期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Variable Separation and Derivative-Dependent Functional Separable Solutions to Generalized Nonlinear Wave Equations 被引量:3
1
作者 ZHANGShun-Li LOUSen-Yue 《Communications in Theoretical Physics》 SCIE CAS CSCD 2004年第2期161-174,共14页
Using the generalized conditional symmetry approach, we obtain a number of new generalized (1+1)-dimensional nonlinear wave equations that admit derivative-dependent functional separable solutions.
关键词 variable separation nonlinear wave derivative-dependent functional separable solution
在线阅读 下载PDF
The derivative-dependent functional variable separation for the evolution equations 被引量:3
2
作者 张顺利 楼森岳 屈长征 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第12期2765-2776,共12页
This paper studies variable separation of the evolution equations via the generalized conditional symmetry. To illustrate, we classify the extended nonlinear wave equation utt = A(u, ux)uxx+B(u, ux, ut) which adm... This paper studies variable separation of the evolution equations via the generalized conditional symmetry. To illustrate, we classify the extended nonlinear wave equation utt = A(u, ux)uxx+B(u, ux, ut) which admits the derivative- dependent functional separable solutions (DDFSSs). We also extend the concept of the DDFSS to cover other variable separation approaches. 展开更多
关键词 derivative-dependent functional variable separation evolution equations generalized conditional symmetry
原文传递
Approximate Derivative-Dependent Functional Variable Separation for the Generalized Diffusion Equations with Perturbation 被引量:1
3
作者 张顺利 吉飞宇 屈长征 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第8期175-181,共7页
As an extension to the derivative-dependent functional variable separation approach, the approximate derivative-dependent functional variable separation approach is proposed, and it is applied to study the generalized... As an extension to the derivative-dependent functional variable separation approach, the approximate derivative-dependent functional variable separation approach is proposed, and it is applied to study the generalized diffusion equations with perturbation. Complete classification of these perturbed equations which admit approximate derivative-dependent functional separable solutions is obtained. As a result, the corresponding approximate derivative-dependent functional separable solutions to some resulting perturbed equations are derived by way of examples. 展开更多
关键词 generalized diffusion equation approximate derivative-dependent functional separable solution approximate generalized conditional symmetry
原文传递
Approximate derivative-dependent functional variable separation for quasi-linear diffusion equations with a weak source
4
作者 吉飞宇 杨春晓 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第10期67-72,共6页
By using the approximate derivative-dependent functional variable separation approach, we study the quasi-linear diffusion equations with a weak source ut = (A(u)Ux)x + eB(u, Ux). A complete classification of t... By using the approximate derivative-dependent functional variable separation approach, we study the quasi-linear diffusion equations with a weak source ut = (A(u)Ux)x + eB(u, Ux). A complete classification of these perturbed equations which admit approximate derivative-dependent functional separable solutions is listed. As a consequence, some approxi- mate solutions to the resulting perturbed equations are constructed via examples. 展开更多
关键词 quasi-linear diffusion equation approximate derivative-dependent functional separable solution approximate generalized conditional symmetry
原文传递
Variable Separation for(1+1)-Dimensional Nonlinear Evolution Equations with Mixed Partial Derivatives 被引量:1
5
作者 WANG Peng-Zhou ZHANG Shun-Li 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第10期797-802,共6页
We present basic theory of variable separation for (1 + 1)-dimensional nonlinear evolution equations withmixed partial derivatives.As an application,we classify equations u_(xt)=A(u,u_x)u_(xxx)+B(u,u_x) that admits de... We present basic theory of variable separation for (1 + 1)-dimensional nonlinear evolution equations withmixed partial derivatives.As an application,we classify equations u_(xt)=A(u,u_x)u_(xxx)+B(u,u_x) that admits derivative-dependent functional separable solutions (DDFSSs) and illustrate how to construct those DDFSSs with some examples. 展开更多
关键词 (1 1)-dimensional nonlinear evolution equations variable separation generalized conditional symmetry derivative-dependent functional separable solution
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部