The complete small subunit rRNA (SSrRNA) gene sequence of a marine ciliate, Dysteria derouxi Gong and Song, 2004, was determined to be of 1 708 nucleotides. The phylogenetic position of this species within the class...The complete small subunit rRNA (SSrRNA) gene sequence of a marine ciliate, Dysteria derouxi Gong and Song, 2004, was determined to be of 1 708 nucleotides. The phylogenetic position of this species within the class Phyllopharyngea was deduced using distance matrix, maximum parsimony and maximum likelihood methods. Dysteria derouxi, together with other available ciliates of the class Phyllopharyngea, forms a monophyletic clade with strong bootstrap support in the distance matrix, maximum parsimony and likelihood tree construction methods, while the dysterids are, as a monophyletic group, phylogenetically close to the clade of chlamydodontids [values of 100% LS(least-squares), 100% NJ(neighabor-joining)]. In addition, the trees indicate that dysteriids may be a higher or specialized group within the class, which corresponds well to the morphology and infraciliature.展开更多
文摘The complete small subunit rRNA (SSrRNA) gene sequence of a marine ciliate, Dysteria derouxi Gong and Song, 2004, was determined to be of 1 708 nucleotides. The phylogenetic position of this species within the class Phyllopharyngea was deduced using distance matrix, maximum parsimony and maximum likelihood methods. Dysteria derouxi, together with other available ciliates of the class Phyllopharyngea, forms a monophyletic clade with strong bootstrap support in the distance matrix, maximum parsimony and likelihood tree construction methods, while the dysterids are, as a monophyletic group, phylogenetically close to the clade of chlamydodontids [values of 100% LS(least-squares), 100% NJ(neighabor-joining)]. In addition, the trees indicate that dysteriids may be a higher or specialized group within the class, which corresponds well to the morphology and infraciliature.