rank prior of the unknown matrix.This paper firstly introduces basic concept of matrix completion,analyses the matrix suitably used in matrix completion,and shows that such matrix should satisfy two conditions:low rank and incoherence property.Then the paper provides three reconstruction algorithms commonly used in matrix completion:singular value thresholding algorithm,singular value projection,and atomic decomposition for minimum rank approximation,puts forward their shortcoming to know the rank of original matrix.The Projected Gradient Descent based on Soft Thresholding(STPGD),proposed in this paper predicts the rank of unknown matrix using soft thresholding,and iteratives based on projected gradient descent,thus it could estimate the rank of unknown matrix exactly with low computational complexity,this is verified by numerical experiments.We also analyze the convergence and computational complexity of the STPGD algorithm,point out this algorithm is guaranteed to converge,and analyse the number of iterations needed to reach reconstruction error.Compared the computational complexity of the STPGD algorithm to other algorithms,we draw the conclusion that the STPGD algorithm not only reduces the computational complexity,but also improves the precision of the reconstruction solution. 展开更多
关键词 Matrix Completion (MC) Compressed Sensing (CS) Iterative thresholding algorithm Projected Gradient descent based on Soft Thresholding (STPGD)
在线阅读 下载PDF
ENTROPICAL OPTIMAL TRANSPORT,SCHRODINGER'S SYSTEM AND ALGORITHMS
15
作者 Liming WU 《Acta Mathematica Scientia》 SCIE CSCD 2021年第6期2183-2197,共15页
In this exposition paper we present the optimal transport problem of Monge-Ampère-Kantorovitch(MAK in short)and its approximative entropical regularization.Contrary to the MAK optimal transport problem,the soluti... In this exposition paper we present the optimal transport problem of Monge-Ampère-Kantorovitch(MAK in short)and its approximative entropical regularization.Contrary to the MAK optimal transport problem,the solution of the entropical optimal transport problem is always unique,and is characterized by the Schrödinger system.The relationship between the Schrödinger system,the associated Bernstein process and the optimal transport was developed by Léonard[32,33](and by Mikami[39]earlier via an h-process).We present Sinkhorn’s algorithm for solving the Schrödinger system and the recent results on its convergence rate.We study the gradient descent algorithm based on the dual optimal question and prove its exponential convergence,whose rate might be independent of the regularization constant.This exposition is motivated by recent applications of optimal transport to different domains such as machine learning,image processing,econometrics,astrophysics etc.. 展开更多
关键词 entropical optimal transport Schrödinger system Sinkhorn’s algorithm gradient descent
在线阅读 下载PDF
Fractional Gradient Descent RBFNN for Active Fault-Tolerant Control of Plant Protection UAVs
16
作者 Lianghao Hua Jianfeng Zhang +1 位作者 Dejie Li Xiaobo Xi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2129-2157,共29页
With the increasing prevalence of high-order systems in engineering applications, these systems often exhibitsignificant disturbances and can be challenging to model accurately. As a result, the active disturbance rej... With the increasing prevalence of high-order systems in engineering applications, these systems often exhibitsignificant disturbances and can be challenging to model accurately. As a result, the active disturbance rejectioncontroller (ADRC) has been widely applied in various fields. However, in controlling plant protection unmannedaerial vehicles (UAVs), which are typically large and subject to significant disturbances, load disturbances andthe possibility of multiple actuator faults during pesticide spraying pose significant challenges. To address theseissues, this paper proposes a novel fault-tolerant control method that combines a radial basis function neuralnetwork (RBFNN) with a second-order ADRC and leverages a fractional gradient descent (FGD) algorithm.We integrate the plant protection UAV model’s uncertain parameters, load disturbance parameters, and actuatorfault parameters and utilize the RBFNN for system parameter identification. The resulting ADRC exhibits loaddisturbance suppression and fault tolerance capabilities, and our proposed active fault-tolerant control law hasLyapunov stability implications. Experimental results obtained using a multi-rotor fault-tolerant test platformdemonstrate that the proposed method outperforms other control strategies regarding load disturbance suppressionand fault-tolerant performance. 展开更多
关键词 Radial basis function neural network plant protection unmanned aerial vehicle active disturbance rejection controller fractional gradient descent algorithm
在线阅读 下载PDF
Chimp Optimization Algorithm Based Feature Selection with Machine Learning for Medical Data Classification
17
作者 Firas Abedi Hayder M.A.Ghanimi +6 位作者 Abeer D.Algarni Naglaa F.Soliman Walid El-Shafai Ali Hashim Abbas Zahraa H.Kareem Hussein Muhi Hariz Ahmed Alkhayyat 《Computer Systems Science & Engineering》 SCIE EI 2023年第12期2791-2814,共24页
Datamining plays a crucial role in extractingmeaningful knowledge fromlarge-scale data repositories,such as data warehouses and databases.Association rule mining,a fundamental process in data mining,involves discoveri... Datamining plays a crucial role in extractingmeaningful knowledge fromlarge-scale data repositories,such as data warehouses and databases.Association rule mining,a fundamental process in data mining,involves discovering correlations,patterns,and causal structures within datasets.In the healthcare domain,association rules offer valuable opportunities for building knowledge bases,enabling intelligent diagnoses,and extracting invaluable information rapidly.This paper presents a novel approach called the Machine Learning based Association Rule Mining and Classification for Healthcare Data Management System(MLARMC-HDMS).The MLARMC-HDMS technique integrates classification and association rule mining(ARM)processes.Initially,the chimp optimization algorithm-based feature selection(COAFS)technique is employed within MLARMC-HDMS to select relevant attributes.Inspired by the foraging behavior of chimpanzees,the COA algorithm mimics their search strategy for food.Subsequently,the classification process utilizes stochastic gradient descent with a multilayer perceptron(SGD-MLP)model,while the Apriori algorithm determines attribute relationships.We propose a COA-based feature selection approach for medical data classification using machine learning techniques.This approach involves selecting pertinent features from medical datasets through COA and training machine learning models using the reduced feature set.We evaluate the performance of our approach on various medical datasets employing diverse machine learning classifiers.Experimental results demonstrate that our proposed approach surpasses alternative feature selection methods,achieving higher accuracy and precision rates in medical data classification tasks.The study showcases the effectiveness and efficiency of the COA-based feature selection approach in identifying relevant features,thereby enhancing the diagnosis and treatment of various diseases.To provide further validation,we conduct detailed experiments on a benchmark medical dataset,revealing the superiority of the MLARMCHDMS model over other methods,with a maximum accuracy of 99.75%.Therefore,this research contributes to the advancement of feature selection techniques in medical data classification and highlights the potential for improving healthcare outcomes through accurate and efficient data analysis.The presented MLARMC-HDMS framework and COA-based feature selection approach offer valuable insights for researchers and practitioners working in the field of healthcare data mining and machine learning. 展开更多
关键词 Association rule mining data classification healthcare data machine learning parameter tuning data mining feature selection MLARMC-HDMS COA stochastic gradient descent Apriori algorithm
在线阅读 下载PDF
Combined Algorithms of Optimal Resource Allocation
18
作者 Valery I. Struchenkov 《Applied Mathematics》 2012年第1期78-85,共8页
Under study is the problem of optimum allocation of a resource. The following is proposed: the algorithm of dynamic programming in which on each step we only use the set of Pareto-optimal points, from which unpromisin... Under study is the problem of optimum allocation of a resource. The following is proposed: the algorithm of dynamic programming in which on each step we only use the set of Pareto-optimal points, from which unpromising points are in addition excluded. For this purpose, initial approximations and bilateral prognostic evaluations of optimum are used. These evaluations are obtained by the method of branch and bound. A new algorithm “descent-ascent” is proposed to find upper and lower limits of the optimum. It repeatedly allows to increase the efficiency of the algorithm in the comparison with the well known methods. The results of calculations are included. 展开更多
关键词 Dynamic PROGRAMMING The PARETO Set Branch and BOUND Method The CURSE of Dimensionality algorithm descent-Ascent”
暂未订购
基于BPNN-EKF-GD-RF算法的锂离子电池组荷电状态估计方法
19
作者 来鑫 翁嘉辉 +4 位作者 杨一鹏 孙宇飞 周龙 郑岳久 韩雪冰 《机械工程学报》 北大核心 2025年第12期251-265,共15页
锂离子电池模组的荷电状态估计(State-of-charge, SOC)是影响电池性能的一个重要内部状态,是电池组进行其它状态估计的基础。然而它的估计准确性易受温度等外部因素影响,且电池间的不一致性也为电池组中各单体电池的SOC估计带来了困难... 锂离子电池模组的荷电状态估计(State-of-charge, SOC)是影响电池性能的一个重要内部状态,是电池组进行其它状态估计的基础。然而它的估计准确性易受温度等外部因素影响,且电池间的不一致性也为电池组中各单体电池的SOC估计带来了困难。提出一种将BP神经网络(Back propagation neural network, BPNN)与扩展卡尔曼滤波(Extended Kalman filter, EKF)算法相结合的电池组SOC估计方法。该方法首先基于先验SOC利用BPNN估计不同温度下“领导者”电池的端电压,将其与实测端电压对比后采用EKF算法完成SOC后验估计,同时基于电压差采用梯度下降(Gradient descent, GD)算法更新BPNN的输出层权重使算法更快收敛。在此基础上,设计修正策略利用随机森林(Random forest, RF)算法对“跟随者”电池的SOC进行调整估计。试验结果表明,所提的BPNN-EKF-GD-RF算法能实现电池组在不同温度下SOC的准确估计,常温下SOC估计误差保持在2.5%以内,在温度变化下电池组中单体电池SOC估计最大误差不超过3.2%,为复杂环境下锂离子电池组的SOC估计提供了一种高精度低复杂度方案。 展开更多
关键词 SOC估计 BP神经网络 扩展卡尔曼滤波 梯度下降算法 随机森林 锂离子电池组
原文传递
繁忙终端区连续下降运行的4D轨迹预测
20
作者 王超 陈含露 +1 位作者 秦宏坤 刘博 《西南交通大学学报》 北大核心 2025年第3期722-730,共9页
为在繁忙终端区实施连续下降运行(CDO)并估算其二氧化碳减排成效,提出一种基于数据驱动和最优控制理论相结合的连续下降运行4D轨迹预测方法.首先,通过近邻传播轨迹聚类方法对典型进场水平路径进行识别;然后,以典型进场水平路径为依据,... 为在繁忙终端区实施连续下降运行(CDO)并估算其二氧化碳减排成效,提出一种基于数据驱动和最优控制理论相结合的连续下降运行4D轨迹预测方法.首先,通过近邻传播轨迹聚类方法对典型进场水平路径进行识别;然后,以典型进场水平路径为依据,分别以最小时间和最小燃油为目标,建立垂直剖面连续下降运行多阶段最优控制模型,并提出一种基于遗传算法的最优控制模型求解新方法(GACDO);最后,利用终端区实际轨迹数据,开展典型进场水平路径识别和连续下降运行模式下的4D轨迹预测与减排收益比较实验.结果表明:该方法能获得理想的连续下降运行4D轨迹;以最小时间为优化目标时,平均运行时间和二氧化碳排放分别减少26%和8%;以最小油耗为优化目标时,运行时间和二氧化碳排放分别减少17%和20%. 展开更多
关键词 4D轨迹预测 连续下降运行 遗传算法 轨迹聚类 最优控制
在线阅读 下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部